Electronic Supplementary Information

Self-assembly of β-cyclodextrin-pillar[5]arene molecules into supramolecular nanoassemblies: Morphology control by stimuli-responsiveness and host – guest interactions

Jie Lu, Yingying Deng, Peng Liu, Qingqing Han,* Long Yi Jin*

Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, P. R. China

Table of contents

1. General Materials and Techniques.	4
2. Synthesis of the molecules H ₁₋₂ , 1-4 and G:	.5
3. Figure S1 ¹ H-NMR spectrum of molecule 3 in DMSO- d_6	. 9
4. Figure S2 ¹³ C-NMR spectrum of molecule 3 in DMSO- d_6	10
5. Figure S3 ¹ H-NMR spectrum of molecule 4 in DMSO- <i>d</i> ₆	10
6. Figure S4 ¹³ C-NMR spectrum of molecule 4 in DMSO- d_6	11
7. Figure S5 ¹ H-NMR spectrum of molecule G in CDCl ₃	11
8. Figure S6 ¹³ C-NMR spectrum of molecule G in CDCl ₃ 1	12
9. Figure S7 MALDI-TOF-Mass spectra of molecule G	12
10. Figure S8 ¹ H-NMR spectrum of molecule 1 in CDCl ₃	13
11. Figure S9 ¹³ C-NMR spectrum of molecule 1 in CDCl ₃ 1	13
12. Figure S10 MALDI-TOF-Mass spectra of molecule 1	14
13. Figure S11 ¹ H-NMR spectrum of molecule 2 in CDCl ₃	14
14. Figure S12 ¹³ C-NMR spectrum of molecule 2 in CDCl ₃	15
15. Figure S13 MALDI-TOF-Mass spectra of molecule 2	15
16. Figure S14 ¹ H-NMR spectrum of molecule 5 in CDCl ₃	16
17. Figure S15 ¹³ C-NMR spectrum of molecule 5 in CDCl ₃	16
18. Figure S16 ¹ H-NMR spectrum of molecule H ₃ in CDCl ₃	18
19. Figure S17 ¹³ C-NMR spectrum of molecule H ₃ in CDCl ₃ 1	19
20. Figure S18 MALDI-TOF-Mass spectra of molecule H ₃ 1	19
21. Figure S19 ¹ H-NMR spectrum of molecule H ₄ in CDCl ₃ 1	17
22. Figure S20 ¹³ C-NMR spectrum of molecule H_4 in CDCl ₃ 1	17
23. Figure S21 MALDI-TOF-Mass spectra of molecule H ₄	18
24. Figure S22 ¹ H-NMR spectrum of molecule β -CD-OTs in DMSO- d_6	20
25. Figure S23 ¹³ C-NMR spectrum of molecule β -CD-OTs in DMSO- d_6	20
26. Figure S24 MALDI-TOF-Mass spectra of molecule β-CD-OTs	21
27. Figure S25 ¹ H-NMR spectrum of molecule β -CD-N ₃ in DMSO- d_6	21
28. Figure S26 ¹³ C-NMR spectrum of molecule β -CD-N ₃ in DMSO- d_6	22
29. Figure S27 ¹ H-NMR spectrum of molecule H_1 in DMSO- d_6	22

30. Figure S28 ¹³ C-NMR spectrum of molecule H_1 in DMSO- d_6	23
31. Figure S29 ¹ H-NMR spectrum of molecule H_2 in DMSO- d_6	23
32. Figure S30 ¹³ C-NMR spectrum of molecule H_2 in DMSO- d_6	24
33. Figure S31 MALDI-TOF-Mass spectra of molecule H ₁	
34. Figure S32 MALDI-TOF-Mass spectra of molecule H ₂	
35. Figure S33 UV-vis absorption spectra and emission spectra of H	[1-225
36. Figure S34 Size distribution graphs of H_{1-2}	26
37. Figure S35 The molecular lengths of compounds H_{1-2} and G sim	nulated by CPK at
the lowest energy	
38. Figure S36 Photographs of $H_2O/DMSO$ solutions of H_1 and after the second sec	er irradiation with
365nm UV light for 20 minutes.	27
39. Figure S37 The rewritable process of patterned H_1 via the irrad	liation of 365 nm
and visible light	27
40. Figure S38 ¹ H NMR spectra of G, H ₃ +G and H ₃ in CDCl ₃ at 25	°C28
41. Association constant determination for $H_3 \supset G$ in CDCl ₃	
42. Figure S41 ¹ H NMR spectra of G, H_2+G and H_2 in CDCl ₃ :DMS	O- <i>d</i> ₆ at 25 °C30
43. Figure S42 ¹ H NMR spectra of G, β -CD+G and β -CD in CI	DCl3:DMSO-d6 at
25 °C	
44. Figure S43 Fluorescence spectra of H_1 : G (c/c = 4:1) and H_2	G(c/c = 4:1) in
CHCl ₃ /DMSO solution at 25°C.	
45. Figure S44 Photographs of H ₁ , H ₁ +G, G and H ₂ , H ₂ +G, G in	CDCl ₃ /DMSO-d ₆
solution under UV and visible light	32
46. Figure S45 AFM images of molecules $H_1 \subset G$ and molecules	H ₂ ⊂G obtained
from CHCl ₃ /DMSO ($v/v = 19:1$) solutions	32
47. Figure S46 ATR-FTIR spectra of the stationary phase after sep-	
1	aration of Neutral
alumina + \mathbf{H}_{1-2}	aration of Neutral
 48. Figure S47 Photographs of thin layer chromatography 	aration of Neutral 32 33

General Materials and Techniques.

General Materials: Toluene-p-sulfonyl chloride, 1,4-Dimethoxybenzene, Boron trifluoride ether, 1,4-Dibromobutane, 4-Methoxyphenol, Copper sulfate pentahydrate, Sodium ascorbate, 6-Bromohexanenitrile, Sodium hydroxide, β-Cyclodextrin, Tetrakis(4-hydroxyphenyl)ethylene, Polyformaldehyde, Sodium azide, Propargyl bromide, Potassium carbonate and conventional reagents were used as received.

Techniques: ¹H-NMR (300, 500 MHz), ¹³C-NMR (75, 125 MHz) and ¹H NOESY NMR (500 MHz) spectra were recorded on a Bruker AM-300 and AM-500 instrument. The Uv-vis and FL spectra were obtained with JASCO UV-V650 UV-vis and FP-8200 FL spectrometers, respectively. Mass spectroscopy was performed with a Shimadzu AXIMA-CFR matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. A zetasizer Nano-ZS was used to analyze the size distributions of molecules in aqueous solution. ATR-IR spectra were obtained using a Bruker VERTEX 70 spectrometer. Transmission electron microscope (TEM) experiments: A glow discharge instrument (15mA, 60s) was used to carry out hydrophilic treatment on the carbon support membrane (ordinary carbon support membrane, 200 mesh, Beijing China Lens Science and Technology Co., LTD.), and then 3 µL samples of H₂O/DMSO solution and CHCl₃/DMSO solution were added to the treated and untreated carbon support membranes by drops respectively, standing at room temperature. After drying, 3 µL uranyl acetate aqueous solution (0.4 wt %) was used for staining. After standing for one minute, absorb the excess dye solution, and dry again at room temperature, the carbon support membrane can be placed in the sample

tank for testing. Transmission electron microscope (TEM) images were measured by JEOL's high resolution TEM (JEM-2100 Plus), using an accelerated voltage of 120kV. Atomic force microscope (AFM) experiments: The whole layer of mica was completely peeled off with plastic tape (Scotch), and the freshly peeled mica (10×20 mm) was placed on the surface dish, drop 5µL of the solution to be tested was added to the mica by drip casting method, and the mica was taken out and placed on the sample table for testing after being dried at room temperature for 12 hours. The test mode was adopted ACAFM mode.

Synthesis of the molecules H₁₋₂, 1-4 and G:

Scheme S1 Synthetic routes of the molecules H₁₋₂, 1-4 and G.

Compounds 5, H₃, H₄, β -CD-OTs, β -CD-N₃ were synthesized based on previous literature reports.^[1-3]

Synthesis **3** and **4**. These compounds were synthesized according to the same procedure, a representation example is described for **3**. 4,4'-dihydroxyazobenzene

(2.00 g, 9.34 mmol) and potassium carbonate (4.50 g, 32.6 mmol) were dispersed in 50 ml acetone, the mixture was degassed and stirred at room temperature for 2 hours. Next, propargyl bromide (0.925 g, 7.78 mmol) was added dropwise to the mixture, refluxed 24 hours under a nitrogen environment. After the organic solution was removed and water was added, extracted with dichloromethane and ethyl acetate. At last, 0.635 g pure target molecule **3** was obtained through column chromatography.

Compound **3**: (Yellow solid, yield 34.3%, M.p.: 134 °C), ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 10.22 (s, 1H), 7.79 (dd, J = 19.2, 8.7 Hz, 4H), 7.16 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 4.91 (d, J = 2.4 Hz, 2H), 3.64 (t, J = 2.4 Hz, 1H). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 160.90, 159.50, 147.18, 145.69, 124.93, 124.26, 116.33, 115.84, 79.38, 79.06, 56.26. Elemental analysis for C₁₅H₁₂N₂O₂ (252.27 g/mol): C: 71.42%, H: 4.79%, N: 11.10%, found: C: 71.37%, H: 4.99%, N: 10.91%. Compound **4**: (White solid, yield 43.5%, M.p.: 135 °C), ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 9.45 (s, 1H), 7.45 (dd, J = 25.2, 8.7 Hz, 4H), 7.02 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 4.81 (d, J = 2.4 Hz, 2H), 3.58 (t, J = 2.4 Hz, 1H). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 157.09, 156.52, 133.98, 131.07, 127.78, 127.45,

116.13, 115.66, 79.84, 78.65, 55.91. Elemental analysis for C₁₅H₁₂O₂ (224.25 g/mol): C: 80.34%, H: 5.39%, found: C: 80.28%, H: 5.59%.

Compound **G**: tetrakis(4-hydroxytetraphenyl)ethene (0.150 g, 0.378 mmol) and potassium carbonate (0.174 g, 1.26 mmol) were dispersed in 50 ml acetone, the mixture was degassed and stirred at room temperature for 2 hours. Next, 6-bromohexanenitrile (0.333 g, 1.89 mmol) was added dropwise to the mixture, refluxed 24 hours under a nitrogen environment. After the organic solution was removed and water was added, extracted with dichloromethane and ethyl acetate. At last, 0.258 g pure target molecule **G** was obtained through column chromatography. (White solid, yield 87.7%, M.p.: 83 °C), ¹H NMR (300 MHz, CDCl₃, δ , ppm): 6.92 (d, J = 9.0 Hz, 8H), 6.62 (d, J = 9.0 Hz, 8H), 3.90 (t, J = 6.0 Hz, 8H), 2.38 (t, J = 6.0 Hz, 8H), 1.83-1.69 (m, 16H), 1.67-1.59 (m, 8H). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 157.08, 138.33, 136.93, 132.57, 119.66, 113.50, 67.11, 28.54, 25.47, 25.22, 17.17. MALDI-TOF-MS: m/z [M-H]⁺ 776.36. Elemental analysis for C₅₀H₅₆N₄O₄ (777.00

g/mol): C: 77.29%, H: 7.26%, N: 7.21%, found: C: 76.98%, H: 6.96%, N: 7.14%.

Synthesis 1 and 2. These compounds were synthesized according to the same procedure, a representation example is described for 1. 3 (0.1 g, 0.396 mmol) and potassium carbonate (0.27 g, 1.96 mmol) were dispersed in 60 ml acetonitrile, the mixture was degassed and stirred at room temperature for 2 hours. Next, H_4 (0.41 g, 0.47 mmol) was added dropwise to the mixture, refluxed 24 hours under a nitrogen environment. After the organic solution was removed and water was added, extracted with dichloromethane and ethyl acetate. At last, 0.232 g pure target molecule 1 was obtained through column chromatography.

Compound 1: (Yellow solid, yield 56.1%, M.p.: 95 °C), ¹H NMR (300 MHz, CDCl₃, δ , ppm): 7.95-7.90 (m, 4H), 7.10 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.79-6.74 (m, 10H), 4.78 (d, J = 2.4 Hz, 2H), 4.02 (t, J = 2.4 Hz, 2H), 3.91 (t, J = 6 Hz, 2H), 3.80 (s, 2H), 3.77 (s, 8H), 3.71-3.62 (m, 27H), 2.56 (t, J = 2.4 Hz, 2H), 1.99-1.88 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, ppm): 161.28, 159.45, 150.99, 150.94, 150.86, 150.81, 150.67, 150.00, 147.57, 146.90,128.50, 128.36, 128.34, 128.31, 128.23, 128.17, 124.51, 124.31, 115.19, 115.00, 114.71, 114.24, 114.13, 114.03, 113.99, 113.94, 78.20, 75.96, 68.04, 67.83, 56.03, 55.93, 55.89, 55.84, 55.77, 29.86, 29.75, 29.62, 29.58, 29.53, 26.29, 26.03. MALDI-TOF-MS: m/z [M+H]⁺ 1043.7, [M+Na]⁺ 1066.5, [M+K]⁺ 1082.4. Elemental analysis for C₆₃H₆₆N₂O₁₂ (1043.20 g/mol): C: 72.53%, H: 6.38%, N: 2.69%, found: C: 72.56%, H: 6.44%, N: 2.63%.

Compound **2**: (White solid, yield 58.2%, M.p.: 117 °C), ¹H NMR (300 MHz, CDCl₃, δ , ppm): 7.50-7.45 (m, 4H), 7.03 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 6.79-6.75 (m, 10H), 4.71 (d, J = 2.4 Hz, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.89, (t, J = 6.0 Hz, 2H), 3.80 (s, 2H), 3.77 (s, 8H), 3.69-3.63 (m, 27H), 2.53 (t, J = 2.4 Hz, 2H), 2.03-1.88 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, ppm): 158.30, 156.71, 150.97, 150.87, 150.84, 150.81, 150.71, 150.04, 134.43, 133.26, 128.36, 128.33, 128.31, 127.82, 127.76, 115.25, 114.94, 114.80, 114.27, 114.14, 114.09, 114.01, 113.98, 78.70, 75.64, 68.07, 67.64, 55.94, 55.90, 55.84, 55.81, 55.77, 29.81, 29.78, 29.73, 29.67, 29.55, 26.50, 26.29. MALDI-TOF-MS: m/z [M]⁺ 1015.2, [M+Na]⁺ 1038.0, [M+K]⁺ 1054.4. Elemental analysis for C₆₃H₆₆O₁₂ (1015.19 g/mol): C: 74.54%, H: 6.55%, found: C:

74.47%, H: 6.63%.

Compound 5: (White solid, yield 71.9%, M.p.: 45 °C), ¹H NMR (300 MHz, CDCl₃, δ , ppm): 6.83 (s, 4H), 3.95 (t, J = 6.0 Hz, 2H), 3.77 (s, 3H), 3.49 (t, J = 6.0 Hz, 2H), 2.11-2.01 (m, 2H), 1.96-1.86 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, ppm): 153.85, 153.02, 115.41, 114.67, 67.47, 55.75, 33.56, 29.52, 28.02. Elemental analysis for C₁₁H₁₅BrO₂ (259.14 g/mol): C: 50.98%, H: 5.83%, found: C: 50.62, H: 5.79.

Compound **H**₃: (White solid, yield 21.2%, M.p.: 249 °C), ¹H NMR (300 MHz, CDCl₃, δ , ppm): 6.75 (s, 10H), 3.78 (s, 10H), 3.64 (s, 30H). ¹³C NMR (75 MHz, CDCl₃, ppm): 150.86, 128.24, 114.16, 55.81, 29.73. MALDI-TOF-MS: m/z [M]⁺ 751.5, [M+Na]⁺ 774.6. Elemental analysis for C₄₅H₅₀O₁₀ (750.87 g/mol): C: 71.98%, H: 6.71%, found: C: 71.85, H: 6.63.

Compound **H**₄: (White solid, yield 21.1%, M.p.: 129 °C), ¹H NMR (300 MHz, CDCl₃, δ , ppm): 6.79-6.70 (m, 10H), 3.83 (t, J = 6.0 Hz, 2H), 3.77 (s, 10H), 3.70-3.60 (m, 27H), 3.29 (t, J = 6.0 Hz, 2H), 1.92-1.87 (m, 2H), 1.83-1.76 (m, 2H). ¹³C NMR (125 MHz, CDCl₃, ppm): 151.54, 151.47, 151.41, 151.37, 150.86, 150.82, 150.76, 150.66, 150.64, 149.92, 128.46, 128.40, 128.32, 128.30, 128.23, 128.21, 128.17, 128.08, 127.97, 127.63, 114.89. 114.25, 114.17, 114.13, 114.09, 114.06, 113.98, 113.89, 113.67, 67.40, 56.26, 56.20, 56.18, 56.11, 56.06, 56.01, 55.93, 55.80, 55.75, 30.34, 29.75, 29.70, 29.67, 29.61, 29.57, 29.34, 28.35. MALDI-TOF-MS: m/z [M]⁺ 872.5, [M+K]⁺ 911.5. Elemental analysis for C₄₈H₅₅BrO₁₀ (871.85 g/mol): C: 66.13%, H: 6.36%, found: C: 66.37%, H: 6.12%.

Compound *β*-CD-OTs: (White solid, yield 13.2%, M.p.: 179 °C), ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 7.76 (d, *J* = 9.0 Hz, 2H), 7.44 (d, *J* = 9.0 Hz, 2H), 5.84-5.63 (m, 14H), 4.85-4.75 (m, 7H), 4.53-4.44 (m, 6H), 4.38-4.31 (m, 2H), 4.23-4.16 (m, 1H), 3.66-3.47 (m, 27H), 2.43 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆, ppm): 145.21, 133.13, 130.35, 128.04, 102.39, 81.94, 81.90, 73.53, 72.83, 72.49, 70.07, 69.32, 60.37, 21.66. MALDI-TOF-MS: m/z [M+Na]⁺ 1313.4. Elemental analysis for C₄₉H₇₆O₃₇S (1289.17 g/mol): C: 45.65%, H: 5.94%, S: 2.49%, found: C: 45.12%, H: 6.01%, S: 2.45%.

Compound β-CD-N₃: (White solid, yield 97.8%, M.p.: 210 °C), ¹H NMR (300 MHz,

DMSO- d_6 , δ , ppm): 5.76-5.64 (m, 14H), 4.88-4.83 (m, 7H), 4.55-4.47 (m, 6H), 3.80-3.77 (m, 2H), 3.76-3.43 (m, 40H). ¹³C NMR (75 MHz, DMSO- d_6 , ppm): 102.73, 102.40, 102.06, 83.43, 82.33, 82.01, 81.86, 73.52, 72.85, 72.67, 72.49, 70.65, 60.38, 51.56. Elemental analysis for C₄₂H₆₉N₃O₃₄ (1160.00 g/mol): C: 43.49%, H: 6.00%, N: 3.62%, found: C: 43.02, H: 6.25, N: 3.59.

Figure S1 ¹H-NMR spectrum of molecule 3 in DMSO-*d*₆.

Figure S3 ¹H-NMR spectrum of molecule 4 in DMSO-*d*₆.

Figure S5 ¹H-NMR spectrum of molecule G in CDCl₃.

Figure S7 MALDI-TOF-Mass spectra of molecule G.

Figure S9 ¹³C-NMR spectrum of molecule 1 in CDCl₃.

Figure S10 MALDI-TOF-Mass spectra of molecule 1.

Figure S11 ¹H-NMR spectrum of molecule 2 in CDCl₃.

Figure S12 ¹³C-NMR spectrum of molecule 2 in CDCl₃.

Figure S13 MALDI-TOF-Mass spectra of molecule 2.

Figure S15 ¹³C-NMR spectrum of molecule 5 in CDCl₃.

Figure S17 ¹³C-NMR spectrum of molecule H₃ in CDCl₃.

Figure S19 ¹H-NMR spectrum of molecule H_4 in CDCl₃.

Figure S21 MALDI-TOF-Mass spectra of molecule H₄.

Figure S23 ¹³C-NMR spectrum of molecule β -CD-OTs in DMSO- d_6 .

Figure S24 MALDI-TOF-Mass spectra of molecule β -CD-OTs.

Figure S25 ¹H-NMR spectrum of molecule β -CD-N₃ in DMSO- d_6 .

Figure S29 ¹H-NMR spectrum of molecule H_2 in DMSO- d_6 .

Figure S30 ¹³C-NMR spectrum of molecule H₂ in DMSO-*d*₆.

Figure S31 MALDI-TOF-Mass spectra of molecule H₁.

Figure S33 Absorption spectra of (a) H_1 and (c) H_2 and emission (excited at 298 nm,

Ex bandwidth: 2.5 nm; Em bandwidth: 5 nm) spectra of (b) H_1 and (d) H_2 in DMSO and CHCl₃/DMSO (v/v = 19:1) solutions (3.03×10⁻⁶ mol/L).

Figure S34 Size distribution graphs of H₂O/DMSO (v/v = 19:1) and CHCl₃/DMSO (v/v = 19:1) solutions of H₁ and H₂ (3.03×10^{-6} mol/L) from DLS measurements.

Figure S35 The molecular lengths of compounds H_{1-2} and G simulated by CPK at the lowest energy

Figure S36 Photographs of H₂O/DMSO (v/v = 19:1) solutions of H₁ (left, c = 2.72×10^{-3} mol/L) and after irradiation with 365nm UV light for 20 minutes (right, c = 2.72×10^{-3} mol/L).

Figure S37 The rewritable process of patterned H_1 via the irradiation of 365 nm and visible light.

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 fl (ppm)

Figure S38 ¹H NMR spectra of G (blue line), H_3+G (green line) and H_3 (red line) in CDCl₃ at 25 °C.

Association constant determination for H₃⊃G in CDCl₃

In order to further determine the association constant and stoichiometry of $H_3 \supset G$, FL titration and continuous Job's variation method was done^[3].

Stoichiometry (n) and apparent binding constant (K) were calculated according to Benesi – Hildebrand equation, $1/\Delta X = 1/\alpha + 1/\alpha K[Host]^n$ with the plot of $1/\Delta X$ vs $1/[Host]^n$ determined by fluorescent.

Where ΔX is the changes of fluorescent emission intensity (ΔI), As shown in Figure S39, the plot of $1/\Delta I$ vs $1/[Host]^4$ has a good linear least-squares fit with a better correlation coefficient than that of the plot of $1/\Delta I$ vs $1/[Host]^n$ (n=1,2,3), indicating that the stoichiometry of the inclusion complex between H₃ and the compound G is 4 : 1. The stoichiometry was also confirmed by the continuous Job's variation method (Job's plot) as shown in Figure S40.

Figure S39 (a) Fluorescent spectra of the complex of \mathbf{H}_3 and \mathbf{G} (curves from top to bottom, molar ratios = 0 : 1, 2 : 1, 3 : 1, 4 : 1, 6 : 1, 8 : 1, 12 : 1, 16 : 1, 20:1) in CDCl₃ solution (~ 5.0×10⁻⁵ mol L⁻¹), excited at 343 nm. (b) The plot of $1 / \Delta I$ vs $1 / [H_3]$ detected by fluorescent intensity at 500 nm. $K = 1.18 \times 10^5$ M⁻¹, R = 0.7280. (c) The plot of $1 / \Delta I$ vs $1 / [H_3]^2$ detected by fluorescent intensity at 500 nm. $K = 1.18 \times 10^5$ M⁻¹, R = 0.7280. (c) The plot of $1 / \Delta I$ vs $1 / [H_3]^2$ detected by fluorescent intensity at 500 nm. $K = 1.19 \times 10^9$ M⁻², R = 0.9060. (d) The plot of $1 / \Delta I$ vs $1 / [H_3]^3$ detected by fluorescent intensity at 500 nm. $K = 1.21 \times 10^{13}$ M⁻³, R = 0.9749. (e) The plot of $1 / \Delta I$ vs $1 / [H_3]^4$ detected by fluorescent intensity at 500 nm. $K = 1.22 \times 10^{17}$ M⁻⁴, R = 0.9926.

Figure S40 Fluorescent spectra of the complex of H_3 and G (curves from top to bottom, molar ratios from 0 : 10 to 10 : 0) in CDCl₃ solution (0.01 ~ 0.1 mM), excited at 343 nm. (b) Job's plot of $\Delta I \times r$ vs r detected by fluorescent intensity at 500 nm.

Figure S41 ¹H NMR spectra of G (blue line), H_2+G (green line) and H_2 (red line) in CDCl₃:DMSO- d_6 (v/v = 1:1) at 25 °C.

Figure S42 ¹H NMR spectra of **G** (blue line), β -CD+G (green line) and β -CD (red line) in CDCl₃:DMSO-*d*₆ (v/v = 1:1) at 25 °C.

Figure S43 (a) Fluorescence spectra (excited at 298 nm, Ex bandwidth: 5 nm; Em bandwidth: 5 nm) of $H_1(3.03 \times 10^{-6} \text{ mol/L})$, $H_1: G$ (c/c = 4:1) and G (7.58×10⁻⁷ mol/L) in CHCl₃/DMSO (v/v = 19:1) solution at 25°C; (b) Fluorescence spectra (excited at 298 nm, Ex bandwidth: 5 nm; Em bandwidth: 5 nm) of H_2 (3.03×10⁻⁶ mol/L), $H_2: G$ (c/c = 4:1) and G (7.58×10⁻⁷ mol/L) in CHCl₃/DMSO (v/v = 19:1) solution at 25°C.

Figure S44 Photographs of (a) or (b) G (left, $c = 2.15 \times 10^{-3} \text{ mol/L})$, $H_1 + G$ (middle, c/c = 4:1), H_1 (right, $c = 8.58 \times 10^{-3} \text{ mol/L})$ and (c) or (d) G (left, $c = 2.15 \times 10^{-3} \text{ mol/L})$, $H_2 + G$ (middle, c/c = 4:1), H_2 (right, $c = 8.58 \times 10^{-3} \text{ mol/L})$ in CDCl₃/DMSO- d_6 (v/v = 5:1) solution at 25°C: (a) and (c) under visible light; (b) and (d) under 365 nm UV lamp.

Figure S45 AFM images of molecules $H_1 \subset G$ (c/c = 4:1) obtained from CHCl₃/DMSO (v/v = 19:1) solutions (a) 24 h, (c) the corresponding height profile analysis; AFM images of molecules $H_2 \subset G$ (c/c = 4:1) obtained from CHCl₃/DMSO (v/v = 19:1) solutions (b) 24 h, (d) the corresponding height profile analysis.

Figure S46 ATR-FTIR spectra of the stationary phase after separation of (a) Neutral

alumina + H_1 and (b) Neutral alumina + H_2 .

Figure S47 Thin layer chromatography (a) or (b) Neutral alumina thin laminate + H₁ (left), Neutral alumina thin laminate + H₂ (middle), Neutral alumina thin laminate (right). (i: H₃ + H₄; ii: H₃; iii: H₄)

REFERENCES

1. G. Zhang, B. Li, Y. Zhou, X. Chen, B. Li, Z.-Y. Lu and L. Wu, *Nature Communications*, 2020, **11**, 425.

2. B. Gao, G. Wang, B. Li and L. Wu, Acs Omega, 2020, 5, 8127-8136.

3. H. Zhang, N. Kim Truc, X. Ma, H. Yan, J. Guo, L. Zhu and Y. Zhao, *Organic & Biomolecular Chemistry*, 2013, **11**, 2070-2074.