Supplementary information

Battery-like bismuth oxide anode for soft-packed supercapacitors with high

energy storage performance

Qindan Xiao¹, Juncheng Zhu^{2*}, Chang Cheng¹, Jianpeng Liu¹, Xiaohan Zhang¹,

Zhong Li¹, Jiliang Zhu^{1*}

¹College of Materials Science and Engineering, Sichuan University, Chengdu 610064,

China

²School of Chemistry and Materials, University of Science & Technology of China

Hefei, Anhui 230026, China

Supporting Figures:

Fig. S1. (a) XRD patterns of $Bi_2O_2CO_3$ and Bi_2O_3 , (b) Schematic diagram of the crystal structures of

 $Bi_2O_2CO_3$ and Bi_2O_3 .

Fig. S2. XRD patterns and FW(S)*Cos0-20 diagrams of (a) Bi₂O₂CO₃ and (b) Bi₂O₃.

Fig. S3. XPS survey spectrum of Bi_2O_3 .

Fig. S4. XPS spectra of Bi₂O₂CO₃: (a) survey spectrum, (b) Bi 4f, (c) C 1s, (d) O 1s.

Fig. S5. (a) CV curves of $Bi_2O_2CO_3$ at 5~100 mV/s, (b) GCD curves of $Bi_2O_2CO_3$ at 1-20 A/g.

Fig. S6. Differential capacitance curve of Bi_2O_3 at 1 A/g.

Fig. S7. Differential capacitance curve of supercapacitor at 1 A/g.

Fig. S8. XRD patterns of Ni(OH)₂ and PDF#89-7111.

Fig. S9. XPS spectra of Ni(OH)₂: (a) survey spectrum, (b) Ni 2p, (c) C 1s; (d) O 1s.

Fig. S10. (a) EDS spectra of Ni(OH)₂, (b, c, d) SEM images of Ni(OH)₂, (e) Elemental mapping images of Ni, C, N and O of Ni(OH)₂.

Fig. S11. (a) EIS curve of Ni(OH)₂, (b) CV curves of Ni(OH)₂ at 5~100 mV/s, (c) GCD curves of Ni(OH)₂ at 1-10 A/g, (d) Comparisons of specific capacitances of Ni(OH)₂ at 1-10 A/g.

Fig. S12. The pictures of the "SCU" sign in "ON" and "OFF" states.

Fig. S13. Lighting pictures of one LED of different colors powered with (a-d) two series-connected ASCs and (e-h) three series-connected ASCs.

Supporting Table

Table S1 Comparsion studies for Bi-based materials.

Materials	Specific capacitance	Current density	Rate capability: retention	Current density interval	References
r-Bi ₂ O ₃ /GN	681 F g ⁻¹	1 mA cm ⁻²	56.2%	1~50 mA cm ⁻²	[16]
Bi-Bi ₂ O ₃ /CNT	850 F g ⁻¹	1 A g ⁻¹	84.0%	1~30 A g ⁻¹	[22]
Bi ₂ O ₂ CO ₃	1045.3 F g ⁻¹	1 A g ⁻¹	68.3%	1~20 A g ⁻¹	[23]
Bi ₂ O ₂ CO ₃ /rGO	667 F g ⁻¹	1 A g ⁻¹	75.0%	1~20 A g ⁻¹	[28]
Bi ₂ O ₃ @C	1095 C g ⁻¹	1 A g ⁻¹	52.5%	1~5 A g ⁻¹	[31]
Bi ₂ O ₂ CO ₃ -RGO	860 F g ⁻¹	5 mVs ⁻¹	96.0%	5~20 mV s ⁻¹	[33]
Bi ₂ O ₃ –AC	466 F g ⁻¹	1 A g ⁻¹	71.9%	1~5 A g ⁻¹	[38]
Bi ₂ O ₃	1178 F g ⁻¹	1 A g ⁻¹	94.9%	1~20 A g ⁻¹	★This work