Supporting Information

Phenylboronic acid-modified polyethyleneimine assisted neutral polysaccharide of weight-resolution analysis with a nanopipette

Wanyi Xie^{*a,b*}, Shixuan He^{*a,b**}, Shaoxi Fang^{*a,b*}, Rong Tian^{*a,b*}, Liyuan Liang^{*a,b*},

Degiang Wang ^{a,b}*

¹ Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China

² Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P.R. China.

*Corresponding Authors, email: <u>dqwang@cigit.ac.cn</u>, <u>heshixuan@cigit.ac.cn</u>

Content

1.	Synthesis of PEI ₁₈₀₀ -oBA1
2.	Nanopore fabrication and the diameter estimate
3.	Calculation of the baseline fluctuation4
4.	High PEI ₁₈₀₀ -oBA concentration4
5.	Scatter plot of ΔI vs Δt for dextran 70 with different concentration of
PE	I ₁₈₀₀ -oBA5
8.	Current trace for different concentration of dextran 70
9.	Compared with other dextran detection methods9
10.	Scatter plot of scatterplots of ΔI vs Δt for dextrans (20, 40, 70)10
12.	Schematic of the reversible reaction process of PEI_{1800} -oBA with
dex	tran11
13.	Schematic of the AIE fluorescence detection11
14.	TPE-COOH concentration optimization12
15.	Fluorescence intensity sum in Figure 4b13
16.	ECD histogram for dextran mixtures14
17.	The recovery for SZK and MK eye drops samples15

2 1. Synthesis of PEI₁₈₀₀-oBA

3

4 **Figure S1.** (a) Synthesis of PEI₁₈₀₀-oBA, (b) the photo of the synthesis compound (left) and the

- 5 1H NMR spectra at 300 MHz in D_2O (right): δ 7.39 (br s, 2H), 7.11 (br s, 2H), 3.65 and 3.45
- 6 (br s, 2H), and 2.66-2.47 (m, 88H).

1 2. Nanopore fabrication and the diameter estimate

Nanopipette fabrication: Quartz capillaries (QF100-50-10), with an outer diameter 2 3 of 1.0 mm and inner diameter of 0.5 mm were obtained from Sutter Instrument. All glass capillaries were thoroughly treated by immersion in freshly prepared piranha 4 solution (98% H_2SO_4 : 30% H_2O_2 = 3:1 v/v) for approximately 2 h. The capillaries were 5 then thoroughly rinsed with deionized water and ethanol several times and dried under 6 N2 gas. Before use, the cleared capillaries were dried at 80 °C for 1 h. A CO2-laser P-7 2000 puller system (Sutter Instruments Co. Ltd) was used to fabricate the nanopipette 8 with the following settings: Heat = 760, Fil = 4, Vel = 29, Del = 140, and Pull = 168. 9 The tip diameters of the nanopipettes were approximately 20 nm and were characterized 10 by SEM and ionic conductance. 11

The diameter estimate: The electrochemical measurement to estimate the nanopore
diameter according to the classical equation (S1). ^[S1]

$$a = \frac{1}{\pi k R tan\theta/2}$$
 (Equation S1)

15 R is the measured nanopipette resistance, k is the specific resistance of the electrolyte 16 used (k= 7.6 S/m in 1M LiCl), θ is the cone angle (θ =18° in Figure S1b), a is the 17 diameter of the nanopore at the tip of the nanopipette.

19 Figure S3. (a) The I-V response of the 5 different nanopipettes (1 M LiCl, 10 mM Tirs-HCl, pH
20 7.4); (b) Scanning electron microscope image of the presented nanopipette.

- 21
- 22
- 23

1 3. Calculation of the baseline fluctuation

2 The baseline fluctuation is quantitatively expressed as I_{RMS} , which is directly calculated

3 as the following:

4

 $I_{RMS} = \sqrt{\Delta I^2(t)}$ (Equation S2)

5 The root-mean-square (RMS) noise I_{RMS} is the electrical current through the pore, and

6 $\Delta I(t)$ represents the fluctuation of the current I(t) deviating from its mean value. [S2] 7

8 4. High PEI₁₈₀₀-oBA concentration

9

- 10 Figure S4. The current trace for 7 μ g/ml dextran 70 mixed with (a) 4% and (b) 10% PEI₁₈₀₀-oBA
- 11 in 1M LiCl (10 mM Tris-HCl, pH 7.4) at 300 mV, respectively.

- 1 5. Scatter plot of ΔI vs Δt for dextran 70 with different concentration of PEI₁₈₀₀-
- **oBA**

Figure S5. Scatter plot of current blockades *vs.* dwell times of 7 μg/ml dextran 70 (1M LiCl,

- 5 10 mM Tris-HCl, pH 7.4) mixed with different concentration of PEI_{1800} -oBA (a. 1%, b. 2%, c.
- 6 3%) at different applied voltage (100-500mV).

1 6. The TEM image and Zeta potential of PEI₁₈₀₀-oBA mixing with dextran 70

2

- Figure S6. Zeta potential for PEI_{1800} -oBA mixing with different concentration of 3
- dextran 70 (0, 10, 50, 100, 200 µg/ml). 4

- Figure S7. TEM image of PEI₁₈₀₀-oBA mixed with different concentration of 6 7 dextran 70. (a) is without dextran 70; (b) is mixed with $100 \mu g/ml$; (b) is mixed with 200 µg/ml. 8
- 9

2 7. The signal-to-noise ratio with PEI₁₈₀₀-oBA concentration

Figure S8. Signal-to-noise ratio of 7 μg/ml dextran 70 mixed with different
concentrations (1%, 2%, and 3%) of PEI₁₈₀₀-oBA at different voltages (100, 200,
300, 400, and 500 mV) in a 1 M LiCl (10 mM Tris-HCl, pH 7.4) buffer solution.

1 8. Current trace for different concentration of dextran 70

2

- 3 Figure S9. The current trace for different concentration of dextran 70 (5, 10, 50, 100, 150, 350 and
- $4~700~\mu\text{g/ml})$ mixed with 3% $PEI_{1800}\text{-}oBA$ at 300 mV voltage (1 M LiCl, 10 mM Tris-HCl, pH 7.4),
- 5 respectively.

1 9. Compared with other dextran detection methods

ethod

2 Table S2. The proposed method compared with other dextran detection methods.

3 ^a Gel Permeation Chromatography

4 ^b High Performance Liquid Chromatography

5 ^c Enzyme Linked Immunosorbent Assay

6 d Indirect Competitive Enzyme-Linked Immunosorbent Assay

1 10. Scatter plot of scatterplots of ΔI vs Δt for dextrans (20, 40, 70)

2

3 Figure S10. Scatter plot of scatterplots of current blockades vs. dwell times for three different

 $4 \quad molecular \ weights \ dextran \ (1 \ \mu M; \ dextran \ 20, \ dextran \ 40, \ and \ dextran \ 70) \ mixed \ with \ 3\% \ PEI1800-$

5 oBA at 300 mV voltage (1 M LiCl, 10 mM Tris-HCl, pH 7.4).

1 11. EDC analysis for dextran 20 and dextran 40 detection at 200 mV

- Figure S11. ECD histogram for dextran 20 and dextran 40 detection at 200 mV (1
 M LiCl, 10 mM Tris-HCl, pH 7.4).
- 5

2

6 12. Schematic of the reversible reaction process of PEI₁₈₀₀-oBA with dextran

8 Scheme S1. Schematic of PEI₁₈₀₀-oBA and dextran mixture based on nanopipette and the reversible

9 reaction process of PEI_{1800} -oBA with dextran.

10

11 13. Schematic of the AIE fluorescence detection

13 **Scheme S2.** Schematic of the AIE fluorescence detection for PEI_{1800} -oBA/Dextran complex 14 translocation based on nanopipette detection under the negative voltage applied.

1 14. TPE-COOH concentration optimization

Stock solutions of dextran 20 (1 μ M), dextran 40 (1 μ M), dextran 70 (1 μ M), and PEI₁₈₀₀-oBA (10 mg/mL) were prepared using 1 M LiCl (10 mM Tris-HCl, pH 7.4). A stock solution of TPE-COOH (1 mM) was prepared with DMF. All of the solutions were diluted with 1M LiCl (10 mM Tris-HCl, pH 7.4) before use. For TPE-COOH/PEI₁₈₀₀-oBA mixtures fluorescence detection, different concentrations of TPE-COOH were mixed with 3% PEI₁₈₀₀-oBA in 96-well plates.

Figure S8 shows the fluorescence imaging and intensity of different concentrations of TPE (10-50 μ M) in 1 M LiCl mixed with PEI₁₈₀₀-oBA (3%). With increasing TPE concentration, the fluorescence intensity increased. Thus, the TPE-COOH /PEI₁₈₀₀oBA complex formed by TPE-COOH adsorbs on the surface of PEI₁₈₀₀-oBA. The fluorescence intensity curve suggested that 3% PEI₁₈₀₀-oBA needed 40 μ M TPE-COOH to reach saturation.

- 15 Figure S12. (a) The fluorescence image and (b) the corresponding fluorescence intensity of 1 μ M
- 16 dextran 70 and 3 % PEI_{1800} -oBA complex with different concentration of TPE-COOH (10, 20, 30,
- 17 $\,$ 40, and 50 $\mu M).$

1 15. Fluorescence intensity sum in Figure 4b

2

- 3 Figure S13. Fluorescence intensity sum in Figure 4b of different molecular weight dextrans (1 µM,
- 4 without dextran, dextran 20, 40, and 70) mixed with 3% PEI₁₈₀₀-oBA and 30 µM TPE-COOH under
- 5 300 mV voltage for 30 min (1 M LiCl, 10 mM Tris-HCl, pH 7.4).

1 16. ECD histogram for dextran mixtures

2 3 Figure S14. ECD histogram for dextran mixtures (dextran 20: dextran 40: dextran 70) with 4 respective concentration ratios of (a) 0.2: 0.4: 0.6 µM, (b) 0.2: 0.2: 0.2 µM, and (c) 0.6: 0.4: 0.2 µM 5 mixed with 3% PEI₁₈₀₀-oBA at 300 mV voltage (1 M LiCl, 10 mM Tris-HCl, pH 7.4). 6

Sample	Added (µg/ml)	Detected (µg/ml)	Recovery (%
ZSK	0	48	96.0
ZSK	20	68	97.1
MK	0	55	110
MK	20	72	103

2 17. The recovery for SZK and MK eye drops samples

1

2 **Reference**

- 3 [S1] Z. Zhu, X. Duan, Q. Li, R. Wu, Y. Wang, B. Li, J. Am. Chem. Soc. 2020, 142,
 4 4481–4492.
- 5 [S2] S. Liang, F. Xiang, Z. Tang, R. Nouri, X. He, M. Dong, W. Guan, Nanotechnology
- 6 and Precision Engineering, **2020**, *3*, 9-17.
- 7 [S3] R. A. Burke, T. R. Shockley, Journal of Chromatography B, 1998, 718, 115-120.
- 8 [S4] L. Wang, R. Gong, Z. Liu, China Pharmacy, 2015, 26, 5126-5128.
- 9 [S5] S. Wang, Z. Li, X. Wang, E. Ni, L. Zeng, F. Luo, J. Yan, D. Liang, Journal of
- 10 Food Quality, **2016**, 39, 408-414.
- 11 [S6] C. Li, W. Sun, L. Huang, N. Sun, X. Hua, M. Wang, F. Liu, RSC Advances, 2021,
- 12 11, 517-524.
- 13