## Self-assembled three-dimensional hydrogels based on graphene derivatives and cerium oxide nanoparticles: scaffolds for long-term co-culture of oligodendrocytes and neurons derived from neural stem cells

Yurena Polo<sup>a</sup>, Jon Luzuriaga<sup>b</sup>, Sergio Gonzalez de Langarica<sup>c</sup>, Beatriz Pardo-Rodríguez<sup>b</sup>, Daniel E. Martínez-Tong<sup>d</sup>, Christos Tapeinos<sup>e,f</sup>, Irene Manero-Roig<sup>b,g</sup>, Edurne Marin<sup>c</sup>, Jone Muñoz-Ugartemendia<sup>c</sup>, Gianni Ciofani<sup>e</sup>, Gaskon Ibarretxe<sup>b</sup>, Fernando Unda<sup>b</sup>, Jose-Ramon Sarasua<sup>c</sup>, Jose Ramon Pineda<sup>\*b, h</sup>, Aitor Larrañaga<sup>\*c</sup>

<sup>a</sup> Polimerbio, Donostia-San Sebastian, Spain

<sup>c</sup> Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain

<sup>d</sup> Polymers and advanced materials: Physics, Chemistry and Technology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain & Centro de Física de Materiales (UPV/EHU-CSIC), Donostia-San Sebastian, Spain

<sup>e</sup> Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera (PI), Italy

<sup>f</sup> Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

g Université de Bordeaux IINS - UMR 5297, Bordeaux, France

<sup>h</sup> Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain

#### \* Corresponding Authors:

Aitor Larrañaga

Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain Telephone: +34 946 013 935 E-mail: aitor.larranagae@ehu.eus ORCID: 0000-0002-2123-6069

Jose Ramon Pineda

Cell Signaling lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain Telephone: +34 946 012 426 E-mail: joseramon.pinedam@ehu.eus ORCID: 0000-0002-0900-7466

<sup>&</sup>lt;sup>b</sup> Cell Signaling lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain

### Supplementary figures



### Supplementary figure 1: XPS spectra of the samples.

High resolution C 1s spectra for GO, GO:AsA 1:1, GO:AsA 1:4, GO:AsA 1:10 and graphite, highlighting the different functionalities that were found, based on the deconvolution of the signal.



Supplementary figure 2: EDX mapping and spectra of the hydrogels containing increasing amounts of CeO<sub>2</sub> nanoparticles.

(A) GO:AsA 1:4 (B) GO:AsA 1:4 + CeO<sub>2</sub> 0.25 (C) GO:AsA 1:4 + CeO<sub>2</sub> 0.5 (D) GO:AsA 1:4 + CeO<sub>2</sub> 0.75 and (E) GO:AsA 1:4 + CeO<sub>2</sub> 1 showing the peaks of the C, O and Ce.



Supplementary figure 3: Scanning electron micrographs showing attachment of the cells over the 3D structure.

All the hydrogels GO:AsA 1:1, GO:AsA 1:4 and GO:AsA 1:4 + CeO<sub>2</sub> 0.25 supported NSC attachment after 24 h. Scale bar 10  $\mu$ m.



Supplementary figure 4: Immunofluorescence images showing the integration of the cells over the 3D structure.

Immunofluorescence images for DAPI on hydrogel pieces cut by the vibratome showed cells until 500  $\mu$ m deep after 7 days in culture on the GO:AsA 1:1, GO:AsA 1:4 and GO:AsA 1:4 + CeO<sub>2</sub> 0.25. Scale bar 50  $\mu$ m. Briefly, hydrogels were embedded in 2% agarose and serial cut in 250  $\mu$ m thickness sections using a vibratome. By using serial cut hydrogel sections, we are able to do a hydrogel reconstruction from top to bottom with a precise micrometric measure of depth of DAPI immunofluorescent signal detection.



Supplementary figure 5: Intracellular reactive oxygen species measurements.

Quantification of the intracellular reactive oxygen species on NSCs cultured for 14 days over GO:AsA 1:1, GO:AsA 1:4 and GO:AsA 1:4 + CeO<sub>2</sub> 0.25 hydrogels. (\*p<0.05 compared to GO:AsA 1:1 and GO:AsA 1:4, Holm-Šídák method One Way Analysis of Variance on Rank).



# Supplementary figure 6: Immunofluorescence showing immature neuronal cells on the hydrogels at different time points.

(A) Immunofluorescence showing immature DCX (red) positive neuronal-like cells in GO:AsA 1:1, GO:AsA 1:4 and GO:AsA 1:4 + CeO<sub>2</sub> 0.25 hydrogels after DIV 7, 14 and 21. Scale bar 50  $\mu$ m. (B) Quantification of the percentage of DCX positive cells (C) qPCR measurements showing the fold change compared to GO:AsA 1:1 hydrogel at DIV7. (\*p<0.05 compared to the other hydrogels at the same time-points. Holm-Šídák method One-way ANOVA Analysis of Variance on Ranks).