Supporting information

A general photoiniferter approach to the surface functionalization of acrylic and methacrylic structures written by two-photon stereolithography

Ernesto III Paruli,^a Valentina Montagna,^a, Mariano Garcia-Soto,^a Karsten Haupt, *a and Carlo Gonzato *a

^a Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France.

*karsten.haupt@utc.fr ; carlo.gonzato@utc.fr

Figure S1. The minimum lateral feature size as a function of laser power at a fixed scan speed using the IP-Dip photoresin (n = 3). Outset: SEM image of triplicates of one-voxel-wide line with the smallest average minimum lateral feature size (147.7 \pm 64.0 nm) generated using SS = 6000 μ m/s, LP = 20 mW. Legend shows scan speed values expressed in μ m/s.

Figure S2. The minimum lateral feature size as a function of laser power at a fixed scan speed using the IP-S photoresin (n = 3). Outset: SEM images of triplicates of one-voxel-wide line with smallest $(270.0 \pm 34.8 \text{ nm})$ average minimum lateral feature size generated using SS = 2000 µm/s, LP = 35 mW. Legend shows scan speed values expressed in µm/s.

Figure S3. Representative SEM images of the printed woodpiles. (B) is a magnification of (A).

Figure S4. Brightfield microscopy image of bare microwoodpile (A) before and (B) after CDTPAcoupling and fluorescent polymer-grafting. Bare microwoodpile (C) before and (D) after fluorescent polymer-grafting without prior CDTPA-coupling. Scale bar = 100 μm.