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Preparation of NaErF4: Yb/Tm(69/1%):

The NaErF4:Yb/Tm(69/1%) core was synthesized through binary solvothermal 

method. In brief, 0.6 mmol of corresponding rare-earth acetates (30 mol% 

Er(CH3COO)3, 69 mol% Yb(CH3COO)3, 1 mol% Tm(CH3COO)3), 3.6 mL OA and 9 

mL ODE were mixed in a 50 mL three-necked bottle. The system was heated to 

160°С and reacted at this temperature for 30 min under argon protection. After the 

reaction solution cooled down, 1.30 mmol of NaOA was added and stirred for 10 min 

before adding 6 mL of methanol solution containing 0.2 mmol of NaOH and 2.4 

mmol of NH4F. The reaction solution was stirred for 30 min, then heated to 100 °С to 

evaporate the low-boiling point solvents. Finally, the reaction solution was heated to 

300 °С and reacted at this temperature for 60 min. Upon cooling to room temperature, 

the as-formed core nanoparticles of NaErF4:Yb/Tm(69/1%) were purified and re-

dispersed in 6 mL of cyclohexane.

Synthesis of NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(x%). Typically, 0.3 mmol of 

corresponding rare-earth acetates (x% Yb(CH3COO)3, (100-x)% Lu(CH3COO)3), 3 

mL of OA and 6 mL of ODE were mixed in a 50 mL three-necked bottle. Then, the 

resulting mixture was heated to 150 °С and reacted for 60 min under argon protection. 

After the mixture was cooled down to 50 °С, 3 mL of the as-prepared 

NaErF4:Yb/Tm(69/1%) core nanoparticles in cyclohexane were added. Thereafter, 5 

mL methanol solution containing NaOH (0.75 mmol) and NH4F (1.2 mmol) was 

added dropwisely. After vigorous stirring at 50 °С for 30 min, the low-boiling point 

solvents in the reaction system were evaporated by heating to 100 °С. Subsequently, 

the reaction system heated to 300 °С and reacted at this temperature for 1 h under 

argon protection. Upon cooling to room temperature, the as-formed 

NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(x%) nanoparticles were purified and re-
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dispersed in 3 mL of cyclohexane.

Preparation of core/multi-shell structured NaErF4:Yb/Tm(69/1%)@ 

NaLuF4:Yb(x%)@NaLuF4:Nd/Yb(20/10%), NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(15%)@ 

NaLuF4:Nd/Yb(x/10%) and NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(15%)@ 

NaLuF4:Nd/Yb(30/10%)@NaLuF4. The synthesis procedures are identical to those of 

in preparing core/shell structured NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(x%) 

nanoparticles. Particularly, thicker sensitization layer (NaLuF4:Yb(15%)) and inert 

shell (NaLuF4) were achieved by increasing the rare-earth amounts in preparing the 

corresponding shell growth stock solutions.

Fig. S1 TEM images of the NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(x%) (A-F) and corresponding 

energy sensitization layer (NaLuF4:Nd/Yb(20/10%)) coated NaErF4:Yb/Tm(69/1%)@ 

NaLuF4:Yb(x%) (G-L), respectively. The Yb3+ doping ratios (x%) are 2.5%, 5%, 10%, 15%, 20% 

and 30% for the samples used in (A, G), (B, H), (C, I), (D, J), (E, K) and (F, L), respectively.

Fig. S2 TEM images of NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(15%)@NaLuF4:Nd/Yb(x/10%). 

The Nd3+ doping ratios (x%) are 30%, 40% and 50% for the samples used in (A), (B) and (C), 

respectively. The sensitization layer thickness in the NaErF4:Yb/Tm(69/1%)@ 

NaLuF4:Yb(15%)@NaLuF4:Nd/Yb(30/10%) is ~1.1 nm.
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Fig. S3 TEM images of NaErF4:Yb/Tm(69/1%)@NaLuF4:Yb(15%)@NaLuF4:Nd/Yb(30/10%) 

@NaLuF4 with different inter shell (NaLuF4) thickness: (A) 1.5 nm, (B) 3.0 nm, (C) 5.0 nm.

Fig. S4 X-ray diffraction patterns of the UCFS and UCFS@Fe-TA. 

Fig. S5 Photographs of the US (A), UCFS (B) and UCFS@Fe-TA (C).
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Fig. S6 Time-dependent DPBF depletion capacity of the UCS, UCFS and UCFS@Fe-TA under 

808 nm irradiation (2 W cm-2). 

Fig. S7 NIR irradiation power density-dependent temperature rise characteristic of the aqueous 

UCFS@Fe-TA (0.25 mg mL-1).

Fig. S8 The absorbance change of UCFS@Fe-TA after continuous five circles of 808 nm 

irradiation.
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Fig. S9 TEM observations of the Fe-TA dissociation on the surface of UCFS at different time and 

under different conditions. Results suggest Fe-TA will dissociate under acidic conditions in the 

presence of GSH. 

Fig. S10 Evaluation of the Fe-TA dissociation on the surface of UCFS at different time and under 

different conditions by using o-phenanthroline method. Results suggest Fe-TA will dissociate 

under acidic conditions in the presence of GSH. 
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Fig. S11 UV-vis spectra of UCFS@Fe-TA after incubation in acidic conditions with or without 

GSH addition. Results suggested that the absorbance of UCFS@Fe-TA showed significant 

increase in neutral conditions even with GSH addition (Fig. S11A-B), and also significant increase 

in acidic conditions without GSH addition (Fig. S11C). The absorbance of UCFS@Fe-TA 

decreased in acidic conditions with GSH addition at 8~12 h, however, increase back up to the 

original level at 24 h (Fig. S11D). Upon GSH was consumed completely, the Fe2+ might convert 

back to Fe3+ due to the oxidation effect of dissolved O2 in water (Fig. S11D). The NIR absorption 

capacity loss of UCFS@Fe-TA in acidic conditions with GSH addition is limited, indicating the 

Fe-TA dissociation and reliable PTT of Fe-TA are not in conflict.

Fig. S12 Mean fluorescence intensity (MFI) of Ce6 in MCF-7 cells after incubating with 

UCFS@Fe-TA for different times. *p < 0.05, **p < 0.01 determined by Student’s t test.
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Fig. S13 O2 content evaluation in UCFS@Fe-TA treated MCF-7 cells by the intracellular O2 level 

indicator [Ru(dpp)3]Cl2. The hypoxia nature of MCF-7 cells was relieved after incubating with 

UCFS@Fe-TA (12 h).

Fig. S14 The viability of L929 cells after incubation with UCFS@Fe-TA for 24 h.

Fig. S15 MFI of ROS in MCF-7 cells after treating by the as-involved nanoprobes. **p < 0.01, 

***p < 0.001 determined by Student’s t test. ns, not significant (p > 0.05).
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Fig. S16 Ratio of dead cells calculated from the calcein-AM/PI cell double staining results. *p < 

0.05, **p < 0.01, ***p < 0.001 determined by Student’s t test. ns, not significant (p > 0.05).

Fig. S17 The UCL based in vivo imaging of tumor bearing mouse after iv injecting with the 

UCFS@Fe-TA for 12 h, demonstrating tumor accumulation of UCFS@Fe-TA.

Fig. S18 H&E and TUNEL staining images of tumor tissues after 14 days of treatments.
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