Supporting Information

Research Advances of Chlorinated Benzene-containing Compound Oxidation Catalyzed by Metal Oxides: Activity Enhanced Strategies and Reaction Facilitated Mechanism

Ning Luo^{a,1}, Fengyu Gao^{a,1}, Du Chen^a, Erhong Duan^b, Zaharaddeen Sani^c, Honghong Yi^a, Xiaolong Tang^{a,*}

^a Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China

^b School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China

° Department of Science Laboratory Technology, Federal Polytechnic Daura, Katsina State, Nigeria.

* Corresponding author: E-mail address: txiaolong@126.com

¹ These authors contributed equally to this work.

Technology	Principle	Conver sion/%	Temperatur e/°C	Advantage	Disadvantage	Re f
Adsorption	Transferring CBCs from the air to the solid phase via high specific surface area adsorbent.	80~90	<60	Efficient, simple, reusable	Adsorbent needs to be regenerate	1, 2
Membrane separation	CBCs can be separated by permeating the membrane under certain pressure	90~99	Normal temperature	Simple process	Less gas treatment	3
Condensation method	CBCs are condensed into droplets and separated from the gas	70~85	Low temperature	Low cost	Low efficiency, large equipment	4
Thermal incineration	CBCs are destroyed under high temperature heating or incineration conditions to form CO ₂ , HCl and H ₂ O.	95~99	800~1200	Simple, practicable	High energy consumption, high cost, secondary pollution	5-7
Photo-catalytic decomposition	Using nano-semiconductor catalysts and ultraviolet (UV) light to convert CBCs in indoor air into benign and odourless constituents-water vapor (H ₂ O) and carbon	-	Illumination	Completely inorganic, few by-products, low investment cost	Small processing capacity, high concentration	8-11

Table S1 Summary of advantages and disadvantages of the CBCs degradation technologies	
---	--

	dioxide (CO ₂)					
Biological degradation	CBCs can be degraded under the action of		Normal	Detential loss investment	Large space	12-
	microorganisms by selecting appropriate microbial strains.		temperature	the second block decision	demand, Slow	14
				thoroughly degradation	efficiency	
Hydrothermal degradation	Degraded by hydrolysis and free radical	~99	500	Large processing	Slow efficiency,	
	reaction under high temperature and			capacity, high efficiency,	secondary	15
	pressure.			good prospects	chlorination	
Catalytic oxidation	Degradation of contaminants through active	>98	200~400	Low temperature, low	High post	
	sites and ovugen vacancies on the catalyst			energy consumption, high	deactivation of	16-
	surface			efficiency, no secondary	cotalyst	18
	surrace.			pollution	Catalyst	

Categories	Catalysts	Reactant	Concentration/ppm	Space velocity	T ₉₀ /°C	Advantage	Disadvantage	Ref
– Supported – Noble Metal	Pd/γ - Al_2O_3	o-DCB	450 ppm	15 000 h ⁻¹	482		inactivated by Cl poisoning,	19
	Pd/SiO ₂	o-DCB	450 ppm	15 000 h ⁻¹	526	-	loss of active components in	
	Pd/ZSM-5	o-DCB	450 ppm	15 000 h ⁻¹	474	tomporatura	high temperature,	
	Pt-4W/CeO ₂	CB	1000 ppm	60 000 h ⁻¹	327	- temperature,	formation of oxychloride,	20
Catalyst	Pt-4W/CeO ₂	o-DCB	1000 ppm	60 000 h ⁻¹	343		production of poly-	
-	Pt _{0.5} R _{u0.5} /m-HZ	CB	1000 ppm	40 000 mL g ⁻¹ h ⁻¹	270	-	chlorinated by-products,	21
							expensive	
Perovskite – type – Catalyst – –	Sm-Mn							
	perovskite@mullite	CB	1000 ppm	30 000 mL g ⁻¹ h ⁻¹	290		high reaction temperature,	22
	composite					adjustable structural	reactants blocking the active	
	Pd/LaMnO ₃	CB	1000 ppmv	12 000 mL g ⁻¹ h ⁻¹	243(T ₅₀)	defects,	site,	
	Pd/LaFeO ₃	CB	1000 ppmv	12 000 mL g ⁻¹ h ⁻¹	270(T ₅₀)	rich reactive oxygen	high temperature change the	
	Pd/LaAlO ₃	CB	1000 ppmv	12 000 mL g ⁻¹ h ⁻¹	348(T ₅₀)	species,	catalyst structure,	23
	Pd/LaCoO ₃	CB	1000 ppmv	12 000 mL g ⁻¹ h ⁻¹	360(T ₅₀)	-	loss of active components.	
	Pd/LaNiO ₃	CB	1000 ppmv	12 000 mL g ⁻¹ h ⁻¹	408(T ₅₀)	-		
Molecular	Ce ₄ -Co ₆ HMS	CB	1000 ppm	30 000 h ⁻¹	440	good activity and	expensive,	24
Sieve	Pt/H-ZSM5	CB	2000 ppm	18 600 h ⁻¹	~335	selectivity, abundant	easy to be inactivated in the	25

 Table S2 Comparison of different kinds of catalysts for CBCs

Catalyst	Pt/H-beta	СВ	2000 ppm	18 600 h ⁻¹	~340	pore structure and	presence of water.	
Ţ						- acidic sites,		
	10% CrNd(6:1)/KL-NY	CB	1000 ppm	20 000 h ⁻¹	260	strong ability to resist		26
						Cl inactivation.		
	V ₂ O ₅ /HNTs	СВ	100 ppm	37 000 h ⁻¹	~330	environmentally		27
	VTiS	CB	100 ppm	37 000 h ⁻¹	~345	friendly,		28
	3V-10W/TiO ₂	СВ	200 ppm	25 000 h ⁻¹	200	low cost,	Some metal oxides are prone –	29
	V ₂ O ₅ -MO ₃ /TiO ₂	СВ	200 ppm	60 000 h ⁻¹	200	easy to obtain,		30
Transition	γ-MnO ₂	СВ	500	10 000 h ⁻¹	175	good catalytic	reactions	31
Metal	MnOx/CeO ₂	СВ	1000	15 000 h ⁻¹	236	performance,	generate toxic by-products	32
Catalyst	CeMnOx	o-DCB	1000	15 000 h ⁻¹	~340	good stability,	stability, required to increase the anti- g REDOX	33
	α-Fe ₂ O ₃	o-DCB	100 ppmv	18 000 mL g ⁻¹ h ⁻¹	450(T ₇₀)	strong REDOX		
						capacity,		34
	$CaCO_3/\alpha$ - Fe_2O_3	O ₃ o-DCB 100 pp	100 ppmv	v 18 000 mL g ⁻¹ h ⁻¹	~400	good chlorine		JT.
						resistance		

Figure S1. The activity test in catalytic oxidation of VOCs at: Conversion of different aromatic VOCs and CO₂ yield over 3Mn1Ce. (WHSV of 60000 mL g⁻¹ h⁻¹) ³⁵ Copyright 2018 American Chemical Society

Figure S2 Catalytic performance of CB ozonation over MnOx with different supports.³⁶ Copyright 2020 Elsevier.

Figure S3 Catalytic performance of prepared Mn-based catalysts for catalytic oxidation of BTX (A) and the mixed CB and benzene (B), DCB selectivity (C), and durability (D) for catalytic oxidation of the mixed CB and benzene.³⁷ Copyright 2021 American Chemical Society

Figure S4 Possible reaction mechanism of CB oxidation on $Mn_xCe_{1-x}O_2/HZSM-5.^{38}$ Copyright 2018 American Chemical Society

Figure S5 CB conversion and primary reaction byproduct distribution over synthesized catalysts. ³⁹ Copyright 2015 Elsevier

Figure S6 Effect of structure on CBCs removal performance on Ce-Ti mixed oxide catalysts. ⁴⁰ Copyright 2016 Elsevier

Reference

1. D. M. Kempisty and R. S. Summers, *Journal of Environmental Engineering*, 2016, **142**, 04016064.

2. Y. Liu, N. W. Johnson, C. Liu, R. Chen, M. Zhong, Y. Dong and S. Mahendra, *Environ Sci Technol*, 2019, **53**, 14538-14547.

3. W. Yang, H. Zhou, C. Zong, Y. Li and W. Jin, *Separation and Purification Technology*, 2018, **200**, 273-283.

4. X. Li, J. Ma and X. Ling, Cryogenics, 2020, 107, 103060.

5. M.-X. Zhan, T. Chen, J.-y. Fu, X. Lin, S. Lu, X. Li, J.-h. Yan and A. G. Buekens, *Chemosphere*, 2016, **146**, 182-188.

6. Y. Hu, P. Zhang, D. Chen, B. Zhou, J. Li and X.-w. Li, *Journal of Hazardous Materials*, 2012, **207-208**, 79-85.

7. S. L. Summoogum, M. K. Altarawneh, J. C. Mackie, E. M. Kennedy and B. Z. Dlugogorski, *Combustion and Flame*, 2012, **159**, 3056-3065.

8. J. C. Ahern, S. M. Kanan and H. H. Patterson, *Comments on Inorganic Chemistry*, 2015, **35**, 59 - 81.

9. C. Chen, W. Ma and J. Zhao, Chemical Society Reviews, 2010, 39, 4206-4219.

10. P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, *Catalysis Communications*, 2009, **10**, 1380-1385.

11. K. Abedi, F. Ghorbani-Shahna, B. Jaleh, A. Bahrami, R. Yarahmadi, R. Haddadi and M. Gandomi, *Journal of Electrostatics*, 2015, **73**, 80-88.

12. S.-y. Zang, B. Lian, J. Wang and Y. Yang, *Journal of environmental sciences*, 2010, **22** 5, 669-674.

13. N. Gaur, K. Narasimhulu and P. Y, *Journal of Cleaner Production*, 2018, **198**, 1602-1631.

14. P. Ebrahimbabaie and J. Pichtel, *Environmental Science and Pollution Research*, 2021, **28**, 7710-7741.

15. K. Kim, S. H. Son, K. Kim, K. J. Kim and Y. C. Kim, *Chemical Engineering Journal*, 2010, **165**, 170-174.

16. W. T. Hsu, P. C. Hung, S.-H. Chang, C. W. Young, C. L. Chen, H. W. Li, K. L. Pan and M. B. Chang, *Industrial & Engineering Chemistry Research*, 2018.

17. Z. Ma, Z. Yang, L. Mu, L. Deng, L. Chen, B. Wang, X. Qiao, D. Hu, B. Yang, D. Ma, J. Peng and Y. Ma, *Chemical Science*, 2021, **12**, 14808-14814.

18. X. Weng, P. Sun, Y. Long, Q. Meng and Z. Wu, Environ Sci Technol, 2018, 52, 8986.

19. N. Li, J. Cheng, X. Xing, Y. Sun and Z. Hao, *Journal of Hazardous Materials*, 2020, **393**, 122412.

20. Y. Gu, S. Shao, W. Sun, H. Xia, X. Gao, Q. Dai, W. Zhan and X. Wang, *Journal of Catalysis*, 2019, **380**, 375-386.

21. Y. Wang, Y. Chen, L. Zhang, G. Wang, W. Deng and L. Guo, *Microporous and Mesoporous Materials*, 2020, **308**, 110538.

22. L. Liu, B. Zhou, Y. Liu, J. Liu, L. Hu, Y. Tang and M. Wang, *Journal of Colloid and Interface Science*, 2022, **606**, 1866-1873.

23. J. M. Giraudon, A. Elhachimi and G. Leclercq, *Applied Catalysis B: Environmental*, 2008, **84**, 251-261.

24. W. Zhao, J. Cheng, L. Wang, J. Chu, J. Qu, Y. Liu, S. Li, H. Zhang, J. Wang, Z. Hao and T. Qi, *Applied Catalysis B: Environmental*, 2012, **127**, 246-254.

25. S. Scirè, S. Minicò and C. Crisafulli, *Applied Catalysis B: Environmental*, 2003, **45**, 117-125.

26. N. Ye, Y. Li, Z. Yang, J. Zheng and S. Zuo, *Applied Catalysis A: General*, 2019, **579**, 44-51.

27. C. Gannoun, A. Turki, H. Kochkar, R. Delaigle, P. Eloy, A. Ghorbel and E. M. Gaigneaux, *Applied Catalysis B: Environmental*, 2014, **147**, 58-64.

28. C. Gannoun, R. Delaigle, P. Eloy, D. P. Debecker, A. Ghorbel and E. M. Gaigneaux, *Catalysis Communications*, 2011, **15**, 1-5.

29. Y. Qin, J. Gu, W. Cai and Z. Wang, *Environmental Science and Pollution Research*, 2022, **29**, 42809-42821.

30. X. Huang, Y. Peng, X. Liu, K. Li, Y. Deng and J. Li, *Catalysis Communications*, 2015, **69**, 161-164.

31. X. Weng, Y. Long, W. Wang, M. Shao and Z. Wu, *Chinese Journal of Catalysis*, 2019, **40**, 638-646.

32. W. Hu, F. He, X. Chen and S. Liu, Journal of Nanoparticle Research, 2018, 21, 6.

33. S. Yang, H. Zhao, F. Dong, Z. Tang and F. Zha, *Molecular Catalysis*, 2019, **470**, 127-137.

34. X. Ma, Q. Sun, X. Feng, X. He, J. Guo, H. Sun and H. Cao, *Applied Catalysis A: General*, 2013, **450**, 143-151.

35. J. Chen, X. Chen, D. Yan, M. Jiang, W. Xu, H. Yu and H. Jia, *Applied Catalysis B: Environmental*, 2019, **250**, 396-407.

36. G. Chen, Z. Wang, F. Lin, Z. Zhang, H. Yu, B. Yan and Z. Wang, *Journal of Hazardous Materials*, 2020, **391**, 122218.

37. G. Chen, Y. Cai, H. Zhang, D. Hong, S. Shao, C. Tu, Y. Chen, F. Wang, B. Chen, Y. Bai, X. Wang and Q. Dai, *Environmental Science & Technology*, 2021, **55**, 14204-14214.

38. P. Sun, W. Wang, X. Weng, X. Dai and Z. Wu, *Environmental Science & Technology*, 2018, **52**, 6438-6447.

39. C. He, B.T. Xu, J.W. Shi, N.L. Qiao, Z.P. Hao and J.L. Zhao, *Fuel Processing Technology*, 2015, **130**, 179-187.

40. W. Deng, Q. Dai, Y. Lao, B. Shi and X. Wang, *Applied Catalysis B: Environmental*, 2016, **181**, 848-861.