Supporting Information

Doping and Pretreatment Optimized the Adsorption of *OCHO on Bismuth for Electrocatalytic Reduction CO_2 to Formate

Meng Tian,^a Shanshan Wu,^a Yang Hu,^a Zhaori Mu,^a Zhi Li,^a Yichao Hou,^a Pinxian Xi^{*a} and Chun-Hua Yan^{a,b}

^a State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China, E-mail: xipx@lzu.edu.cn

^b Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing 100871, China

Fig. S1 ICP images of Cu-doped Bi₂S₃ samples.

Fig. S2 SEM images of Bi₂S₃ (a), Cu/Bi₂S₃-0.59% (b), Cu/Bi₂S₃-1.24% (c) and Cu/Bi₂S₃-3.49% (d).

Fig. S3 TEM (a) and HRTEM (b) images of Bi_2S_3 .

Fig. S4 TEM, HRTEM and corresponding elemental mapping images of Cu/Bi₂S₃-0.59% (a), Cu/Bi₂S₃-1.24% (b), Cu/Bi₂S₃-2.67% (c) and Cu/Bi₂S₃-3.49% (d).

Fig. S5 (a) S 2s XPS spectra and (b) O 1s XPS spectra of Bi₂S₃, Cu/Bi₂S₃-0.59%, Cu/Bi₂S₃-1.24%, Cu/Bi₂S₃-2.67% and Cu/Bi₂S₃-3.49%.

Fig. S6 Bi L₃-edge XANES spectra (the inset is a partial enlargement).

Fig. S7 (a) Cu 2p XPS spectra and (b) Cu $L_3M_{45}M_{45}$ Auger spectroscopy of Cu/Bi₂S₃-0.59%, Cu/Bi₂S₃-1.24%, Cu/Bi₂S₃-2.67% and Cu/Bi₂S₃-3.49%.

Fig. S8 XRD patterns of Cu₂S and CuS.

Fig. S9 SEM images of CuS (a) and Cu₂S (b).

Fig. S10 The corresponding wavelet transforms for Cu K-edge EXAFS signals of Cu/Bi₂S₃-0.59% (a), Cu/Bi₂S₃-1.24% (b), Cu/Bi₂S₃-2.67% (c) Cu/Bi₂S₃-3.49% (d), CuS (e), Cu₂S (f), and Cu foil (g).

Fig. S11 XRD patterns of the different samples.

Fig. S12 XRD patterns of Bi₂S₃-CO₂, Cu/Bi₂S₃-2.67%-CO₂ and carbon paper.

Fig. S13 SEM images of $Bi_2S_3-N_2$ (a), $Cu/Bi_2S_3-0.59\%-N_2$ (b), $Cu/Bi_2S_3-1.24\%-N_2$ (c) and $Cu/Bi_2S_3-3.49\%-N_2$ (d).

Fig. S14 SEM images of Bi_2S_3 -CO₂ (a), Cu/ Bi_2S_3 -2.67%-CO₂ (b).

Fig. S15 TEM (a) and HRTEM (b) images of $Bi_2S_3-N_2$.

Fig. S16 (a) Cu 2p XPS spectra and (b) S 2s XPS spectra of the different samples. (c) Cu 2p XPS spectra and (d) S 2s XPS spectra of the different samples.

Fig. S17 Bi 4f XPS spectra Cu/Bi₂S₃-x-CO₂ catalysts (x = 0.59%, 1.24%, 2.67%, 3.49%).

Fig. S18 (a) Bi L₃-edge XANES spectra (the inset is a partial enlargement), (b) Bi L₃-edge FT-EXAFS spectra in R space. (c) The corresponding wavelet transforms of Bi L₃-edge EXAFS signal of Cu/Bi₂S₃-2.67%-N₂.

Fig. S19 Potential-dependent in situ Raman spectra of Bi_2S_3 in N_2 -saturated KHCO₃ solution (a) and CO₂-saturated KHCO₃ solution (b).

Fig. S20 Nuclear magnetic mass spectrometry (a, c) and gas chromatography (b, d) of $Bi_2S_3-N_2$ and $Cu/Bi_2S_3-2.67\%-N_2$ at -0.8 V vs. RHE, respectively.

Fig. S21 (a) Potential-dependent Faradaic efficiencies of H₂ and HCOOH for Bi₂S₃-N₂, Cu/Bi₂S₃-0.59%-N₂, Cu/Bi₂S₃-1.24%-N₂, Cu/Bi₂S₃-2.67%-N₂ and Cu/Bi₂S₃-3.49%-N₂ in CO₂saturated 0.5 M KHCO₃. (b) Potential-dependent HCOOH partial current densities of the different samples.

Fig. S22 (a) Potential-dependent Faradaic efficiencies of H_2 and HCOOH for Bi_2S_3 -CO₂ and Cu/Bi₂S₃-2.67%-CO₂ in CO₂-saturated 0.5 M KHCO₃. Potential-dependent Faradaic efficiencies of H_2 and HCOOH for Cu/Bi₂S₃-0.59%-CO₂ (b), Cu/Bi₂S₃-1.24%-CO₂ (c), and Cu/Bi₂S₃-3.49%-CO₂ (d). (e) Potential-dependent HCOOH partial current densities of the different samples.

Fig. S23 (a)LSV curves of Cu_2S and CuS under CO_2 -saturated 0.5 M KHCO₃ electrolyte. (b) FEs of H_2 and HCOOH for Cu_2S and CuS at different potentials.

Fig. S24 XRD patterns of Cu_2S and CuS after ECO_2R .

Fig. S25 CV curves in the region of $-0.65 \sim -0.55$ V vs. Ag/AgCl at various scan rate (10 ~ 100 mV s⁻¹) of Bi₂S₃-N₂ (a), Cu/Bi₂S₃-2.67%-N₂ (b). (c) C_{dl} of those materials.

Fig. S26 FEs of HCOOH for Bi_2S_3 - N_2 and Cu/Bi_2S_3 -2.67%- N_2 at the different concentration of bicarbonate.

Fig. S27 Tafel plots of different catalysts for HCOOH production.

Fig. S28 SEM images of Bi₂S₃ after introducing different metal elements (Cr, Mn, Fe, Co, Ni, Zn,

Ag) respectively.

Fig. S29 (a) XRD patterns and (b) ICP images of Bi₂S₃ doped with different metal elements. (c) Ksp images of different compounds.

Fig. S30 XRD patterns of Ag/Bi₂S₃-1.14%, Ag/Bi₂S₃-4.28%, and Ag/Bi₂S₃-10.24%.

Fig. S31 Elemental mapping images of Ag/Bi₂S₃-10.24%.

Fig. S32 (a) XPS full spectrum, (b) Ag 3d XPS spectra and (c) Bi 4f XPS spectra of Ag/Bi₂S₃-10.24%.

Fig. S33 XRD patterns of Ag/Bi_2S_3 -1.14%, Ag/Bi_2S_3 -4.28%, and Ag/Bi_2S_3 -10.24% after N_2 pretreatment.

Fig. S34 LSV curves of Cu/Bi $_2$ S $_3$ -2.67% at 1 M KOH electrolyte in flow cell.