Supporting Information for

Atomic layer deposition of SnO₂ using hydrogen peroxide improves efficiency and stability of perovskite solar cell

Sang-Uk Lee¹, Hyoungmin Park², Hyunjung Shin^{2,3}, and Nam-Gyu Park^{1,3*}

¹School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea.

²Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

³SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea

Figure S1-S6

Table S1-S4

Figure S1. Top-view SEM images of (a) the H_2O -derived SnO_2 and (b) the H_2O_2 -derived SnO_2 on the FTO substrate. AFM images of (c) the H_2O -derived SnO_2 and (d) the H_2O_2 -derived SnO_2 on the FTO substrate. RMS is root mean square.

Figure S2. (a) Absorbance and (b) Tauc plot of the perovskite films without and with SnO_2 layer (H₂O-derived and H₂O₂-derived SnO_2). Films were deposited on a glass substrate. (c) External quantum efficiency (EQE) spectra and integrated J_{sc} of PSCs based on the H₂O-derived and H₂O₂-derived SnO_2 .

Figure S3. UPS spectra of (a) ALD-processed SnO_2 depending on oxygen source of H_2O and H_2O_2 and (b) $(FAPbI_3)_{0.96}(MAPbBr_3)_{0.04}$ perovskite, showing the full range (left panel), the cut-off energy (middle panel) and Fermi edge (middle panel).

Figure S4. (a) UV-Vis spectra of the ALD-processed SnO_2 films deposited on a glass substrate. Inset shows Tauc plot. (b) Energy level diagram of the H₂O-derived SnO_2 , H₂O₂-derived SnO_2 , and perovskite layer based on the data obtained from UPS and UV-Vis spectroscopy.

Figure S5. J-V curves of PSCs based on a single ALD-processed SnO_2 layer depending on oxygen source of H_2O and H_2O_2 . FS (dashed lines) and RS (solid lines) represent the forward and reverse scanned data, respectively.

Figure S6. Storage stability showing normalized photovoltaic parameters of V_{oc} , J_{sc} , FF and PCE of PSCs based on the H₂O- and H₂O₂-derived SnO₂, measured for 1000 h under relative humidity of $30\pm10\%$ at room temperature.

Table S1. Binding energies and arial ratio of O_{OH} peak to total peak in O 1s XPS spectra for the H₂O- and H₂O₂-derived SnO₂.

Sample	O 1s binding	energy (eV)	Arial ratio of O_{OH} (%)	
	O _{Sn}	O _{OH}	O _{OH} / O 1s	
H ₂ O-derived SnO ₂	530.68	532.08	25.47	
H ₂ O ₂ -derived SnO ₂	530.88	532.33	21.36	

Table S2. Parameters for TRPL fitting using a biexponential decay equation with $I(t) = I_0 + A_1 \exp(-(t - t_0)/\tau_1) + A_2 \exp(-(t - t_0)/\tau^2)$. Average lifetime (τ_{avg}) was calculated by $\tau_{avg} = (A_1\tau_1^2 + A_2\tau_2^2) / (A_1\tau_1 + A_2\tau_2)$. Fitting reliability was confirmed by R².

	A ₁ (%)	$\tau_1(ns)$	A ₂ (%)	$\tau_2(ns)$	$ au_{ m avg}$ (ns)	R ²
Glass/Perovskite	1702.34 (71.01%)	104.45	695.08 (28.99%)	1957.3	1743.1	0.984
Glass/H ₂ O-derived SnO ₂ /perovskite	301.81 (30.12%)	71.30	700.25 (69.88%)	486.69	462.02	0.995
Glass/H ₂ O ₂ -derived SnO ₂ /perovskite	266.78 (27.56%)	46.74	701.22 (72.44%)	390.27	375.30	0.996

Table S3. Photovoltaic parameters of short-circuit current density (J_{sc}), open-circuit voltage (V_{oc}), fill factor (FF), and power conversion efficiency (PCE) of PSCs with the structure of FTO/ALD-SnO₂/(FAPbI₃)_{0.96}(MAPbBr₃)_{0.04}/Spiro-MeOTAD/Au.

ALD sample	Scan direction	J _{sc} (mA/cm ²)	$V_{oc}(V)$	FF (%)	PCE (%)
H ₂ O-derived SnO ₂	Reverse	24.198	1.0685	0.6849	17.71
	Forward	24.179	1.0531	0.6738	17.16
H ₂ O ₂ -derived SnO ₂	Reverse	24.299	1.0973	0.7159	19.09
	Forward	24.246	1.0891	0.7234	19.10

Bilayer SnO ₂ sample	Scan direction	J _{sc} (mA/cm ²)	$V_{oc}(V)$	FF	PCE (%)
H ₂ O-derived SnO ₂ / colloidal SnO ₂	Reverse	24.073	1.1175	0.7961	21.42
	Forward	23.850	1.1140	0.7720	20.51
H ₂ O ₂ -derived SnO ₂ / colloidal SnO ₂	Reverse	24.112	1.1460	0.8085	22.34
	Forward	24.059	1.1348	0.8003	21.85

 $\label{eq:s4} \begin{array}{l} \textbf{Table S4}. \ Photovoltaic \ parameters \ of \ best-performing \ PSCs \ with \ the \ structure \ of \ FTO/bilayer \ (ALD-SnO_2/colloidal \ SnO_2)/(FAPbI_3)_{0.96}(MAPbBr_3)_{0.04}/Spiro-MeOTAD/Au. \end{array}$

Table S5. Statistical photovoltaic parameters of PSCs employing a bilayer SnO_2 based on H_2O -and H_2O -derived SnO_2 as ETLs.

Bilayer SnO ₂ sample	Scan direction	J _{sc} (mA/cm ²)	$V_{oc}(V)$	FF	PCE (%)
H ₂ O-derived SnO ₂ / colloidal SnO ₂	Reverse	23.969 ±0.126	$1.1200 \\ \pm 0.010$	$\begin{array}{c} 0.7688 \\ \pm 0.016 \end{array}$	20.64 ±0.384
	Forward	$\begin{array}{c} 24.068 \\ \pm 0.090 \end{array}$	1.0979 ± 0.022	$\begin{array}{c} 0.7673 \\ \pm 0.014 \end{array}$	$\begin{array}{c} 20.28 \\ \pm 0.545 \end{array}$
H ₂ O ₂ -derived SnO ₂ / colloidal SnO ₂	Reverse	$\begin{array}{c} 24.077 \\ \pm 0.061 \end{array}$	1.1352 ± 0.013	0.7949 ±0.012	21.73 ±0.439
	Forward	24.095 ± 0.090	1.1287 ± 0.010	0.7837 ± 0.012	21.31 ±0.244