Supplementary Materials

Highly Flexible Organo-Metal Halide Perovskite Solar Cells Based on

Silver Nanowire–Polymer Hybrid Electrodes

Han-Wen Zhang^a, Yan-Gang Bi^a*, Dong-Ming Shan^a, Zhi-Yu Chen^a, Yi-Fan Wang^a, Hong-

Bo Sun^{a, b*}, and Jing Feng^{a*}

^a State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

^b State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China

*Corresponding authors: E-mail addresses: yangang_bi@jlu.edu.cn, jingfeng@jlu.edu.cn, hbsun@tsinghua.edu.cn

Figure S1. Current density-voltage (J-V) characteristics of perovskite solar cells based on PEN/ITO and PUA/AgNWs/PH1000 by reverse and forward scan. The solid and dashed lines represent the reverse and forward scans, respectively.

Figure S2. The statistics of a) FF, b) J_{SC} , c) V_{OC} and d) PCE distribution of the flexible perovskite solar cells (FPSCs) based on PEN/ITO and PUA/AgNWs/PH1000. The data of each histogram are extracted from 30 individual FPSCs.

FoM	1 time-PUA/AgNWs	2 times-PUA/AgNWs	3 times-PUA/AgNWs	
	184.79	246.32	226.47	
FoM	1 time-PUA/AgNWs /PH1000	2 times-PUA/AgNWs /PH1000	3 times-PUA/AgNWs /PH1000	
	103.84	133.22	121.50	
FoM	PEN/ITO			
	92.37			

Table S1: Figure of Merit (FoM) of various conductive films.

Table S2: Photovoltaic performance of champion PEN/ITO-FPSCs andPUA/AgNWs/PH1000-FPSCs.

Champion Cell	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE (%)
PEN/ITO	0.904	18.19	77.99	12.82
PUA/AgNWs/PH1000	0.867	17.05	74.24	10.98

Table S3: Photovoltaic performance of PEN/ITO-FPSCs and PUA/AgNWs/PH1000-FPSCs scanned from forward and reverse directions.

	Scan direction	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE (%)	Average PCE (%)	${\sf H}_{\sf hysteresis}^{\dagger}$
	Reverse	0.904	18.19	77.99	12.82	12.30	8.11
PEN/IIO	Forward	0.899	18.13	72.27	11.78		
PUA/AgNWs	Reverse	0.867	17.05	74.24	10.98	10.92	2.01
/PH1000	Forward	0.865	16.96	72.67	10.66	10.82	2.91

⁺The hysteresis index can be calculated by the following equation¹:

$$H_{hysteresis} = \frac{PCE_{reverse} - PCE_{forward}}{PCE_{reverse}}$$

Electrodes	Optimal PCE [%]	Bending Radius [mm]	Bending Cycle [times]	Retained PCE [%]
AgNWs/PH1000 ²	11.44	5	1,500	86
AgNWs/PH1000 ³	15.06	5	1,000	80
graphene-AgNWs ⁴	9.73	7	1,000	~70
AgNWs⁵	17.11	6	2,000	77
a-AZO/AgNW/AZO ⁶	11.23	12.5	400	94
Ag grids ⁷	18.49	6	1,000	60
Ag grid/PH1000 ⁸	14	5	5,000	95.4
Ag grid/PH1000 ⁹	14.52	15	5,000	86
Ag grid/ITO ¹⁰	18.1	4	5,000	55.63
Cu grids/PH1000 ¹¹	13.58	5	1,000	90
Ni grids ¹²	17.3	4	2,000	76
Au ¹³	9.05	3.5	2,000	74
IZO ¹⁴	11.68	4	1,000	70
Graphene ¹⁵	13.94	4	1,000	~92
Graphene ¹⁶	11.9	4	2,000	86
AgNWs/PH1000 (this work)	10.98	5	5,000	97.9
AgNWs/PH1000 (this work)	10.98	5	10,000	77.4

Table S4: Comparison of PCE and mechanical stability of FPSCs based on differentflexible transparent electrodes.

References:

- 1. Y. Zhang, Y. Li, L. Zhang, H. Hu, Z. Tang, B. Xu and N.-G. Park, *Advanced Energy Materials*, 2021, **11**.
- 2. Z. Lu, Y. Lou, P. Ma, K. Zhu, S. Cong, C. Wang, X. Su and G. Zou, Solar Rrl, 2020, 4.
- 3. S. Kang, J. Jeong, S. Cho, Y. J. Yoon, S. Park, S. Lim, J. Y. Kim and H. Ko, *Journal of Materials Chemistry A*, 2019, **7**, 1107-1114.
- 4. J. Jin, J. Li, Q. Tai, Y. Chen, D. D. Mishra, W. Deng, J. Xin, S. Guo, B. Xiao and X. Wang, *Journal of Power Sources*, 2021, **482**.
- 5. T.-Y. Jin, W. Li, Y.-Q. Li, Y.-X. Luo, Y. Shen, L.-P. Cheng and J.-X. Tang, *Advanced Optical Materials*, 2018, **6**.
- E. Lee, J. Ahn, H.-C. Kwon, S. Ma, K. Kim, S. Yun and J. Moon, *Advanced Energy Materials*, 2018,
 8.
- 7. Y. Yang, F. Min, Y. Qiao, Z. Li, F. Vogelbacher, Z. Liu, W. Lv, Y. Wang and Y. Song, *Nano Energy*, 2021, **89**.
- 8. Y. W. Li, L. Meng, Y. Yang, G. Y. Xu, Z. R. Hong, Q. Chen, J. B. You, G. Li, Y. Yang and Y. F. Li, *Nature Communications*, 2016, **7**.
- J. Wang, X. Chen, F. Jiang, Q. Luo, L. Zhang, M. Tan, M. Xie, Y.-Q. Li, Y. Zhou, W. Su, Y. Li and C.-Q. Ma, *Solar Rrl*, 2018, 2.
- 10. H. Ji, J. Huang, W. Zhang, X. Chen, Y. Lu, C. Ding, J. Fang, W. Song and L. Ai, *Advanced Materials Interfaces*, 2022, **9**.
- 11. P. Li, Z. Wu, H. Hu, Y. Zhang, T. Xiao, X. Lu, Z. Ren, G. Li, Z. Wu, J. Hao, H.-I. Zhang and Z. Zheng, Acs Applied Materials & Interfaces, 2020, **12**, 26050-26059.
- 12. M. Li, W.-W. Zuo, A. G. Ricciardulli, Y.-G. Yang, Y.-H. Liu, Q. Wang, K.-L. Wang, G.-X. Li, M. Saliba, D. Di Girolamo, A. Abate and Z.-K. Wang, *Advanced Materials*, 2020, **32**.
- 13. M. Xu, J. Feng, Z.-J. Fan, X.-L. Ou, Z.-Y. Zhang, H.-Y. Wang and H.-B. Suna, *Solar Energy Materials and Solar Cells*, 2017, **169**, 8-12.
- 14. K. Zhu, Z. Lu, S. Cong, G. Cheng, P. Ma, Y. Lou, J. Ding, N. Yuan, M. H. Rummeli and G. Zou, *Small*, 2019, **15**.
- 15. S. Kim, H. S. Lee, J. M. Kim, S. W. Seo, J. H. Kim, C. W. Jang and S.-H. Choi, *Journal of Alloys and Compounds*, 2018, **744**, 404-411.
- 16. Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren, X. Dai, Z. Yao, Y. Zhou, L. Xiang, H. Du, H. He, N. Wang, K. Jiang, H. Lin, H. Zhang and Z. Guo, *Advanced Functional Materials*, 2018, **28**.