Supplementary Information

Quantum dots doped CeO_x-NiB with modulated electron density as highly efficient bifunctional electrocatalyst for water splitting

Huimin Wang,^{‡a} Tao Feng,^{‡a} Lincai Wang ,^{*,a} Weiju Hao^{*,b}

^a School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shang Hai 201209, P. R. China.

^b University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

‡These authors are equal to this work.

*Corresponding Authors:

Tel: 86-15821074895. E-mail: lcwang@sspu.edu.cn (L.C. Wang); wjhao@usst.edu.cn (W.J. Hao).

Correspondence and requests for materials should be addressed to L.C. Wang (E-mail: lcwang@sspu.edu.cn)

Fig. S1. SEM images of CeO_x-NiB/SiC@NF with different additions of SiC (a) 0.02 g; (b) 0.04 g and (c) 0.06 g.

Fig. S2. LSV curves of HER and OER of CeO_x-NiB/SiC@NF with different SiC doping amounts.

Fig. S3. XRD pattern of SiC powder

Fig. S4. FESEM image of SiC powder

Fig. S5. (a-d) Cyclic voltammograms of CeO_x -NiB/SiC@NF, Ni-B/SiC@NF, CeO_x-NiB@NF and SiC/NF electrodes at different scan rates in 1.0 M KOH for HER.

Fig. S6. (a-c) The FESEM images of original, post-HER and post-OER CeO_x -NiB/SiC@NF electrode.

Fig. S7. (a-d) Cyclic voltammograms of CeO_x -NiB/SiC@NF, Ni-B/SiC@NF, CeO_x-NiB@NF and SiC/NF electrodes at different scan rates in 1.0 M KOH for OER.

Fig. S8. XRD comparison pattern for pristine CeO_x -NiB/SiC@NF and after HER and OER stability tests for 24 h.

samples					
Element	Ni	Ce	Si	В	Ni: Ce: Si: B
CeO _x - NiB/SiC@NF	14.6	1.19	0.35	7	2.08: 0.17: 0.05: 1
Ni-B/SiC@NF	246.9	0	0.94	23.5	10.5: 0: 0.04: 1

Table S1 ICP-AES test results of CeO_x-NiB/SiC@NF and Ni-B/SiC@NF

Table S2 Comparison of the HER catalytic performance of CeO_x -NiB/SiC@NFand other electrocatalyst electrodes in 1.0 M KOH.

Catalysts	Electrolyte	j (mA·cm ⁻²)	Potential (mV)	Reference
CeO _x -NiB/SiC@NF	1M KOH	50	131	This work
NX600C	1M KOH	50	290	1
Co _{1-x} Fe _x -LDH	1M KOH	50	273	2
$(Ni_{0.33}Fe_{0.67})_2$	1M KOH	50	214	3
A-CFWO	1M KOH	50	248	4
Mn-NiCoP	1M KOH	50	142	5
S-0.80	1M KOH	50	144	6
CoSAs-MoS ₂ /TiN NRs	1M KOH	50	232.8	7
Co-NiS@MoS ₂	1M KOH	50	139.9	8
NiCoDPA	1M KOH	50	253	9
5% Co- MoS2/NiS2/CC	1M KOH	50	162	10
S-0.80	1M KOH	50	205	11
Ni/Mo ₂ C@NCe-0.15	1M KOH	50	138	12
CoP/rGO/NF-3	1M KOH	50	136	13
B-Ni	1M KOH	50	235	14
NiMo ₃ S ₄ /CTs	1M KOH	50	252.8	15
Cu-(a-NiSe _x /c- NiSe ₂)/TiO ₂ NRs	1M KOH	50	374.5	16
NMCP@NF	1M KOH	50	143	17
NiFe-MS/MOS@NF	1M KOH	50	156	18
NiCoPO@NC/P-NF-e	1M KOH	50	122.7	19
Ni-Mo-S/MoO _x /NF	1M KOH	50	180	20

Catalysts	Electrolyte	<i>j</i> (mA·cm ⁻²)	Potential (mV)	Reference	
CeO _x -NiB/SiC@NF	1M KOH	10	234	This work	
CeO _x -NiB@NF	1M KOH	10	274	21	
CoP/EEBP	1M KOH	10	335	22	
CoB@CoBi-800	1M KOH	10	291	23	
CoNiB@NF-500	1M KOH	10	313	24	
Ni _x B-300	1M KOH	10	380	25	
Ni _x B/f-MWCNT	1M KOH	10	286	26	
NiCoB	1M KOH	10	300	27	
NiCoBO _x	1M KOH	10	290	28	
Ni ₃ B/rGO	1M KOH	10	290	29	
NiB _{0.45} -250/Cu	1M KOH	10	296	30	
CoB/NF-200	1M KOH	10	315	31	
NGNF	1M KOH	10	340	32	
CuO@Cu ₃ P	1M KOH	10	267	33	
FeCoNiB@B-VG	1M KOH	10	387	34	
P-NiSe ₂ @N- CNTs/NC	1M KOH	10	306	35	
RRMC-500	1M KOH	10	260	36	
$NiS_2@V_2O_5/VS_2$	1M KOH	10	333	37	
Mo-CoP _X /NF	1M KOH	10	268	38	
Co _{0.21} Fe _{0.28} (OH)F	1M KOH	10	193	39	
NMCP@NF	1M KOH	10	250	17	
3D porous P-MoO ₃ FCL MXene/NF	1M KOH	10	179	40	

 Table S3 Comparison of the OER catalytic performance of CeOx-NiB/SiC@NF and other electrocatalyst electrodes in 1.0 M KOH.

Catalysts	Electrolyte	j (mA·cm ⁻²)	Potential (V)	Reference
CeO _x -NiB/SiC@NF CeO _x -	1M KOH	10	1.437	This work
NiB/SiC@NF				
FeIr/NF FeIr/NF	1M KOH	10	1.48	41
$Ni_{0.93}Ir_{0.07}/rGO Ni_{0.93}Ir_{0.07}/rGO$	1M KOH	10	1.52	42
Co ₅ Fe ₅ -C Co ₅ Fe ₅ -C	1M KOH	10	1.46	43
NiFeOH/CoS _x /NF NiFeOH/CoS _x / NF	1M KOH	10	1.563	44
Ni ₂ P/Co ₂ P Ni ₂ P/Co ₂ P	1M KOH	10	1.57	45
$Co_3S_4/CeO_2\text{-}CF \ Co_3S_4/CeO_2\text{-}CF$	1M KOH	10	1.64	46
CeO ₂ -NiCoP _x /NCF CeO ₂ - NiCoP _x /NCF	1M KOH	10	1.49	47
Ru@Co-B/Ni Ru@Co-B/Ni	1M KOH	10	1.66	48
$Mo_2NiB_2 \ Mo_2NiB_2$	1M KOH	10	1.57	49
Fe ₁ Mn ₁ @BN- PCFs Fe ₁ Mn ₁ @BN-PCFs	1M KOH	10	1.622	50
$Ni_xFe_{1-x}B-2 Ni_xFe_{1-x}B-2 Ni_x$	1M KOH	10	1.57	51
C3 C3	1M KOH	10	1.55	52
Fe ₃ N@Co ₄ N@CoFe Fe ₃ N@Co ₄ N@CoFe	1M KOH	10	1.59	53
$Co(OH)_2 \ Co(OH)_2$	1M KOH	10	1.61	54
MoP-Mo ₂ C/NPC MoP- Mo ₂ C/NPC	1M KOH	10	1.55	55
CMC/750SA CMC/750SA	1M KOH	10	1.589	56
Co ₉ S ₈ @NiFe-LDH- 200 Co ₉ S ₈ @NiFe-LDH-200	1M KOH	10	1.585	57
50MCNP@NF 50MCNP@NF	1M KOH	10	1.45	58
Ni _x S _v @MnO _x H _y /NF				
Ni _x S _y @MnO _x H _y /NF	ім кон	10	1.530	59
P-MoO ₃ FCL MXene/NF P- MoO ₃ FCL MXene/NF	1M KOH	10	1.53	40

Table S4 Comparison of the overall water splitting performance of CeO_x-NiB/SiC@NF and other electrocatalyst electrodes in 1.0 M KOH.

NiCoPO@NC/P-NF-e				
U II	1M KOH	10	1.50	19
NiCoPO@NC/P-NF-e		10	1.00	

References

- 1 N. Shaikh, I. Mukhopadhyay and A. Ray, J. Mater. Chem. A, 2022, 10, 12733-12746.
- 2 G. Rajeshkhanna, T. I. Singh, N. H. Kim and J. H. Lee, *ACS Appl Mater Interfaces*, 2018, **10**, 42453-42468.
- 3 Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He and X. Sun, Adv. Funct. Mater., 2017, 27, 1702513.
- 4 A. Muthurasu, G. P. Ojha, M. Lee and H. Y. Kim, *Electrochim. Acta*, 2020, **334**, 135537.
- 5 X. Yu, S. Xu, Z. Wang, X. Cheng, Y. Du, G. Chen, X. Sun and Q. Wu, *Nanoscale*, 2021, **13**, 11069-11076.
- Y. H. Wu, Y. Zhang, Y. X. Wang, Z. He, Z. J. Gu and S. C. You, *Int. J. Hydrogen Energy*, 2021, 46, 26930-26939.
- 7 T. L. L. Doan, D. C. Nguyen, S. Prabhakaran, D. H. Kim, D. T. Tran, N. H. Kim and J. H. Lee, *Adv. Funct. Mater.*, 2021, **31**, 2100233.
- H. Gao, J. Zang, Y. Wang, S. Zhou, P. Tian, S. Song, X. Tian and W. Li, *Electrochim. Acta*, 2021, 377, 138051.
- 9 P. Bhanja, B. Mohanty, S. Chongdar, A. Bhaumik, B. K. Jena and S. Basu, ACS Appl. Energy Mater., 2021, 4, 12827-12835.
- 10 Y. Zheng, J. Rong, J. Xu, Y. Zhu, T. Zhang, D. Yang and F. Qiu, *Appl. Surf. Sci.*, 2021, 563, 150385.
- 11 Z. Zhang, Y. Wu and D. Zhang, Int. J. Hydrogen Energy, 2022, 47, 1425-1434.
- 12 R. Ge, J. Zhao, J. Huo, J. Qu, J. Yang, Y. Li, M. Zhu, J. M. Cairney, R. Zheng, S. Li, J. Zhang, B. Liu and W. Li, *Mater. Today Nano*, 2022, **20**, 100248.
- 13 Z. Yang, R. He, H. Wu, Y. Ding and H. Mei, Int. J. Hydrogen Energy, 2021, 46, 9690-9698.
- 14 T. Zhang, F. Song, Y. Qian, H. Gao, J. Shaw and Y. Rao, ACS Appl. Energy Mater., 2021, 4, 5434-5442.
- 15 D. Kong, Y. Wang, S. Huang, Y. V. Lim, M. Wang, T. Xu, J. Zang, X. Li and H. Y. Yang, J. Colloid Interface Sci., 2022, 607, 1876-1887.
- 16 K. R. Park, D. T. Tran, T. T. Nguyen, N. H. Kim and J. H. Lee, *Chem. Eng. J.*, 2021, **422**, 130048.
- 17 M. R. Kandel, U. N. Pan, D. R. Paudel, P. P. Dhakal, N. H. Kim and J. H. Lee, *Composites, Part B*, 2022, **239**, 109992.
- 18 M. Zhao, W. Li, J. Li, W. Hu and C. M. Li, Adv Sci (Weinh), 2020, 7, 2001965.
- H. Gao, Y. Wang, S. Zhou, S. Song, X. Tian, W. Li, Y. Yuan and J. Zang, *Chem. Eng. J.*, 2021, 426, 130854.
- 20 Z. Han, X. Liang, S. Wang, L. Zhou and Z. Zhao, Mater. Lett., 2019, 246, 63-66.
- H. Wang, H. Liu, T. Feng, L. Wang, W. Yuan, Q. Huang and Y. Guo, *Dalton Trans.*, 2022, 51, 675-684.
- 22 T. Liang, Y. Liu, P. Zhang, C. Liu, F. Ma, Q. Yan and Z. Dai, *Chem. Eng. J.*, 2020, 395, 124976.
- 23 T. Tan, P. Han, H. Cong, G. Cheng and W. Luo, ACS Sustainable Chem. Eng., 2019, 7, 5620-5625.
- 24 N. Xu, G. Cao, Z. Chen, Q. Kang, H. Dai and P. Wang, J. Mater. Chem. A, 2017, 5, 12379-12384.
- 25 J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata, J. Arbiol, M. Muhler, B. Roldan Cuenya and W. Schuhmann, *Adv. Energy Mater.*, 2017, 7, 1700381.
- 26 X. Chen, Z. Yu, L. Wei, Z. Zhou, S. Zhai, J. Chen, Y. Wang, Q. Huang, H. E. Karahan, X. Liao and Y. Chen, *J. Mater. Chem. A*, 2019, **7**, 764-774.
- 27 S. Wang, P. He, Z. Xie, L. Jia, M. He, X. Zhang, F. Dong, H. Liu, Y. Zhang and C. Li,

Electrochim. Acta, 2019, 296, 644-652.

- 28 M. Ramadoss, Y. Chen, Y. Hu and D. Yang, *Electrochim. Acta*, 2019, **321**, 134666.
- 29 M. Arivu, J. Masud, S. Umapathi and M. Nath, *Electrochem. Commun.*, 2018, 86, 121-125.
- 30 J. Jiang, M. Wang, W. Yan, X. Liu, J. Liu, J. Yang and L. Sun, *Nano Energy*, 2017, **38**, 175-184.
- 31 Z. Chen, Q. Kang, G. Cao, N. Xu, H. Dai and P. Wang, *Int. J. Hydrogen Energy*, 2018, 43, 6076-6087.
- D. Navadeepthy, A. Rebekah, C. Viswanthan and N. Ponpandian, *Int. J. Hydrogen Energy*, 2021, 46, 21512-21524.
- 33 S. Lv, J. Li, B. Zhang, Y. Shi, X. Liu and T. Wang, Int. J. Hydrogen Energy, 2022, 47, 9593-9605.
- 34 B. Jiang, K. Liang, Z. Yang, K. Guo, F. Shaik and J. Zheng, *Electrochim. Acta*, 2021, 386, 138459.
- 35 J. Yu, W.-J. Li, G. Kao, C.-Y. Xu, R. Chen, Q. Liu, J. Liu, H. Zhang and J. Wang, J. Energy Chem., 2021, 60, 111-120.
- 36 Y. Fan, X. Zhang, Y. Zhang, X. Xie, J. Ding, J. Cai, B. Li, H. Lv, L. Liu, M. Zhu, X. Zheng, Q. Cai, Y. Liu and S. Lu, J. Colloid Interface Sci., 2021, 604, 508-516.
- 37 Z. Yang, X. Xie, Z. Zhang, J. Yang, C. Yu, S. Dong, M. Xiang and H. Qin, *Int. J. Hydrogen Energy*, 2022, 47, 27338-27346.
- 38 Y. Yu, J. Li, J. Luo, Z. Kang, C. Jia, Z. Liu, W. Huang, Q. Chen, P. Deng, Y. Shen and X. Tian, *Mater. Today Nano*, 2022, 18, 100216.
- 39 Y. Li, X. Zhai, C. Fan, X. Chen, Y. Liu, J. Yang, L. Chen, G. Ge and J. Zhang, J. Mater. Chem. A, 2022, 10, 11774-11783.
- 40 M. Li, R. Sun, Y. Li, J. Jiang, W. Xu, H. Cong and S. Han, *Chem. Eng. J.*, 2022, **431**, 133941.
- 41 F. Shen, Y. Wang, G. Qian, W. Chen, W. Jiang, L. Luo and S. Yin, *Appl. Catal.*, *B*, 2020, **278**, 119327.
- 42 S. Zhang, X. Zhang, X. Shi, F. Zhou, R. Wang and X. Li, J. Energy Chem., 2020, 49, 166-173.
- 43 Y. Yan, Y. Han, F. Wang, Y. Hu, Q. Shi, G. Diao and M. Chen, *J. Alloys Compd.*, 2022, **897**, 163126.
- 44 R. Bose, V. R. Jothi, K. Karuppasamy, A. Alfantazi and S. C. Yi, *J. Mater. Chem. A*, 2020, **8**, 13795-13805.
- 45 H. Liu, M. Jin, D. Zhan, J. Wang, X. Cai, Y. Qiu and L. Lai, *Appl. Catal.*, *B*, 2020, 272, 118951.
- Z. Feng, J. Pu, M. Liu, W. Zhang, X. Zhang, L. Cui and J. Liu, *J. Colloid Interface Sci.*, 2022, 613, 806-813.
- 47 S. Wen, J. Huang, T. Li, W. Chen, G. Chen, Q. Zhang, X. Zhang, Q. Qian and K. Ostrikov, *Appl. Catal.*, *B*, 2022, **316**, 121678.
- 48 L. Chen, B. Lu, J. Zhang, R. Wu and Y. Guo, J. Colloid Interface Sci., 2022, 623, 897-904.
- 49 A. Saad, Y. Gao, K. A. Owusu, W. Liu, Y. Wu, A. Ramiere, H. Guo, P. Tsiakaras and X. Cai, *Small*, 2022, 18, e2104303.
- 50 Z. Liu, F. Guo, L. Cheng, X. Bo, T. Liu and M. Li, J. Colloid Interface Sci., 2022, 629, 179-192.
- 51 W. Hong, S. Sun, Y. Kong, Y. Hu and G. Chen, J. Mater. Chem. A, 2020, 8, 7360-7367.
- 52 D. Chinnadurai, R. Rajendiran and P. Kandasamy, J. Colloid Interface Sci., 2022, 606, 101-112.
- 53 Z. Cui, X. Liang, P. Wang, P. Zhou, Q. Zhang, Z. Wang, Z. Zheng, Y. Liu, Y. Dai and B. Huang, *Electrochim. Acta*, 2021, 395, 139218.
- 54 M. Duraivel, S. Nagappan, K. H. Park and K. Prabakar, *Electrochim. Acta*, 2022, **411**, 140071.

- E. Jiang, J. Li, X. Li, A. Ali, G. Wang, S. Ma, P. Kang Shen and J. Zhu, *Chem. Eng. J.*, 2022, 431, 133719.
- 56 W. Yaseen, M. Xie, B. A. Yusuf, Y. Xu, N. Ullah, M. Rafiq, A. Ali and J. Xie, *Appl. Surf. Sci.*, 2022, **579**, 152148.
- 57 Y. Lu, C. Liu, Y. Xing, Q. Xu, A. M. S. Hossain, D. Jiang, D. Li and J. Zhu, J. Colloid Interface Sci., 2021, 604, 680-690.
- 58 Y. Zhang, H. Liu, R. Ge, J. Yang, S. Li, Y. Liu, L. Feng, Y. Li, M. Zhu and W. Li, Sustainable Mater. Technol., 2022, 33, e00461.
- 59 P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan, S. Sun and Z. Shi, *Nano-Micro Lett.*, 2022, **14**, 120.