Piezoelectrically Enhanced Photocatalysis of K_xNa_{1-x}NbO₃ (KNN) Microstructures for Efficient Water Purification

Runjiang Guo^{†a}, Mengqian Liu^{†a}, Yurui Xing^a, Tanglong Bai^a, Chenglong Zhao^a, Haolin Huang^a, and Hongti Zhang^{*ab}

^aSchool of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China;

^bShanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China

- * Correspondence: zhanght3@shanghaitech.edu.cn
- [†] These authors contributed equally to this work.

Fig.S1 XRD patterns of KNN powders synthesized under different temperatures: (a) 160 °C, (b) 180 °C, (c) 200 °C.

Fig.S2 The XRD patterns of KNN-6 powders synthesized under different reaction time.

(Na,K)NbO3 octahedron

Fig.S3 The SEM images of KNN powders synthesized under different time (a) 1 h, (b) 2 h, (c) 4 h, (d) 8 h, (e) 20h, (f) 24 h; (g) schematic illustration of the KNN-6 formation mechanism.

Fig.S4 The degradation of MB under light irradiation without adding any catalyst.

Fig.S5 The UV-vis absorption curves of MB solutions degraded by different KNN samples under condition of light irradiation together with ultrasonic vibration. (a) KNN-0, (b) KNN-5, (c) KNN-6, (d) KNN-7, (e) KNN-8, (f) KNN-9 and (g) KNN-10.

Fig.S6 The UV-vis absorption curves of MB solutions degraded by different KNN samples under condition of light irradiation. (a) KNN-0, (b) KNN-5, (c) KNN-6, (d) KNN-7, (e) KNN-8, (f) KNN-9 and (g) KNN-10.

Fig.S7 The UV-vis absorption curves of MB solutions degraded by different KNN samples under condition of ultrasonic vibration. (a) KNN-0, (b) KNN-5, (c) KNN-6, (d) KNN-7, (e) KNN-8, (f) KNN-9 and (g) KNN-10.

Fig.S8 The UV-vis absorption curves of MB solutions under four cycles of stability tests of the KNN-6 powder.

Fig.S9 The degradation efficiency of MB under different scavenger (a) EDTA-2Na. (b) BQ, (c) TBA.

Fig.S10 SEM images of as-synthesized KNN-6 with low magnifications to show their overall octahedron morphologies. (scale bar: 10 µm)

Photocatalysts	Degradation Efficiency	Reaction conditions	Ref.
Polymer/TiO ₂ Nanofiber	180min 67%	Sun Light	S1
NaNbO ₃	180min 73%	Sun Light + Ultrasonic Vibrations	S2
CNTs/TiO ₂ /AgNPs/Surfactant	120min 99%	Visible Light	S3
ZnO-Yb ₂ O ₃ -Pr ₂ O ₃	60min 99.8%	Sun Light	S4
ZnO NPs-PWAC	60min 99%	Sun Light	S5
Ag-NaNbO ₃	180min 82%	SunLight+Ultrasonic Vibrations	S6
$(\mathrm{Bi}_{1/2}\mathrm{Na}_{1/2})\mathrm{TiO}_3$	150min 54.2%	Ultrasonic Vibrations	S7
BiVO4-ZIF 8	130min 80%	Visible Light	S 8
K _{0.4} Na _{0.6} NbO ₃	40min 98%		This
		Sun Light + Offasonic Violations	work

Tab.S1 The MB degradation efficiency in previous reports.

Photocatalysts	Degradated Dye	Degradation Efficiency	Reaction conditions	Ref.
NaNbO ₃	RhB	120 min 80%	Sunlight	S9
NaNbO ₃	MB	180 min 80%	Sun Light + Ultrasonic Vibrations	S2
Ag-doped NaNbO ₃	MB	180 min 90%	Sun Light + Ultrasonic Vibrations	S6
NaNbO ₃	RhB	80 min 90%	Sun Light + Ultrasonic Vibrations+heating/co oling	S10
KNbO ₃	RhB	180 min 96%	Sunlight	S11
N-doped KNbO3	RhB	18h 64%	Visible Light	S12
KNbO3	RhB	120 min 90%	Sun Light + Ultrasonic Vibrations	S13
$K_{0.5}Na_{0.5}NbO_3$	BB41	90 min 90%	Sunlight	S14
K _{0.5} Na _{0.5} NbO ₃	RhB	100 min 90%	Sun Light + Ultrasonic Vibrations	S15
K _{0.4} Na _{0.6} NbO ₃	MB	40min 98%	Sun Light+Ultrasonic Vibrations	This work

Tab.S2 The catalytic degradation efficiency of other niobate materials reported in works.

Reference

[S1] A. Abdal-hay, A.S. Hamdy Makhlouf, K.A. Khalil, Novel, Facile, Single-Step Technique of Polymer/TiO₂ Nanofiber Composites Membrane for Photodegradation of Methylene Blue, *ACS Applied Materials & Interfaces*, 7 (2015) 13329-13341.

[S2] S. Singh, N. Khare, Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO₃ nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst, *Nano Energy*, 38 (2017) 335-341.

[S3] E.M.S. Azzam, N.A. Fathy, S.M. El-Khouly, R.M. Sami, Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO₂/AgNPs/Surfactant nanocomposites, *Journal of Water Process Engineering*, 28 (2019) 311-321.

[S4] T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M.I. Arshad, F. Iqbal, Novel tri-phase heterostructured ZnO–Yb₂O₃–Pr₂O₃ nanocomposite; structural, optical, photocatalytic and antibacterial studies, *Ceramics International*, 46 (2020) 11101-11114.

[S5] M. Kamaraj, N.R. Srinivasan, G. Assefa, A.T. Adugna, M. Kebede, Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: Extended application in tannery industrial wastewater, *Environmental Technology & Innovation*, 17 (2020) 100540.

[S6] D. Kumar, S. Sharma, N. Khare, Piezo-phototronic and plasmonic effect coupled Ag-NaNbO₃ nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity, *Renewable Energy*, 163 (2021) 1569-1579.

[S7] D. Liu, Y. Song, Z. Xin, G. Liu, C. Jin, F. Shan, High-piezocatalytic performance of ecofriendly (Bi_{1/2}Na_{1/2})TiO₃-based nanofibers by electrospinning, *Nano Energy*, 65 (2019) 104024.

[S8] Y.-h. Si, Y.-y. Li, Y. Xia, S.-k. Shang, X.-b. Xiong, X.-r. Zeng, J. Zhou, Fabrication of Novel ZIF-8@BiVO₄ Composite with Enhanced Photocatalytic Performance, *Crystals*, 8 (2018).

[S9] S. Wang, Z. Wu, J. Chen, J. Ma, J. Ying, S. Cui, S. Yu, Y. Hu, J. Zhao, Y. Jia, Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation, *Ceramics International*, 45 (2019) 11703-11708.

[S10] H. You, X. Ma, Z. Wu, L. Fei, X. Chen, J. Yang, Y. Liu, Y. Jia, H. Li, F. Wang, H. Huang, Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyrobi-catalytic dye decomposition of NaNbO3 nanofibers, *Nano Energy*, 52 (2018) 351-359.

[S11] T.B. Wermuth, S. Arcaro, J. Venturini, T.M. Hubert Ribeiro, A. de Assis Lawisch Rodriguez, E.L. Machado, T. Franco de Oliveira, S.E. Franco de Oliveira, M.N. Baibich, C.P. Bergmann, Microwave-synthesized KNbO3 perovskites: photocatalytic pathway on the degradation of rhodamine B, *Ceramics International*, 45 (2019) 24137-24145.

[S12] R. Wang, Y. Zhu, Y. Qiu, C.-F. Leung, J. He, G. Liu, T.-C. Lau, Synthesis of nitrogendoped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light, *Chemical Engineering Journal*, 226 (2013) 123-130.

[S13] D. Yu, Z. Liu, J. Zhang, S. Li, Z. Zhao, L. Zhu, W. Liu, Y. Lin, H. Liu, Z. Zhang, Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects, *Nano Energy*, 58 (2019) 695-705.

[S14] F. Praxedes, M. Nobre, P. Poon, J. Matos, S. Lanfredi, Nanostructured $K_x Na_{1-x} NbO_3$ hollow spheres as potential materials for the photocatalytic treatment of polluted water, *Appl. Catal. B-Environ*, 298 (2021) 120502.

[S15] A. Zhang, Z. Liu, X. Geng, W. Song, J. Lu, B. Xie, S. Ke, L. Sun, Ultrasonic vibration driven piezocatalytic activity of lead-free K_{0.5}Na_{0.5}NbO₃ materials, *Ceram. Int.* 45 (2019) 22486-22492.