Cationic vacancy engineering of p-TiO₂ for enhanced photocatalytic nitrogen fixation

Wenming Ding ^a, Xiaoman Li ^{a,*}, Senda Su ^a, Zhenyu Liu ^a, Yue Cao ^a, Linghu Meng ^a, Shengbo Yuan

^a, Wenhui Wei ^a, Min Luo ^{a,*}

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School

of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China

E-mail: luominjy@nxu.edu.cn, lixm2017@nxu.edu.cn

Table of Contents

- 1. Fig. S1: Standard curve for NH_4^+ concentration
- 2. Fig. S2: XRD patterns of p-TiO₂ precursor

3. Fig. S3: SEM images of (a) $n-TiO_2$ and (b) $p-TiO_2$ (II)

4. Fig. S4: (a) total XPS spectrum, (b) XPS spectra for C 1s of n-TiO₂ and p-TiO₂ (II)

5. Fig. S5: The EPR of p-TiO₂(II) before and after cycle reaction

6. Fig. S6: ¹H NMR spectrum of the solution obtained after NRR on TiO₂(II) using ¹⁵N₂ as the reaction

gas

7. Fig. S7: The NH₄⁺production rate of TiO₂ materials under visible light in Air

8. Fig. S8: The transient photocurrent curve of (a) $n-TiO_2$ and (b) $p-TiO_2$ (II)

9. Fig. S9: Mott-Schottky plots of of (a) $n-TiO_2$ and (b) $p-TiO_2$ (II)

10. Table S1: The result for photocatalytic N_2 fixation in previous literature about other photocatalysts and our work

Fig. S1. Standard curve for NH_4^+ concentration.

Fig. S2. XRD patterns of p-TiO₂ precursor.

Fig. S3. SEM images of (a) $n-TiO_2$ and (b) $p-TiO_2$ (II).

Fig. S4. (a) total XPS spectrum, (b) XPS spectra for C 1s of $n-TiO_2$ and $p-TiO_2$ (II).

Fig. S5. The EPR of p-TiO₂(II) before and after cycle reaction.

Fig. S6. 1H NMR spectrum of the solution obtained after NRR on $TiO_2(II)$ using ${}^{15}N_2$ as the reaction

gas

Fig. S7. The NH_4^+ production rate of TiO₂ materials under visible light in Air.

Fig. S8. The transient photocurrent curve of (a) $n-TiO_2$ and (b) $p-TiO_2$ (II).

Fig. S9. Mott-Schottky plots of of (a) $n-TiO_2$ and (b) $p-TiO_2$ (II).

Table S1. The result for photocatalytic N_2 fixation in previous literature about other photocatalysts and

Catalyst	Reaction medium	Scavenger	Light Source	Ammonia generation rate	Reference
			300 W		
V _{Ti} -p-TiO ₂	H ₂ O (l)	No	Xenon lamp,	64.8 μmol·g ⁻¹ ·h ⁻¹	This work
			Full Spectrum		
Fe-doped TiO ₂	H ₂ O (g) 40 °C	No	360 W	11.5 μmol·g ⁻¹ ·h ⁻¹	S1
			Hg-Arc Lamp,		
			Full Spectrum		
Ru/TiO ₂	H ₂ O (l)	No	150 W	29.4 µmol·g ⁻¹ ·h ⁻¹	S2
			Xe arc lamp,		
			Full Spectrum		
Ru/TiO ₂	H ₂ O (l), alkaline	Ascorbic acid	250 W	13.6 µmol·g ⁻¹ ·h ⁻¹	S3
			Xenon lamp,		
			Full Spectrum		
Cu-doped	H ₂ O (l)	No	300 W	78.9 μmol·g ⁻¹ ·h ⁻¹	S4
TiO ₂			Xenon lamp,		

our work.

			Full spectrum		
			300 W		
CN-OvTiO ₂	H ₂ O (l)	No	Xenon lamp,	48.7 μmol·g ⁻¹ ·h ⁻¹	S5
			Full spectrum		
TiO ₂ nanotube	H ₂ O (l) Methanol		300 W		
		Methanol	Xenon lamp,	318 µmol·g ⁻¹ ·h ⁻¹	S6
			Full spectrum		
N-doping TiO ₂	H ₂ O (l)	No	300 W		
			Xenon lamp,	80.09 μmol·g ⁻¹ ·h ⁻¹	S7
			λ> 400 nm		
Ov-TiO ₂	H ₂ O (l) Methanol		300 W		
		Methanol	Xenon lamp,	324.8 µmol·g ⁻¹ ·h ⁻¹	S 8
			Full spectrum		

[S1] Schrauzer G N, Guth T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 2002, 99(22): 7189-7193.

[S2] Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO₂. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 96(1-3): 181-185.

[S3] Rao N N, Dube S. Manjubala; Natarajan, P. Photocatalytic Reduction of Nitrogen over (Fe, Ru or Os)/TiO₂ Catalysts. Applied Catalysis B: Environmental, 1994, 5: 33-42.

[S4] Zhao Y, Zhao Y, Shi R, et al. Tuning oxygen vacancies in ultrathin TiO₂ nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Advanced Materials, 2019, 31(16): 1806482.

[S5] Wu S, He C, Wang L, et al. High-efficiency electron tandem flow mode on carbon nitride/titanium dioxide heterojunction for visible light nitrogen photofixation. Chemical Engineering Journal, 2022, 443: 136425.

[S6] Comer, Benjamin M., and Andrew J. Medford. Analysis of photocatalytic nitrogen fixation on rutile TiO₂ (110). ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4648-4660. [S7] LI, Chang, et al. N-doping TiO_2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2022, 609: 341-352.

[S8] Zhang, Guoqiang, et al. Constructing a tunable defect structure in TiO₂ for photocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2020, 8(1): 334-341.