Supporting Information

An ultrastable La-MOF for catalytic hydrogen transfer of furfural: in-situ activation of surface

Xu Zhao,^a Lu Sun,^a Zhouxiao Zhai,^a Di Tian,^a Ying Wang,^a Xiaoqin Zou,^{*b} Chungang Min,^c Changfu Zhuang,^{*a}

^aKey Laboratory of State Forestry and Grassland Adminstration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650051, P. R. China.

^bFaculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

^cResearch Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China.

*Corresponding authors

Dr. Changfu Zhuang E-mail: cfzhuang@swfu.edu.cn

Prof. Xiaoqin Zou

E-mail: zouxq100@nenu.edu.cn

Contents

Computational Method.

Fig. S1. Coordination environment diagram of La₁ and La₂ in LaQS

Fig. S2. TEM of LaQS lamellar structure

Table S1. Different N contents in LaQS and different ways of activating LaQS

Table S2. Specific surface area, pore volume, pore size of LaQS and different ways of

activating LaQS

Table S3. Selected Bond Lengths (Å) and Selected Bond Angles (deg) for the compound of LaQS

Computational Method.

All density functional theory calculations were performed using the Vienna ab initio simulation package (VASP). ^{1, 2} The generalized gradient approximation of Perdew–Burke–Ernzerhof (PBE) was emplyeded to describe the exchange-correlation.³ The cut-off energy of 400 eV was used for the plane wave, and the ionic positions of all structures were relaxed until the force converged to below -0.05 eV·Å⁻¹. A k-point of 2 × 2 × 3 set was adopted. The vacuum space between slabs along the z-direction was set at a minimum of 15 Å. Moreover, charges transfer are analyzed based on the Bader theory.⁴

[1] Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15-50.

[2] Kresse, G.; Furthmüller, J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186.

[3] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. *Rev. Lett.* 77 (1996) 3865–3868.

[4] R.F.W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry, Clarendon Press, Oxford, 1990.

Fig. S1 Coordination environment diagram of La_1 and La_2 in LaQS

Fig. S2. TEM of LaQS lamellar structure

Sample	$N_{Quinoline}$ (%)	N _{DMF} (%)
LaQS	31.00	65.48
LaQS-A ₁	63.3	34.63
LaQS-A ₂	68.37	28.78
LaQS-A ₃	74.14	24.46

Table S1. Different N contents in LaQS and LaQS-A

Table S2	2. Specific surface area,	, pore volume, po	re size of LaQS	and LaQS-A

Sample	S _{Langmuir}	Pore Volume (cm ³ g ⁻¹)	Pore Size (nm)
LaQS	293.24	0.14	3.61
LaQS-A ₁	621.74	0.31	3.57
LaQS-A ₂	827.77	0.36	2.64
LaQS-A ₃	843.37	0.34	2.50

La(1)-O(3)#1	2.547(5)	La(1)-O(3)#2	2.547(5)
La(1)-O(3)	2.547(5)	La(1)-O(1)	2.550(5)
La(1)-O(1)#2	2.550(5)	La(1)-O(1)#1	2.550(5)
La(1)-O11#2	2.598(6)	La(1)-O(5)#2	2.598(6)
La(1)-O(5)#1	2.598(6)	La(1)-O11#1	2.598(6)
La(1)-O11	2.598(6)	La(1)-O(5)	2.598(6)
La(2)-O(1)	2.508(5)	La(2)-O(1)#2	2.508(5)
La(2)-O(1)#1	2.508(5)	La(2)-O(2)#1	2.516(5)
La(2)-O(2)#2	2.516(5)	La(2)-O(2)	2.516(5)
La(2)-N(1)#1	2.801(6)	La(2)-N(1)	2.802(6)
La(2)-N(1)#2	2.802(6)		
O(3)#1-La(1)-O(3)#2	74.75(19)	O(3)#1-La(1)-O(3)	74.75(19)
O(3)#2-La(1)-O(3)	74.75(19)	O(3)#1-La(1)-O(1)	144.99(15)
O(3)#2-La(1)-O(1)	96.23(16)	O(3)-La(1)-O(1)	136.42(15)
O(3)#1-La(1)-O(1)#2	96.23(16)	O(3)#2-La(1)-O(1)#2	136.42(15)
O(3)-La(1)-O(1)#2	144.99(15)	O(1)-La(1)-O(1)#2	66.78(16)
O(3)#1-La(1)-O(1)#1	136.42(15)	O(3)#2-La(1)-O(1)#1	144.99(15)
O(3)-La(1)-O(1)#1	96.23(16)	O(1)-La(1)-O(1)#1	66.78(16)
O(1)#2-La(1)-O(1)#1	66.79(16)	O(3)#1-La(1)-O11#2	71.13(18)
O(3)#2-La(1)-O11#2	67.25(18)	O(3)-La(1)-O11#2	134.01(18)
O(1)-La(1)-O11#2	74.19(17)	O(1)#2-La(1)-O11#2	69.49(16)
O(1)#1-La(1)-O11#2	129.75(16)	O(3)#1-La(1)-O(5)#2	71.13(18)
O(3)#2-La(1)-O(5)#2	67.25(18)	O(3)-La(1)-O(5)#2	134.01(18)
O(1)-La(1)-O(5)#2	74.19(17)	O(1)#2-La(1)-O(5)#2	69.49(16)
O(1)#1-La(1)-O(5)#2	129.75(16)	O(3)#1-La(1)-O(5)#1	67.24(18)
O(3)#2-La(1)-O(5)#1	134.01(18)	O(3)-La(1)-O(5)#1	71.12(18)
O(1)-La(1)-O(5)#1	129.75(16)	O(1)#2-La(1)-O(5)#1	74.19(17)
O(1)#1-La(1)-O(5)#1	69.49(17)	O(5)#2-La(1)-O(5)#1	119.995(5)
O(3)#1-La(1)-O11#1	67.24(18)	O(3)#2-La(1)-O11#1	134.01(18)
O(3)-La(1)-O11#1	71.12(18)	O(1)-La(1)-O11#1	129.75(16)
O(1)#2-La(1)-O11#1	74.19(17)	O11#2-La(1)-O11#1	119.995(5)
O(1)#1-La(1)-O11#1	69.49(17)	O(3)#1-La(1)-O11	134.01(18)
O(3)#2-La(1)-O11	71.12(18)	O(1)-La(1)-O11	69.49(17)
O(3)-La(1)-O11	67.24(18)	O(1)#2-La(1)-O11	129.75(16)
O(1)#1-La(1)-O11	74.19(17)	O11#1-La(1)-O11	119.994(3)
O11#2-La(1)-O11	119.996(5)	O(3)#1-La(1)-O(5)	134.01(18)
O(3)#2-La(1)-O(5)	71.12(18)	O(1)-La(1)-O(5)	69.49(17)

Table S3. Selected Bond Lengths (Å) and Selected Bond Angles (deg) for the compound of LaQS $% \left(A_{1}^{2}\right) =0$

O(3)-La(1)-O(5)	67.24(18)	O(1)#2-La(1)-O(5)	129.75(16)
O(1)#1-La(1)-O(5)	74.19(17)	O(5)#1-La(1)-O(5)	119.994(3)
O(5)#2-La(1)-O(5)	119.996(5)	O(1)-La(2)-O(1)#2	68.04(17)
O(1)-La(2)-O(1)#1	68.04(17)	O(1)-La(2)-O(2)#1	131.16(15)
O(1)#2-La(2)-O(1)#1	68.04(17)	O(1)#2-La(2)-O(2)#1	93.39(16)
O(1)#1-La(2)-O(2)#1	147.42(15)	O(1)#2-La(2)-O(2)#2	147.42(15)
O(1)-La(2)-O(2)#2	93.39(16)	O(1)#1-La(2)-O(2)#2	131.16(15)
O(2)#1-La(2)-O(2)#2	78.69(19)	O(1)#2-La(2)-O(2)	131.16(15)
O(1)-La(2)-O(2)	147.42(15)	O(1)#1-La(2)-O(2)	93.39(16)
O(2)#1-La(2)-O(2)	78.69(19)	O(1)-La(2)-N(1)#1	79.05(16)
O(2)#2-La(2)-O(2)	78.69(19)	O(1)#2-La(2)-N(1)#1	126.22(16)
O(1)#1-La(2)-N(1)#1	60.49(15)	O(2)#2-La(2)-N(1)#1	72.04(17)
O(2)#1-La(2)-N(1)#1	139.29(17)	O(2)-La(2)-N(1)#1	68.42(17)
O(1)-La(2)-N(1)	60.49(15)	O(1)#1-La(2)-N(1)	126.22(16)
O(1)#2-La(2)-N(1)	79.05(16)	O(2)#1-La(2)-N(1)	72.04(17)
O(2)#2-La(2)-N(1)	68.42(17)	N(1)#1-La(2)-N(1)	119.840(17)
O(2)-La(2)-N(1)	139.29(17)	O(1)#1-La(2)-N(1)#2	79.05(16)
O(1)-La(2)-N(1)#2	126.21(16)	O(2)#1-La(2)-N(1)#2	68.42(17)
O(1)#2-La(2)-N(1)#2	60.48(15)	O(2)#2-La(2)-N(1)#2	139.29(17)
O(2)-La(2)-N(1)#2	72.04(17)	N(1)-La(2)-N(1)#2	119.840(17)
N(1)#1-La(2)-N(1)#2	119.843(17)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+y+1,-x+1,z #2 -y+1, x-y, z #3 x #4 x, y, z-1 #5 y, -x+y, -z+1 #6 x

#3 x, y, z+1 #6 x-y, x, -z+1