Supporting Information

Visible and Infrared Photodetector based on y-InSe/Ge van der

Waals Heterojunction For Polarized Detection and Imaging

Baoxiang Yang¹, Wei Gao^{1*}, Hengyi Li¹, Peng Gao¹, Mengmeng Yang¹, Yuan Pan¹,

Chuanglei Wang¹, Yani Yang¹, Nengjie Huo¹, Zhaoqiang Zheng^{2*}, Jingbo Li^{1*}

¹ School of Semiconductor Science and Technology, Guangdong Provincial Key

Laboratory of Chip and Integration Technology, South China Normal University,

Guangzhou 528225, P. R. China

² School of Materials and Energy, Guangdong University of Technology, Guangzhou

510006, P. R. China.

*Corresponding authors: Wei Gao, Email: gaowei317040@m.scnu.edu.cn

Zhaoqiang Zheng, Email: zhengzhq5@mail2.sysu.edu.cn Jingbo Li, Email: jbli@m.scnu.edu.cn

Figure S1. The lattice structure of 2D γ -InSe nanosheet. (a) the b-axis views and (b) the a-axis views of InSe atomic structure.

Figure S2. Schematic illustration for the fabrication process of InSe/Ge van der Waals heterojunction photodiode.

Figure S3. Band diagram of Ge and InSe before contact.

Figure S4. (a, b) I_{ds} -V_{ds} curves of individual Ge and InSe based devices, respectively. (c). Transfer curve of γ -InSe.

Figure S5. (a) Dark current at $V_{ds} = 0$ V and (b) Noise spectral density as a function of frequency at $V_{ds} = 0$ V

Figure S6. (a, b). The long-term photo-response curves at zero bias under 1550 and 405 nm light irradiation.

Figure S7. I_{ds} - V_{ds} of the device with the dark and various infrared light power at 1550 nm (a), 405 nm (b). (c), (d) Enlarged I_{ds} - V_{ds} curves of the heterojunction device in dark and under 405 and 1550 nm with various light power densities.

Figure S8. Schematic diagram of the test system of the polarization photodetector.

a

Figure S9. (a,b,c,d,e) The time resolved photocurrent of Ge/InSe heterojunction under polarized light with varying polarization angle from 0°to 360°under 635 nm (light power: 0.024 mW), 405nm (light power: 1.93 mW), 808 nm (light power: 0.3 mW), 1310 nm (light power: 1.11 mW) and 1550 nm (light power: 6.67 mW) light illumination. (f) indicates the polarization ratio versus wavelength.

Figure S10. (a,b,c,d) Polar plots of the normalized photocurrents of Ge/InSe heterojunctions at 405, 808, 1310 and 1550 nm at zero bias voltage.

Figure S11. Optical image of (a) Device II and (b) Device III. I_{ds} - V_{ds} curves of (b) Device II and (d) Device III in darkness.

Device	λ(nm)	Self- power	Polarization sensitivity	R(A/W)	D*(Jones)	Raise/fall time(µs)	ref
InSe/Ge	405- 1550	yes	3.01	9.82(1550nm) 0.8(405nm)	5.4×10 ¹¹ (1550nm) 4.8×10 ¹⁰ (405nm)	46/32	This work
Graphene/Ge	1200- 1600	yes	/	0.051	1.38×10 ¹ 0	23/108	1
PtSe2/Ge	405- 2200	yes	/	0.602	6.31×10 ¹	7.42/16.71	2
PdSe ₂ /Ge	<2200	yes	/	0.53	1.45×10 ¹	25.4/38.5	3
WS ₂ /AIO _x /Ge	200- 4600	yes	/	0.6345	4.3×10 ¹¹	9.8/12.7	4
WSe2/Ge	520- 1550	yes	/	1.3	2.5×10 ¹⁰	30/5	5
MoTe2/Ge	915- 1550	yes	/	0.19	1.15×10 ¹	8/6	6

 Table S1. Comparison of device performance of the present device with other similar Ge-based photodetectors.

References

- L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang and L.-B. Luo, Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector, *ACS applied materials & interfaces*, 2013, 5, 9362– 9366.
- 2 L. Wang, J.-J. Li, Q. Fan, Z.-F. Huang, Y.-C. Lu, C. Xie, C. Wu and L.-B. Luo, A highperformance near-infrared light photovoltaic detector based on a multilayered PtSe 2 /Ge heterojunction, *J. Mater. Chem. C*, 2019, 7, 5019–5027.
- 3 L.-B. Luo, Di Wang, C. Xie, J.-G. Hu, X.-Y. Zhao and F.-X. Liang, PdSe 2 Multilayer on Germanium Nanocones Array with Light Trapping Effect for Sensitive Infrared Photodetector and Image Sensing Application, *Adv Funct Materials*, 2019, **29**, 1900849.
- 4 Di Wu, J. Guo, C. Wang, X. Ren, Y. Chen, P. Lin, L. Zeng, Z. Shi, X. J. Li, C.-X. Shan and J. Jie, Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation, ACS nano, 2021, 15, 10119–10129.
- 5 C. H. Lee, Y. Park, S. Youn, M. J. Yeom, H. S. Kum, J. Chang, J. Heo and G. Yoo, Design of p-WSe 2 /n-Ge Heterojunctions for High-Speed Broadband Photodetectors, *Adv Funct Materials*, 2022, **32**, 2107992.
- 6 W. Lei, X. Wen, L. Yang, P. Zhang, G. Cao, F. Zhuge, Y. Zhang, H. Chang and W. Zhang, Vertical MoTe2/Ge Heterojunction Photodiode for 1550-nm Near-Infrared Photodetection, *IEEE Trans. Electron Devices*, 2022, 1–5.