Supporting information

Unveiling the Degraded Electron Durability in Reduced-Dimensional Perovskites

Yu Lu,¹ Yang Shen,^{1,*} Yan-Qing Li,^{2,*}, Kong-Chao Shen,¹ Wei Zhou,¹ Jian-Xin Tang^{1,3,*}

- ¹ Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- ² School of Physics and Electronics Science, Ministry of Education Nanophotonics and Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200062, China
- ³ Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa 999078, Macao, China
- * Corresponding authors. E-mail addresses: <u>18862344930@163.com</u> (Y. Shen), <u>yqli@phy.ecnu.edu.cn</u> (Y.-Q. Li), <u>jxtang@suda.edu.cn</u> (J.-X. Tang)

Figure S1. Vacuum stability of the PEA⁺-doped CsPbBr₃ film. XPS spectra from the orbitals of a) Pb 4f, b) N 1s, c) Br 3d, and d) Cs 3d with respect to storage periods.

Figure S2. XRD patterns of the PEA⁺-doped CsPbBr₃ film before and after electron radiation.

Figure S3. Steady PL spectra of the PEA⁺-doped CsPbBr₃ film before and after electron radiation. Insert is the corresponding transient PL decay curves.

Figure S4. SEM images of the PEA⁺-doped CsPbBr₃ film before and after electron radiation.

Figure S5. In situ XPS spectra of the elements in 3D CsPbBr₃ film with increasing radiation time.

Figure S6. In situ XPS spectra from the orbitals of Pb 4f and N 1s in the PEA⁺-doped CsPbBr₃ film with increasing radiation time.

Figure S7. Stability test. a) Vacuum stability of PEABr film. b) Electron durability of CsBr film.

Figure S8. In situ XPS spectra of the elements in 3D CsPbBr₃ film under electron radiation after storage in ambient air over 30 min.

Figure S9. In situ XPS spectra from the orbitals of a) Pb $4f_{7/2}$ and b) N 1s in 3D FAPbBr₃ film with increasing radiation time.

Time (h)	Pb^{2+}	Pb ⁰	PEA	Cs	Br
0	25451.1	0	1563.7	75155.1	10076.3
2	25290	2560.4	1212.9	86800	10187
4	25726.6	3060	766.5	91582.8	10370.4

Table S1. The integrated XPS spectral areas of the components in PEA⁺-doped CsPbBr₃ film.

Time (h)	Pb ²⁺	Pb^0	FA	PEA
0	26789.3	0	7258.7	4667.9
2	28964.9	2285.6	7949.7	3979.1
4	29581.5	3139.4	9187.9	3751.7
6	30487.2	3919.2	9522	3368.1

Table S2. The integrated XPS spectral areas of the components in PEA⁺-doped FAPbBr₃ film.