Supplementary Information

Excellent thermoelectric properties of Tl₂S₃ monolayer for medium-temperature applications

Lang Zhou ^{a, b}, Qi Wang ^{a, b}, Mei Xu ^{a, b}, Chengwei Hu ^{a, b}, Xue Deng ^{a, b},

Yumin Li^{a, b}, Bing Lv^{*a, b}, and Wenzhong Wang^{*a, b, c}

^a School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.

^b Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China.

^c School of Science, Minzu University of China, Beijing 100081, China.

Figure S1. (a)-(d) Convergence of electron and hole mobilities with respect to k and q grids at room temperature. It is found that $360 \times 360 \times 1$ k grids with $180 \times 180 \times 1$ q grids ensure the convergence of electron mobility within 2%, whereas the hole mobility converges at $180 \times 180 \times 1$ k grids with $180 \times 180 \times 1$ k grids.

* Corresponding authors.

E-mail addresses: https://www.uc.edu.cn; wzhwang@muc.edu.cn

Figure S2. Free energy fluctuations with respect to time in AIMD simulations at different temperatures and the structures for 2D Tl_2S_3 obtained by AIMD simulations at 300-700 K.

Figure S3. (a)-(b) The electronic band structures of novel 2D Tl_2S_3 and projected density of stat es.

Figure S4. The electronic band structures of novel 2D Tl_2S_3 are calculated by QE, the electronic band and Wannier fitted electronic band.