Supporting Information

CoO_x nanoparticles loaded on carbon spheres with synergistic effects for effective inhibition of shuttle effect in Li-S batteries Ning Chai^{a,b,1}, Yujie Qi^{b,c,1}, Junnan Chen^{b,c}, Qinhua Gu^{b,c}, Ming Lu^{b,d}, Xia Zhang ^{a*}, Bingsen Zhang^{b,c*}

a Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China

b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

c School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

d The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China

Fig. S1. TEM images of CoO_x/CS composites heated at 600 °C for 10 min (a, b), 20 min (c, d), 30 min (e, f) and 120 min (g, h).

Fig. S2. TEM image of CoO_x/CS composites.

Fig. S3. HRTEM images of CoO_x nanoparticles.

Fig. S4. XRD patterns of CS and CoO_x/CS composites heated at 600 °C for 20 min.

Fig. S5. XRD pattern of CoO_x/CS composites heated at 600 °C for 2 h.

Fig. S6. SEM images of CS (a, b) and CoO_x/CS composites (c, d).

Fig. S7. Visual adsorption results of CoO_x/CS and CS powders in Li_2S_6 solution.

Fig. S8. TG analysis curves of CS/S and CoO $_x$ /CS/S electrode materials under N $_2$ flow.

Fig. S9. Tafel plots calculated from reduction peak at 2.0 V (a) and oxidation peak at 2.4 V (b) in Fig. 5a.

Fig. S10. Galvanostatic charge-discharge profile of CS/S electrode at various current densities.

Fig. S11. Galvanostatic discharge/charge profiles of CoO_x/CS full battery cycling at 0.1 C.

Fig. S12. Cycling performance of CoO_x/CS electrode with high S loading of 4.4 mg cm⁻².

Fig. S13. SEM images and EDX elemental maps of CoO_x/CS composites (a), CS/CS composites (after cycling) (b), $CoO_x/CS/S$ electrode (before cycling) (c), and $CoO_x/CS/S$ electrode (after cycling) (d).

The physical confinement of LiPSs from CS matrix, which has been verified by our recent work^[1], could play an important role in inhibiting shuttle effect.

Fig. S14. SEM images of $CoO_x/CS/S$ composites before cycling (a, b) and after cycling

(c, d).

Table S1. The surface area, pore volume and pore size of CS and CoO_x/CS composites heated at 600 °C for 20 min.

Samples	$S_{BET}(m^2 g^{-1})$	Pore Volume (cm ⁻³ g ⁻¹)	Pore Size (nm)
CS	325.1	0.137	1.7
CoO _x /CS composites	473.5	0.199	1.7

Table S2. The relative contents of various bond configurations in C 1s high resolutionXPS spectra.

Samples ——	Relative content (%)					
	C-C	C-O	C=O	O-C=O		
CS	82.4	9	4.6	4		
CoO _x /CS	83.3	9.4	4.2	3.1		

Samples —	Relative content (%)				
	Со-О	C-0	C=O	O-C=O	
CS	0	27.1	30.8	42.1	
CoO _x /CS	15.7	18.7	24.8	40.8	

Table S3. The relative contents of various bond configurations in O 1s high resolutionXPS spectra.

Table S4. The relative contents of various bond configurations in C 1s high resolutionXPS spectra of CoO_x/CS electrode before and after cycling.

Converte e	Relative content (%)					
Samples	C-C	C-O/C-S	С=О	O-C=O		
CoO _x /CS/S before cycling	66.1	16.2	4.0	13.7		
CoO _x /CS/S after cycling	69.3	12.6	5.4	12.7		

Samples	Relative content (%)				
	Co-O	C-0	С=О	O-C=O	S-O
CoO _x /CS/S before cycling	1.4	0.4	64.5	16.2	17.5
CoO _x /CS/S after cycling	5.5	0.1	41.5	11.3	41.6

Table S5. The relative contents of various bond configurations in O 1s high resolution XPS spectra of CoO_x/CS electrode before and after cycling.

Table S6. The relative contents of various bond configurations in S 2p high resolutionXPS spectra of $CoO_x/CS/S$ electrode before and after cycling.

Samples		Relative	content (%)		
	Sulfide	S-S	Sulfite	Thiosulfate	Sulfate
CoO _x /CS/S before cycling	0.9	11.7	18.6	34.7	34.1
CoO _x /CS/S after cycling	8.1	5.5	31.0	35.2	20.2

Samples	Relative content (%)						
	Со	Co-O	Co-S	Sat.			
CoO _x /CS composites	44.4	27.8	0	27.8			
CoO _x /CS/S before cycling	25.6	10.0	22.8	41.6			
CoO _x /CS/S after cycling	15.4	17.2	32.6	34.8			

Table S7. The relative contents of various bond configurations in Co 2p high resolution XPS spectra of CoO_x/CS composites and $CoO_x/CS/S$ electrode before and after cycling.

References

[1] Y.J. Qi, N. Chai, Q.H. Gu, J.N. Chen, M. Lu, X. Zhang, B.S. Zhang, Chem. Eng. J.435 (2022) 135112.