Supplementary material

In-situ fabrication of MIL-68(In)@ZnIn₂S₄ heterojunction for enhanced photocatalytic hydrogen production

Mengxi Tan^{a,b}, Chengye Yu^{a,b}, Hua Zeng^{a,b}, Chuanbao Liu^{a,c}, Wenjun Dong^{a,c}, Huimin Meng^b,

Yanjing Su^{a,b}, Lijie Qiao^{a,b}, Lei Gao^{a,b}, Qipeng Lu^c, Yang Bai*^{a,b}

^a Beijing Advanced Innovation Center for Materials Genome Engineering, University of

Science and Technology Beijing, Beijing 100083, China

^b Institute for Advanced Material and Technology, University of Science and Technology

Beijing, Beijing 100083, China

^c School of Materials Science and Engineering, University of Science and Technology Beijing,

Beijing 100083, China

*Author to whom correspondence should be addressed.

Prof. Y. Bai, Email: baiy@mater.ustb.edu.cn

1. Characterization

The crystal structure of photocatalysts was analyzed by X-ray diffraction (XRD, Rigaku Ultima IV, Japan) using Cu Ka radiation (40 kV, 40 mA). The microscopic morphology was observed by field-emission scanning electron microscope (FE-SEM, SUPRA 55, Zeiss) and transmission electron microscope (TEM, JEM-2200FS, JEOL). Energy-dispersive X-ray spectroscopy (EDS) mapping was also obtained by TEM. The X-ray photoelectron spectra (XPS) were determined by an AXIS ULTRA DLD spectrometer using a monochromatic Al Ka radiation (hv = 1486.6 eV). The texture properties of samples were characterized by Brunauer-Emmett-Teller (BET, ASAP 2460). The Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) were measured with Shimadzu UV-2550. The steady-state photoluminescence (PL) spectra and time-resolved photoluminescence (TRPL) decay plots were implemented on the spectrophotometer (FLS980) with an excitation wavelength of 314 nm. A typical threeelectrode cell using the CHI660E electrochemical workstation was employed to determine the photoelectrochemical performance. The photocatalysts (5 mg) were dispersed in an ethanol solution containing 10 vol% Nafion reagents. The mixed solution was uniformly deposited on a 1 cm \times 1 cm FTO conductive glass as a working electrode, while the Pt sheets and Ag/AgCl electrodes were used as counter and reference electrodes, respectively, and 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte. The electron paramagnetic resonance (EPR) characterization: Endor spectrometer (JES-FA300, JEOL) was used for the characterization of EPR with 300 W Xenon lamp and a 420 nm cutoff filter at room temperature. For the test of \cdot O₂⁻, 5 mg sample was dispersed into methanol (1 mL). Then, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was added to the mixture. Under light irradiation, the signals at 0 and 10 min were

collected. For the test of h^+ , 5 mg sample was dispersed into acetonitrile (1 mL), and then 2,2,6,6-tetramethylpiperidinooxy (TEMPO) was added into the mixture. Under light irradiation, the signals at 0 min and 10 min were collected.

2. Tables and Figures

Wavelength (nm)	400	420	450	500	550
AQE (%)	0.702	0.44	0.22	0.019	0.002

Table S1. The AQEs of MIL-68(In)-20@ZIS at different wavelengths.

 $\frac{68(In)-20@ZIS.}{Sample} \qquad \tau_1 (ns) \quad A_1 (\%) \quad \tau_2 (ns) \quad A_2 (\%) \quad \tau_A (ns)$

Table S2. Exponential decay-fitted parameters of fluorescence lifetimes for ZIS and MIL-

Sample	τ_1 (ns)	A ₁ (%)	τ_2 (ns)	A_2 (%)	$\tau_{\rm A}$ (ns)
ZIS	0.63	30.10	2.20	69.90	2.03
MIL-68(In)-20@ZIS	1.48	63.94	4.97	36.06	3.76

Fig. S1. The SEM image of pure ZIS.

Fig. S2. The high-resolution XPS spectra of C 1s for ZIS, MIL-68(In) and MIL-68(In)-20@ZIS.

Fig. S3. The photocatalytic hydrogen evolution rates of MIL-68(In) and MIL-68(In)-20/ZIS.

Fig. S4. The pore size distribution of ZIS and MIL-68(In)-20@ZIS.

Samulas	SBET	Pore volume	Average pore size	
Samples	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(nm)	
ZIS	209.82	0.7588	12.54	
MIL-68(In)-20@ZIS	210.58	0.6129	10.18	

Tab	ole	S3.	Textural	properties	of sampl	les.
-----	-----	-----	----------	------------	----------	------