Rational design of MoS₂ supported Cu single atom catalysts by machine learning potential for enhanced peroxidase-like activity

Deting Xu^{a,b}, Wenyan Yin^a, Jie Zhou^a, Liyuan Wu^a, Haodong Yao^a, Minghui Sun^a, Ping Chen^a, Xiangwen Deng^a and Lina Zhao^{*a,b}

- ^{b.} University of Chinese Academy of Sciences, Beijing 100049, China.
- * Corresponding Author: Lina Zhao, Email: <u>linazhao@ihep.ac.cn</u>

^{a.} CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

Figure S1 Top and side view of different optimized geometries associated with MoS_2 . (a) MoS_2 -Vs, (b) $Cu@MoS_2$ in acid and (c) $Cu@MoS_2$ in basic conditions.

Figure S2 Charge density difference plots for H_2O_2 adsorbed surfaces of (a) pure MoS_2 and (b) $Cu@MoS_2$. The isosurface value of electron density is taken as $0.002 \text{ e/}\text{Å}^3$. The cyan and purple regions for the charge density difference represent the areas of electron accumulation and depletion, respectively.

Figure S3 Energy profile for decomposition of H_2O_2 on pure MoS2. The path shows H_2O_2 decompose into HOO and H. The numbers represent the energy (eV) at each state. The abscissa IS, TS, and P represent reactants, transition states and products, respectively.

Figure S4 Charge density difference plots for Cu adsorbed different MoS₂ surfaces of (a) pure MoS₂, (b) Cu@MoS₂, (c) Cu@MoS₂-Vs, (d) Cu@MoS₂-Vs in acid and (e) Cu@MoS₂-Vs in basic. The isosurface value of electron density is taken as 0.002 e/Å^3 . The cyan and purple regions for the charge density difference represent the areas of electron accumulation and depletion, respectively.

Figure S5 The optimized geometrical structures of H_2O_2 adsorption on (a) Cu@MoS₂, (b) Cu@MoS₂-Vs, (c) Cu@MoS₂-Vs in acid and (d) Cu@MoS₂-Vs in basic conditions. The bond length is in Å.

Figure S6 PDOS of Cu@MoS₂-Vs in acidic condition.

Figure S7 H_2O_2 decomposition reaction volcano plot for different MoS_2 supported nanozymes.

Distance (Å)	MoS_2	Cu@MoS ₂
S1-S2	3.245	3.341
S2-S3	3.203	3.356
S3-S1	3.245	3.341
S-S average	3.231	3.346
Mo1-S1	2.409	2.442
Mo1-S2	2.466	2.570
Mo1-S3	2.466	2.570
Mo-S average	2.447	2.527
Mol-Cu	-	2.740
S1-Cu	-	2.274
S2-Cu	-	2.204
S3-Cu	-	2.204
S-Cu average	_	2 23

Table S1 S-S bonds, Mo-S bonds lengths and their average distance on MoS_2 and $Cu@MoS_2$ surfaces and Mo-Cu bond, Cu-S bonds lengths and their average distance on $Cu@MoS_2$.

Substrate	pure MoS ₂	Cu@MoS ₂	Cu@MoS ₂ -Vs	Cu@MoS ₂ -Vs in acid	Cu@MoS ₂ -Vs in basic
E _{ads}	-0.31	-0.80	-0.89	-0.83	-1.03

Table S2 Adsorption energy (Eads, eV) of H₂O₂ molecule on different substrates.

The Cu loading surfaces have large adsorption energies (-0.80, -0.89, -0.83 and -1.03 eV for Cu@MoS2, Cu@MoS2-Vs, Cu@MoS2-Vs in acid and Cu@MoS2-Vs in basic, respectively) and much heat is released during the desorption and adsorption processes. According to the Gibbs free energy formula: $\Delta G=\Delta H-T\Delta S$, the difference of ΔG for H2O2 molecule in gas phase is - 0.75 eV under 37 °C and 0 K. After redressing by ΔG , the adsorption energy at 37 °C is - 0.80 - (- 0.75) eV = -0.05 eV, -0.89 - (- 0.75) eV = -0.14 eV, -0.83 - (- 0.75) eV = -0.08 eV, -1.03 - (- 0.75) eV = -0.28 eV respectively for Cu@MoS2, Cu@MoS2-Vs, Cu@MoS2-Vs in acid and Cu@MoS2-Vs in basic, which are all less than 0 eV, indicating that H2O2 molecule can be adsorbed on the surfaces. The temperature has little effect on the enzymatic activity for Cu loading surfaces. As for pure MoS2 surface (Eads = - 0.31 eV), increasing the temperature will decrease the enzymatic activity. The activity of pure MoS2 will further decrease at high temperature, which also further confirms that the pure MoS2 surface is almost reactive inert. As a result, the methodological limitation on temperature did not affect the study results through the analysis above.

Table S3 Adsorption energy (E_{ads}, eV) of Cu atom on different substrates.

Substrate	pure MoS ₂	Cu@MoS ₂	Cu@MoS ₂ -Vs	Cu@MoS ₂ -Vs in acid	Cu@MoS ₂ -Vs in basic
E _{ads} (eV)	-	-3.27	-4.96	-3.74	-2.79

Table S4 Important bond lengths on Cu@MoS₂-Vs surfaces in neutral, acidic and basic conditions.

	Distance (Å)	Neutral	Acid	Basic
	S1-S2	3.290	3.297	3.255
	S2-S3	3.174	3.255	3.250
	S3-S1	3.174	3.245	3.253
	S-S Average	3.213	3.265	3.253
	Mo1-Mo2	3.670	3.513	3.510
	Mo2-Mo3	3.670	3.721	2.800
	Mo3-Mo1	3.453	3.769	2.803
	Mo-Mo Average	3.598	3.668	3.038
	Mo1-Cu	2.644	2.638	2.218
	Mo2-Cu	2.579	2.574	2.217
	Mo3-Cu	2.645	2.651	2.120
	Mo-Cu Average (or O-Cu)	2.623	2.621	2.185
	S1-Cu	3.461	3.572	3.031
	S2-Cu	3.461	3.430	3.589
	S3-Cu	3.665	3.379	3.587
	S-Cu Average (or S-O)	3.529	3.460	3.402
	S-H1	-	1.362	-
	S-H2	-	1.357	-
	Mo3-Cu	-	-	2.847
	S4-Cu	-	-	2.123
	S5-Cu	-	-	2.122
	O1-H1	-	-	0.978
	O2-H2	-	-	0.990
_	O2-Cu	-	-	1.660

d (distance, Å), or angle or torsion	pure MoS ₂	Cu@MoS ₂	Cu@MoS ₂ -Vs	Cu@MoS ₂ -Vs-in- acid	Cu@MoS ₂ -Vs-in- basic
01-02	1.463	1.498	1.472	1.495	1.488
H1-O1	0.987	0.982	0.984	0.997	1.009
H2-O2	0.986	0.981	0.999	0.981	0.981
<h10102< td=""><td>100.95</td><td>99.66</td><td>101.716</td><td>101.943</td><td>101.183</td></h10102<>	100.95	99.66	101.716	101.943	101.183
<h2o2o1< td=""><td>99.823</td><td>98.852</td><td>101.596</td><td>98.914</td><td>99.097</td></h2o2o1<>	99.823	98.852	101.596	98.914	99.097
Torsion	-100.365	124.194	93.044	120.024	114.16
O1-Cu	-	2.031	2.068	2.045	2.007
Cu-S1 (Cu-Mo1)	-	2.303	2.711	2.666	2.161
Cu-S2 (Cu-Mo2)	-	2.212	2.681	2.619	2.17
Cu-S3 (Cu-Mo3)	-	2.275	2.628	2.706	-