Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Lam-Gia-Hao Dao^a, Chih-Hao Chiang^a, Sumedh M. Shirsat^a, Thi-Quynh-Hoa Nguyen^a, Jitendra Singh^a, Han-

Song Wu^a, Yu-Lun Liu^a, and Meng-Lin Tsai^{*a}

Department of Materials Science and Engineering, National Taiwan University of Science and Technology,

Taipei 106335, Taiwan.

E-mail: mltsai@mail.ntust.edu.tw

Fig. S1 (a) Photographs of Zn-doped MA_{0.6}FA_{0.4}Pbl₃/CNC paper before and after electron-beam evaporation.
(b) XRD patterns of Zn-doped MA_{0.6}FA_{0.4}Pbl₃/CNC paper before and after electron-beam evaporation.

Fig. S2 (a) TEM image of Zn-doped MA_{0.6}FA_{0.4}PbI₃. (b) The enlarge TEM image of red area in (a). (c) The HRTEM and FFT (inset) of Zn-doped MA_{0.6}FA_{0.4}PbI₃. (d) TEM image of the Zn-doped MA_{0.6}FA_{0.4}PbI₃/CNC paper. (e) The enlarge TEM image of red area in (d). (f) The HRTEM and FFT (inset) of the Zn-doped MA_{0.6}FA_{0.4}PbI₃/CNC paper.

Fig. S3 Photographs of Zn-doped $MA_{0.6}FA_{0.4}PbI_3$ and undoped $MA_{0.6}FA_{0.4}PbI_3$ film immediately after coating (0 hr) and under ambient condition after 20 hr.