[Supporting Information]

First Principles Study of 2D Ring-Te and its Electrical Contact with

Topological Dirac Semimetal

Jaspreet Singh and Ashok Kumar*

Department of Physics, Central University of Punjab, VPO Ghudda, Bathinda, 151401, India

(February 03, 2023)

*Email: <u>ashokphy@cup.edu.in</u>

Fig. S1 Top and side views of ring-Te at critical strain of **(a)** 12% (x-direction) and **(b)** 26% (y-direction), respectively.

TABLE S1 The bond angles (Θ_1 , Θ_2 , Θ_3 , Θ_4 , Θ_5) and bond lengths (L_1 , L_2 , L_3) of relaxed and strain structures.

Strain	Θ ₁ (°)	Θ ₂ (°)	Θ ₃ (°)	Θ ₄ (°)	Θ ₅ (°)	L ₁ (Å)	L ₂ (Å)	L ₃ (Å)
Relaxed	88.44	88.62	85.32	103.44	91.46	3.02	2.80	3.02
ε _x = 12%	95.05	71.61	91.07	102.23	96.72	2.82	2.77	3.56
	(7.47%)	(-19.19%)	(6.74%)	(-1.17%)	(5.75%)	(-6.62%)	(-1.07%)	(17.88%)
$\varepsilon_y = 26\%$	80.05	81.76	79.71	114.62	99.02	3.07	2.82	3.07
	(-9.49%)	(-7.74%)	(-6.58%)	(10.81%)	(8.27%)	(1.66%)	(0.71%)	(1.66%)

Fig. S2 The total charge density distribution of ring-Te. The isosurface value is 0.05 eÅ⁻³.

Fig. S3 Electronic band structures of ring-Te: (a) with PBE functional, (b) with G_0W_0 method and (c) sq-Te: with PBE functional.

Fig. S4 Effect of strain on band structures of ring-Te along x-direction.

Fig. S5 Effect of strain on band structures of ring-Te along y-direction.

Fig. S6 Band decomposed charge densities of ring-Te (side view) corresponding to the valence band maximum (at Γ point) and conduction band minimum (at X and Γ point) under the uniaxial strain along y-direction. The isosurface value is 0.0007 eÅ⁻³.

Fig. S7 Variation of (a) $\frac{2(E - E_0)}{S_0}$ and (b, c) $E - E_{vac}$ w.r.t strain i.e. $\frac{\Delta l}{l_0}$ with their parabolic and straight fitting, respectively of ring-Te. $E - E_0$ is the difference in the total energy of stable and

strained structure, S_0 is the surface area of monolayer slab and $E - E_{vac}$ is the difference in the energy of ith band and vacuum energy.