Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Thermal Degradation of the Bulk and Interfacial Traps at 85°C in Perovskite Photovoltaics

Alan Jiwan Yun,^a Seokjoo Ryu,^a Jiheon Lim,^a Jinhyun Kim,^b and Byungwoo Park^{a,*}

^aDepartment of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea

> ^bDepartment of Chemical and Materials Engineering, The University of Suwon, Hwaseong 18323, Korea

Keywords: Perovskite Solar Cell, Thermal Degradation, Trap Density of States, Depth-Profile Defect Analysis, Evolution of Traps.

^{*} E-mail: byungwoo@snu.ac.kr; Phone: +82-2-880-8319; Fax: +82-2-885-9671.

Figure S1. Properties of the solar cells without/with LiF. (a) Incident photon-to-electron conversion efficiency (IPCE) measurement with the integrated current density. (b) Steady-state currents measured under the maximum power voltages.

Figure S2. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) of the perovskite solar cells. Depth profiling of the elemental distributions in CsFAMA and CsFAMA:LiF before/after the 250 h storage at 85°C in N₂.

Figure S3. Nyquist plots of the PSCs without/with LiF as a function of time at 85°C.

Impedance Spectroscopy for tDOS = N_t^Z vs. E_{ω}					
				Z	measured impedance of PSC
Z		$\frac{V_{DC} + \delta V_{AC}}{= 0}$	$c_{c} = \mathbf{I} \cdot \mathbf{Z}$	V_{bi}	built-in potential measured by C - $V (\cong 1.1 \text{ V})$
I	10 ⁻² – 10 ⁶ Hz (~50 pts)	Capacitance	$C^Z \equiv \left[\frac{1}{i\omega Z}\right]_{real}$	$\omega = 2\pi f$	angular frequency of the AC perturbation
				ω 0	attempts of escape ($\sim 10^{10} \text{ s}^{-1}$ at 300 K)
		Trap Density	$N_t^Z(\omega) = rac{V_{bi}}{qW} \Big(rac{\partial C^Z}{\partial \omega}\Big) rac{\omega}{k_B T}$	$N_t^Z(\omega)$	trap density $[= N_t^Z(E_\omega)]$
$V_{DC} = 0$				W	depletion width (\cong 500 nm)
δ	$V_{AC} = 20 \text{ mV}$	Trap Level	$E_{\omega} = k_B T \ln\left(\frac{\omega_0}{\omega}\right) = E -$	- E _{bandedge}	

Figure S5. tDOS $N_t^Z(\omega)$ of the PSCs without/with LiF as a function of time at 85°C.

Figure S6. Schematic band diagrams of PSC during the capacitance measurement.

Figure S7. 2D maps of the trap densities $N_t^C(x,\omega)$ at 20 kHz ($E_{\omega} = 0.29$ eV) measured by drive-level capacitance profiling (DLCP) analysis.

Figure S8. Evolution of the trap densities by positions obtained from the drive-level capacitance profiling (DLCP) analysis. Trap densities $N_t^C(x,\omega)$ at the perovskite/HTL interface, in the bulk, and at the perovskite/ETL interface are shown for (a) 1 kHz ($E_{\omega} = 0.36 \text{ eV}$), (b) 5 kHz (= 0.32 eV), and (c) 100 kHz (= 0.25 eV).