## Supporting Information

## Room-Temperature Spin-Valve Effect in Fe<sub>3</sub>GaTe<sub>2</sub>/MoS<sub>2</sub>/Fe<sub>3</sub>GaTe<sub>2</sub> 2D

## van der Waals Heterojunction Devices

Wen Jin<sup>1,2</sup>, Gaojie Zhang<sup>1,2</sup>, Hao Wu<sup>1,2,3,4</sup>, Li Yang<sup>1,2</sup>, Wenfeng Zhang<sup>1,2,3</sup>, Haixin Chang<sup>1,2,3,4,\*</sup>

<sup>1</sup>Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

<sup>2</sup>Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China.

<sup>3</sup>Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

<sup>4</sup>Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

\*Corresponding author. E-mail: <u>hxchang@hust.edu.cn</u>



**Figure S1.** AFM topography with height profile of the Fe<sub>3</sub>GaTe<sub>2</sub>/MoS<sub>2</sub>/Fe<sub>3</sub>GaTe<sub>2</sub> heterojunction spin valve device. The regions marked by the white, green and orange line represent the top Fe<sub>3</sub>GaTe<sub>2</sub>, MoS<sub>2</sub>, and bottom Fe<sub>3</sub>GaTe<sub>2</sub> layer, respectively, indicating the thicknesses are 9.5 nm, 4.5 nm and 16.8 nm respectively.



Figure S2. a) Raman spectra of the top  $Fe_3GaTe_2$  of the heterojunction. b) Raman spectra of the bottom  $Fe_3GaTe_2$  of the heterojunction. c) Raman spectra of the middle  $MoS_2$  layer of the heterojunction. d) Raman spectra of the whole heterojunction.



**Figure S3.** MR signals and optical images (inset) of  $Fe_3GaTe_2/MoS_2/Fe_3GaTe_2$  with different thicknesses of  $MoS_2$  spacer layers, the thicknesses are 8 (a), 10 (b) and 17 nm, respectively. (d) The MR signal as a function of the  $MoS_2$  thickness.