Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

Structure-Activity Relationship and Bioactivity Studies of Neurotrophic *trans*-Banglene

Khyati Gohil^a, M. Zain H. Kazmi^a, Florence J. Williams^{b*}

^a University of Alberta, Edmonton, Alberta, Canada ^b University of Iowa, Iowa City, Iowa, USA <u>florence-williams@uiowa.edu</u>

Table of Contents

1.	General Information	S03
2.	General Procedures	S04
3.	Optical Purity Data	S22
4.	PC-12 Cell Assay Procedures	S39
5.	References	S43

General Information

All reactions were performed under a nitrogen atmosphere unless stated otherwise. Dichloromethane (CH_2Cl_2) and toluene were passed through a column of activated molecular sieves (4Å, LC technologies SP-1 solvent purification system). HPLC purification was performed using an Agilent 1260 preparatory system, using one of the following: a C8 Zorbax column (PrepHT, 21.2x150mm, 7 µm particle size), Lux® 5 µm i-Amylose-3 column (250 x 10 mm, 5 µm particle size) or Daicel CHIRALPAK AD-H (250 x 30 mm). Chiral HPLC analysis was performed using a normal-phase Agilent 1260 system, with UV detection using a standard diode-array- detector, and one of the following: a Daicel CHIRALPAK IG column (150 x 4.6 mm, 5 µm particle size), IC Daicel CHIRALPAK IC column (150 x 4.6 mm, 5 µm particle size), or a Daicel CHIRALPAK AD-H (250 x 4.6 mm).

NMR spectra were obtained from one of the following Varian spectrometers: DD2 MR 400MHz, VNMRS 500MHz, VNMRS 600MHz, VNMRS 700MHz. NMR spectra chemical shifts (δ) are reported in ppm and are referenced to residual protonated solvent (¹H) or deuterated solvent (¹³C) chemical shifts. Coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dq = doublet of quartets, ddd = doublet of doublet of doublets, tdd = triplet of doublet of doublets, m = multiplet, app. = apparent, br. = broad. HSQC was used to determine ¹³C NMR multiplicities, which are reported as follows: C = no attached hydrogens, CH = one attached hydrogen, CH₂ = two attached hydrogens, CH₃ = three attached hydrogens.

HRMS were obtained from a Kratos Analytical MS50G EI-MS. FTIR were obtained using a Thermo Nicolet 8700 with an attached continuum microscope. Optical rotation data was obtained using a Perkin Elmer 241 Polarimeter at 589 nm at 25 °C, using a 10 cm path-length cell.

General Procedures

Synthesis of allyl alcohols $(2a-d)^{1}$

1a-d

2a-d

The aldehyde **1** (30 mmol) was dissolved in tetrahydrofuran (25 mL). Allyl bromide (8 mL, 90 mmol) and saturated aqueous NH₄Cl solution (125 mL) were then added, and the reaction mixture was cooled to 0 °C. Zinc power (12 g, 180 mmol) was added, and the reaction mixture was stirred at 0 °C for 30 minutes. The precipitate was filtered, and the filtrate was extracted with ethyl acetate (25 mLx4). The organic layers were combined and washed with brine (25 mLx1), then dried over Na₂SO₄, filtered, and then concentrated in vacuo. The resulting product was used without further purification.

2a. 1-(3,4-Dimethoxyphenyl)but-3-en-1-ol: White solid (91%). ¹H NMR (CDCl₃, 400 MHz) δ : 6.94–6.83 (m, 3H), 5.85–5.76 (m,1H), 5.20–5.14 (m, 2H), 4.70 (td, J = 6.5 Hz, 3.0 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 2.51 (t, J = 6.9 Hz, 2H), 1.96 (d, J = 3.0 Hz, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ : 149.1, 148.2, 134.6, 118.4, 118.1, 111.0, 109.0, 73.3, 56.0, 55.9, 43.9. Characterization data is consistent with literature.²

2b. 1-(3-Methoxyphenyl)but-3-en-1-ol: Yellow oil (99%). ¹**H NMR** (CDCl₃, 400 MHz) δ: 7.29–7.25 (t, *J* = 8.0, 1H), 6.95–6.93 (m, 2H), 6.82 (ddd, *J* = 8.4 Hz, 2.6 Hz, 1.2 Hz, 1H), 5.87–5.77 (m, 1H), 5.20–5.14 (m, 1H), 4.73 (dd, *J* = 7.7 Hz, 4.2 Hz, 1H), 3.82 (s, 3H), 2.56–2.45 (m, 2H), 2.03 (s, 1H). ¹³**C NMR** (CDCl₃, 176 MHz) δ: 159.8, 145.7, 134.5, 129.5, 118.5, 118.2, 113.1, 111.4, 73.3, 55.3, 43.9. Characterization data is consistent with literature.³

2c. 1-(4-Methoxyphenyl)but-3-en-1-ol: Yellow oil (99%). ¹**H NMR** (CDCl₃, 700 MHz) δ: 7.29–7.28 (app. d, *J* = 8.3 Hz, 2H), 6.89–6.88 (app. d, *J* = 8.7 Hz, 2H), 5.83–5.77 (m, 1H), 5.17–5.12 (m, 2H), 4.70 (t, *J* = 6.5 Hz, 1H), 3.81 (s, 3H), 2.52–2.49 (app. t, *J* = 6.5 Hz, 2H), 1.94 (s, 1H). ¹³**C NMR** (CDCl₃, 176 MHz) δ: 159.0, 136.0, 134.6, 127.0, 118.2, 113.8, 72.9, 55.3, 43.7. Characterization data is consistent with literature.³

2d. 1-(3-hydroxy-4-methoxy)but-3-en-1-ol: Colourless oil (99%). ¹**H-NMR** (CDCl₃, 600 MHz) δ: 6.93–6.82 (m, 3H), 5.84–5.78 (m, 1H), 5.58 (s, 1H), 5.19–5.13 (m, 2H), 4.69–4.66 (td, *J* = 4.8 Hz, 3.0 Hz, 1H), 3.91 (s, 3H), 2.51–2.49 (m, 2H), 1.99 (d, *J* = 3.0 Hz, 1H). ¹³**C NMR** (CDCl₃, 125 MHz) δ: 146.6, 145.1, 136.0, 134.6, 118.9, 118.3, 114.1, 108.3, 73.3, 55.9, 43.9. Characterization data is consistent with literature.¹ (*this compound decomposes at room temperature*).

Synthesis of dienes $(3a \text{ and } 3c)^{1}$

In a flame dried RBF, the alcohol **2** (14 mmol) was dissolved in toluene (40 mL). N,Ndiisopropylethylamine (72 mmol) and methanesulfonyl chloride (22 mmol) were slowly added and the reaction mixture was heated at reflux for 1 hour. The mixture was diluted with CH₂Cl₂(45 mL), washed with sodium bicarbonate (15 mLx3), water (15 mLx3), and brine (15 mLx2). Then the organic layer dried over Na₂SO₄, filtered, and then concentrated in vacuo. The resultant oil was purified by column chromatography (silica; isocratic: 8% ethyl acetate/hexane).

3a. 4-((*E***)-Buta-1,3-dienyl)-1,2-dimethoxybenzene:** Yellow oil (45%). R_f = 0.1. ¹H NMR (CDCl₃, 500 MHz) δ: 6.97–6.94 (m, 2H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.67 (dd, *J* = 15.4 Hz, 10.6 Hz, 1H), 6.53–6.45 (m, 2H), 5.29 (d, *J* = 16.7 Hz, 1H), 5.13 (d, *J* = 10.0 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ: 149.1, 148.9, 137.3, 132.7, 130.3, 128.0, 119.9, 116.7, 111.2, 108.7, 60.0, 55.9. Characterization data are consistent with literature.⁴

3c. (*E*)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene: Yellow oil (45%). $R_f = 0.3$. ¹H NMR (CDCl₃, 400 MHz) δ : 7.34 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.67 (dd, *J* = 15.6 Hz, 10.5 Hz, 1H), 6.53–6.45 (m, 2H), 5.28 (d, *J* = 16.9 Hz, 1H), 5.11 (d, *J* = 10.1 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 176 MHz) δ : 159.3, 137.4, 132.4, 129.9, 127.6, 116.4, 114.1, 55.3. Characterization data are consistent with literature.⁵

Synthesis of 3b: (E)-1-(buta-1,3-dien-1-yl)-3-methoxybenzene

In a flame dried RBF, 1-(3 methoxy)-but-3-en-1-ol (**2b**, 170 mg, 1.0 mmol) was dissolved in 4 mL toluene, followed by the addition of 3Å molecular sieves. Pyridine (0.6 mL, 7.0 mmol) and phosphoryl chloride (0.16 mL, 2.10 mmol) were slowly added, and the reaction mixture was heated at reflux overnight. The reaction mixture was diluted with CH_2Cl_2 (15 mL), washed with 0.01 M HCl (5 mLx2), NaHCO₃ (sat. aq.)(5 mLx1), water (5 mLx2), and brine (10 mLx1). The organic layer was dried over Na₂SO₄ filtered, and then concentrated in vacuo. The resultant oil was purified with column chromatography (silica; isocratic: 15% ethyl acetate/hexane, $R_f = 0.3$) to remove residual starting alcohol, and the yellow oil (107 mg, 70% 3b) was then carried forward to synthesise 20 and 22.

Synthesis of 3d: (E)-4-(Buta-1, 3-dienyl)-2-methoxyphenol

In a flame dried RBF, alcohol **2d** (4.50 mmol) was dissolved in toluene (40.0 mL), followed by the addition of p-toluenesulphonic acid (0.09 mmol). The reaction mixture was then heated at reflux for 50 mins. The reaction solution was washed with aq. sat. sodium bicarbonate (10 mLx2), brine (10 mL) and then the organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The resulting residue was purified by column chromatography (silica; 5-10 % ethyl acetate/hexane, $R_f = 0.4$ in 10% ethyl acetate/hexane).

Low melting white solid (12%). ¹**H NMR** (CDCl₃, 400 MHz,): 6.94–6.88 (m, 3H), 6.70–6.64 (m, 1H), 6.55–6.46 (m, 2H), 5.77 (s, 1H), 5.31 (dd, J = 17.6 Hz, 1.6 Hz, 1H), 5.14 (dd, J = 10.0 Hz, 2.0 Hz, 1H), 3.90 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ : 146.8, 145.7, 137.4, 132.9, 129.9, 127.6, 120.5, 116.5, 114.7, 108.4, 55.9. Characterization data are consistent with literature.¹

Synthesis of Banglenes (c–BG, t–BG) and homo-dimeric Banglene derivatives (20-23)⁶

In a flame dried RBF, the corresponding diene (0.62 mmol) was dissolved in toluene (2 mL). Hydroquinone (0.12 mmol) was added only for synthesis of (**20-23**), and the reaction was allowed to stir at reflux, for 18 hours. Toluene was removed in vacuo, and the resulting residue was purified by column chromatography (silica). The cis/trans diastereomers were then separated by preparative HPLC.

n vo d v ot	silica column	product	HPLC separation	HPLC	isolated components			
product	conditions	(% yield) conditions		injection		amount	R _t (min)	
c–BG	20% EtOAc/hex	390 mg	C8 column. 50→100%	250 mg	t–BG	164 mg	10.8	
t-BG	$R_{\rm f} = 0.3$	(40%)	ACN/H ₂ O (20 min)	550 mg	с-BG	166 mg	11.3	
20	20% EtOAc/hex	90 mg	i-amylose-3 column.	70	20	10 mg	9.4	
22	$R_f = 0.4$	(90%)	97% hex/EtOH (15 min)	70 mg	22	5 mg	8.6	
21	5% EtOAc/hex	47 mg	i-amylose-3 column.	40	(-) 21	5 mg	14.5	
23	$R_{\rm f} = 0.2$	(47%)	97% hex/EtOH (15 min)	40 mg	(+) 23	4 mg	11.3	

(±) 3(*S*/*R*)-(3,4-Dimethoxyphenyl)-4(*S*/*R*)-[(*E*)-3,4-dimethoxystyryl]cyclohex-1-ene (*c*-BG):

Colourless oil. ¹**H NMR** (CDCl₃, 700MHz) δ : 6.79 (d, J = 8.2 Hz, 1H), 6.75–6.72 (m, 4H), 6.69 (d, J =

1.9 Hz, 1H), 6.24 (d, J = 15.8 Hz, 1H), 5.97 (tdd, J = 2.3 Hz, 4.4 Hz, 10.0 Hz, 1H), 5.79 (tdd, J = 2.3 Hz, 4.4 Hz, 10 Hz, 1H), 5.58 (dd, J = 9.2 Hz, 15.8 Hz), 3.85 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.74 (s, 3H), 3.50 (br. s, 1H), 2.70 (dddd, J = 3.1 Hz, 5.5 Hz, 9.1 Hz, 10.9 Hz, 1H), 2.27–2.16 (m, 2H), 1.68–1.59 (m, 2H). ¹³C NMR (CDCl₃, 176 MHz) δ : 149.0, 148.3, 148.2, 147.6, 133.9, 132.5, 131.1, 129.2, 128.6, 128.1, 122.0, 118.8, 113.7, 111.2, 110.4, 108.8, 56.0, 55.9, 55.8, 45.8, 42.7, 24.9, 24.4. Characterization data are consistent with literature.⁷

(±) 3(S/R)-(3,4-Dimethoxyphenyl)-4(R/S)-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (t-BG): Yellow oil. ¹H NMR (CDCl₃, 700MHz) δ : 6.82 (d, J = 1.8 Hz, 1H), 6.8 (dd, J = 1.9 Hz, 8.3 Hz, 1H), 6.77 (t, J = 7.8 Hz, 2H), 6.72 (dd, J = 1.9 Hz, 8.2 Hz, 1H), 6.7 (d, J = 1.9 Hz, 1H), 6.09 (d, J = 15.9 Hz, 1H), 6.02 (dd, J = 7.6 Hz, 15.9 Hz), 5.90 (tdd, J = 2.5 Hz, 4.3 Hz, 10.0 Hz, 1H), 5.68 (dq, J = 10.2 Hz, 2.2 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H), 3.82 (s, 3H), 3.18 (dq, J = 8.6 Hz, 2.8 Hz), 2.36 (dq, J = 9.0 Hz, 2.8 Hz 1H), 2.24–2.20 (m, 2H), 1.92 (dq, J = 13.3 Hz, 4.1 Hz), 1.70–1.65 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ : 149.0, 148.6, 148.3, 147.4, 137.6, 132.2, 131.0, 130.3, 128.9, 127.6, 120.5, 118.8, 111.7, 111.2, 110.9, 108.8, 55.98, 55.92, 55.89, 55.88 48.1, 45.5, 27.9, 24.2. Characterization data are consistent with literature.⁷

(±) 3(*S/R*)-(3-methoxyphenyl)-4(*R/S*)-[(*E*)-3-methoxystyryl]cyclohex-1-ene (20): Yellow oil. ¹H NMR (CDCl₃, 600MHz) δ: 7.18 (q, *J* = 7.7 Hz, 2H), 6.86 (d, *J* = 7.7 Hz, 1H), 6.80–6.78 (m, 2H), 6.74–6.72 (m, 3H), 6.17–6.16 (m, 2H), 5.90 (tdd, *J* = 2.4 Hz, 4.4 Hz, 10 Hz, 1H), 5.70 (dq, *J* = 10.0 Hz, 2.2 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.23 (dq, *J* = 11.0 Hz, 2.7 Hz, 1H), 2.45–2.41 (1.0 Hz, 2H), 2.26–2.19 (m, 2H), 1.92 (tdd, *J* = 3.2 Hz, 5.2 Hz, 12.6 Hz, 1H), 1.70–1.64 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ: 159.8 (C), 159.6 (C), 146.6 (C), 139.4 (C), 134.4 (CH), 129.9 (CH), 129.4 (CH), 129.2 (CH), 129.1 (CH), 127.6 (CH), 121.1 (CH), 118.7 (CH), 114.2 (CH), 112.4 (CH), 111.5 (CH), 111.5 (CH), 55.2 (CH₃), 55.2 (CH₃), 48.4 (CH), 45.2 (CH), 27.8 (CH₂), 24.5 (CH₂). **HRMS** (EI, C₂₂H₂₄O₂, M⁺): calcd.: 320.1776, found: 320.1782. **FTIR** (cast film): 3021, 2928, 2834, 1599, 1488, 1264, 1156, 1050, 777 cm⁻¹.

(-) 3(*R*)-(4-methoxyphenyl)-4(*S*)-[(*E*)-4-methoxystyryl]cyclohex-1-ene (21): Yellow oil. [α]²⁵_D –237 (*c* = 0.7, CH₂Cl₂). ¹H NMR (CDCl₃, 700MHz) δ: 7.19 (d, *J* = 8.7 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.82–6.80 (m, 4H), 6.11 (d, *J* = 15.9 Hz, 2H), 6.02 (dd, *J* = 7.6 Hz, 15.9 Hz, 1H), 5.88 (tdd, *J* = 2.5 Hz, 4.2 Hz, 10.0 Hz, 1H), 5.65 (dq, *J* = 9.8 Hz, 2.2 Hz, 1H), 3.78 (s, 3H), 3.78 (s, 3H), 3.18 (dq, *J* = 11.0 Hz, 2.7 Hz 1H), 2.35 (dq, *J* = 2.7 Hz, 8.9 Hz, 1H), 2.23–2.18 (m, 2H), 1.91 (dq, *J* = 12.5 Hz, 4.2 Hz, 1H), 1.68–1.63 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ: 158.7 (C), 158.0 (C), 137.2 (C), 132.1 (C), 130.8 (CH), 130.5 (CH), 129.4 (CH), 128.5 (CH), 127.4 (CH), 127.1 (CH), 113.9 (CH), 113.6 (CH), 55.3 (CH₃), 55.3 (CH₃), 47.7 (CH), 45.5 (CH), 27.9 (CH₂), 24.6 (CH₂). FTIR (cast film): 3020, 2927, 2835, 1609, 1511, 1249,

1175, 1037 cm⁻¹. **HRMS** (EI, C₂₂H₂₄O₂, M⁺): calcd.: 320.1776, found: 320.1774. **FTIR** (cast film): 3018, 2929, 2835, 1609, 1511, 1249, 1176, 1037 cm⁻¹.

(±) 3(S/R)-(3-methoxyphenyl)-4(S/R)-[(*E*)-3-methoxystyryl]cyclohex-1-ene (22): Colourless oil. ¹H NMR (CDCl₃, 700MHz) δ: 7.20–7.17 (m, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 6.79 (dd, *J* = 7.5 Hz, 13.2 Hz, 2H), 6.67–6.75 (m, 2H), 6.73–6.71 (m, 2H), 6.27 (d, *J* = 15.8 Hz, 1H), 5.98 (tdd, *J* = 2.4 Hz, 3.4 Hz, 10.1 Hz, 1H), 5.82–5.76 (m, 2H), 3.77 (s, 3H), 3.74 (s, 3H), 3.57 (br. s, 1H), 2.76 (dddd, *J* = 3.1 Hz, 5.6 Hz, 9.1 Hz, 10.4 Hz, 1H), 2.28–2.17 (m, 2H), 1.74–1.64 (m, 2H). ¹³C NMR (CDCl₃, 176 MHz) δ 159.7 (C), 159.2 (C), 143.1 (C), 139.5 (C), 134.3 (CH), 129.4 (CH), 129.0 (CH), 128.9 (CH), 128.5 (CH), 128.2 (CH), 122.6 (CH), 118.8 (CH), 115.8 (CH), 112.5 (CH), 111.7 (CH), 111.4 (CH), 55.2 (CH₃), 46.0 (CH), 42.5 (CH), 24.6 (CH₂), 24.6 (CH₂). **HRMS** (EI, C₂₂H₂₄O₂, M⁺): calcd.: 320.1776, found: 320.1775. **FTIR** (cast film): 3021, 2926, 2835, 1599, 1486, 1264, 1155, 1049, 776 cm⁻¹.

(+) 3(*S*)-(4-methoxyphenyl)-4(*R*)-[(*E*)-4-methoxystyryl]cyclohex-1-ene (23): Colorless oil. $[\alpha]^{25}_{D}$ +212 (*c* = 0.6, CH₂Cl₂). ¹H NMR (CDCl₃, 700MHz) δ : 7.14 (d, *J* = 8.6 Hz, 1H), 7.10 (d, *J* = 8.6 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.25 (d, *J* = 15.9 Hz, 1H), 5.95 (tdd, *J* = 2.4 Hz, 3.8 Hz, 10.0 Hz, 1H), 5.8 (tdd, *J* = 2.2 Hz, 4.5 Hz, 10.0 Hz, 1H), 5.60 (dd, *J* = 9.1 Hz, 15.9 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.52 (br. s, 1H), 2.70 (dddd, *J* = 3.3 Hz, 5.5 Hz, 9.0 Hz, 10.5 Hz, 1H), 2.27–2.14 (m, 2H), 1.68–1.58 (m, 2H). ¹³C NMR (CDCl₃, 176 MHz) δ : 158.7 (C), 158.1 (C), 133.4 (C), 132.1 (C), 131.0 (CH), 130.9 (CH), 129.4 (CH), 128.4 (CH), 127.9 (CH), 127.1 (CH), 113.9 (CH), 113.1 (CH), 55.3 (CH₃), 55.3 (CH₃), 43.3 (CH), 42.8 (CH), 24.8 (CH₂), 24.4 (CH₂). **HRMS** (EI, C₂₂H₂₄O₂, M⁺): calcd.: 320.1776, found: 320.1775. **FTIR** (cast film): 3018, 2929, 2835, 1609, 1511, 1249, 1176, 1037 cm⁻¹.

Synthesis of cis-aldehydes $(5a-d)^{1}$

In a flame dried RBF, the corresponding diene (4 mmol) was dissolved in CH_2Cl_2 (12 mL) and cooled to -78 °C. Acrolein (6 mmol) was added, followed by the dropwise addition of Et_2AlCl (3.8 mmol). The reaction mixture was stirred at -78 °C for 10 minutes and then warmed to 0 °C. The reaction was quenched with 1N HCl (15 mL) and extracted with CH_2Cl_2 (20 mLx2). The combined organic layers were washed with NaHCO₃(sat. aq.) (15 mLx2), then brine(10mLx1), dried over Na₂SO₄, filtered, and then

concentrated in vacuo. The crude residue was purified with column chromatography (silica; isocratic: 20 % ethyl acetate/hexane).

(±) (1*S*, 2*R*)-2-(3,4-Dimethoxyphenyl)cyclohex-3-ene-1-carboxyaldehyde (5a): White semi-solid (46%). $R_f = 0.36$. ¹H NMR (CDCl₃, 600 MHz) δ : 9.50 (d, *J* = 2.1 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.76 (dd, *J* = 8.2 Hz, 2.1 Hz, 1H), 6.72 (d, *J* = 1.9 Hz, 1H), 5.99–5.97 (m, 1H), 5.83–5.80 (m, 1H), 3.93–3.91 (m,1H), 3.85 (s, 6H), 2.76–2.72 (m, 1H), 2.32–2.26 (m, 1H), 2.19–2.12 (m, 1H), 1.88–1.85 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ : 205.0, 148.8, 148.1, 132.6, 128.5, 128.1, 121.4, 112.6, 111.1, 55.9, 50.9, 41.2, 23.7, 18.9. Characterization data are consistent with literature.⁷

(±) (1*S*, 2*R*)-2-(3-Dimethoxyphenyl)cyclohex-3-ene-1-carboxyaldehyde (5b): Yellow oil (22%), $R_f = 0.6. {}^{1}H NMR (CDCl_3, 500MHz) \delta$: 9.51 (d, *J* = 2.1 Hz, 1H), 7.23–7.20 (m, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.77–6.76 (m, 2H), 6.00–5.97 (m, 1H), 5.84–5.81 (m,1H), 3.95–3.94 (m, 1H), 3.79 (s, 3H), 2.77–2.74 (m, 1H), 2.30–2.26 (m, 1H), 2.18–2.12 (m, 1H), 1.92–1.85 (m, 2H). {}^{13}C NMR (CDCl_3, 126MHz) \delta: 204.7 (CH), 159.7 (C) ,141.8 (C), 129.4 (CH), 128.8 (CH), 127.8 (CH), 121.7 (CH), 115.5 (CH), 112.0 (CH), 55.2 (CH₃), 50.7 (CH), 41.5 (CH), 23.6 (CH₂), 19.0 (CH₂). HRMS (EI, C₁₄H₁₆O₂, M⁺): calcd.: 216.1150, found: 216.1148.

(±) (1*S*, 2*R*)-2-(4-Dimethoxyphenyl)cyclohex-3-ene-1-carboxyaldehyde (5c). Yellow oil (44%). R_f = 0.3. ¹H NMR (CDCl₃, 700MHz) δ: 9.51 (d, *J* = 1.9 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.98–5.96 (m, 1H), 5.80 (m, 1H), 3.95–3.92 (m, 1H), 3.78 (s, 3H), 2.75–2.72 (m, 1H), 2.31–2.25 (m, 1H), 2.18–2.11 (m,1H), 1.89–1.80 (m, 2H). ¹³C NMR (CDCl₃, 126MHz) δ: 158.7, 132.1, 130.3, 128.4, 128.2, 113.8, 112.9, 55.3, 51.0, 40.8, 23.7, 18.6. HRMS (EI, C₁₄H₁₆O₂, M⁺): calcd.: 216.1150, found: 216.1153.

(±) (1*S*, 2*R*)-2-(4-hydroxy-3-methoxyphenyl)-cyclohex-3-ene-1-carboxaldehyde (5d): Yellow oil (30%). ¹H NMR (CDCl₃, 400 MHz) δ: 9.49 (d, *J* = 2 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.72–6.68 (m, 2H), 5.98–5.93 (m, 1H), 5.81–5.77 (m, 1H), 5.65 (br. s, 1H), 3.91–3.87 (m, 1H), 3.83 (s, 3H), 2.74–2.69 (m, 1H), 2.30–2.24 (m, 1H), 2.17–2.12 (m, 1H), 1.87–1.81 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ: 205.2, 146.5, 144.7, 131.9, 128.5, 128.2, 122.1, 114.4, 111.9, 55.9, 50.9, 41.2, 23.6, 18.8. Characterization data are consistent with literature.¹

Racemization of cis-aldehydes to trans-aldehydes $(6a-c)^7$

The corresponding *cis*-aldehyde **5** (1.4 mmol) was dissolved in methanol (15 mL), followed by the addition of K_2CO_3 (1.6 mmol). The reaction solution was stirred at room temperature for 48 hours. The reaction mixture was diluted with CH_2Cl_2 (20 mL) and washed with water (10 mL) and brine (10 mL). The organic layer was dried over Na_2SO_4 and concentrated in vacuo.

(±) (1*R*, 2*R*)-2-(3,4-Dimethoxyphenyl)cyclohex-3-ene-1-carboxyaldehyde (6a): Yellow oil (85%, 87:13 6a:5a). ¹H NMR (CDCl₃, 500 MHz) δ: 9.69 (d, *J* = 1.5 Hz, 1H), 6.81–6.72 (m, 3H), 5.92 (dq, *J* = 10.0 Hz, 3.3 Hz, 1H), 5.70 (dq, *J* = 2.5 Hz, 10.0 Hz, 1H), 3.86 (d, *J* = 5.6 Hz, 6H), 3.76–3.72 (m, 1H), 2.60 (dddd, *J* = 1.6 Hz, 3.5 Hz, 7.6 Hz, 9.4 Hz, 1H), 2.23–2.18 (m, 2H), 2.01–1.95 (m, 1H), 1.81–1.74 (m, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ: 205.0, 148.8, 148.1, 132.6, 128.5, 128.1, 121.4, 112.6, 111.1, 55.9, 50.9, 41.2, 23.7, 18.9. Characterization data are consistent with literature.⁷

(±) (1*R*, 2*R*)-2-(3-Dimethoxyphenyl)cyclohex-3-ene-1-carboxyaldehyde (6b): Yellow oil (71%, 90:10 6b:5b). ¹H NMR (CDCl₃, 500MHz) δ: 9.70 (d, *J* = 1.3 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.79–6.75 (m, 2H), 5.90 (dq, *J* = 9.5Hz, 3.3 Hz, 1H), 5.68 (dq, *J* = 10.0 Hz, 2.4 Hz, 1H), 3.80 (s, 3H), 3.77–3.73 (m, 1H), 2.61 (ddt, *J* = 1.3 Hz, 3.5 Hz, 8.5 Hz, 1H), 2.20–2.15 (m, 2H), 2.0–1.93 (m, 1H), 1.80–1.72 (m,1H). ¹³C NMR (CDCl₃, 126MHz) δ: 203.8 (CH), 159.8 (C), 145.3 (C), 129.6 (CH), 128.7 (CH), 127.8 (CH), 120.7 (CH), 114.2 (CH), 111.9 (CH), 55.3 (CH₃), 53.9 (CH), 41.4 (CH), 23.5 (CH₂), 20.9 (CH₂). **HRMS** (EI, C₁₄H₁₆O₂, M⁺): calcd.: 216.1150, found: 216.1150.

(±) (1*R*, 2*R*)-2-(4-Dimethoxyphenyl)cyclohex-3-ene-1-carboxyaldehyde (6c): Yellow oil (87%, 90:10 6c:5c). ¹H NMR (CDCl₃, 500MHz) δ : 9.69 (d, *J* = 1.2 Hz, 1H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 5.88 (dq, *J* = 9.5 Hz, 3.3 Hz, 1H), 5.66 (dq, *J* = 9.5 Hz, 2.4 Hz, 1H), 3.79 (s, 3H), 3.74–3.70 (m, 1H), 2.56 (ddt, *J* = 1.5 Hz, 4.3 Hz, 8.5 Hz, 1H), 2.21–2.15 (m, 2H), 1.95 (dq, 1H, *J* = 13.5 Hz, 4.3 Hz), 1.78-1.71 (m,1H). ¹³C NMR (CDCl₃, 126MHz) δ : 204.0 (CH), 158.4 (C) ,135.6 (C), 129.3 (CH₂), 129.2 (CH₂), 127.5 (CH), 114.0 (CH), 55.3 (CH₃), 54.2 (CH), 40.7 (CH₂), 23.5 (CH₂), 21.0 (CH₂). HRMS (EI, C₁₄H₁₆O₂, M⁺): calcd.: 216.1150, found: 216.1148.

Synthesis of Wittig Salts (7a-f)

In a flame dried RBF, the corresponding bromide (5.4 mmol) was dissolved in toluene (20 mL), followed by addition of triphenylphosphine (5.4 mmol). The reaction solution was then heated at reflux overnight. The organic layer was concentrated in vacuo to afford a crude white solid which was then purified by recrystallization in ethanol (7a), or ethanol/diethyl ether (7b-f).

3,4-Methoxybenzyltriphenylphosphonium bromide (7a): White powder (61%). ¹**H** NMR (CDCl₃, 400MHz) δ : 7.78–7.74 (m, 9H), 7.65–7.62 (m, 6H), 6.86 (s, 1H), 6.62–6.61 (m, 2H), 5.37 (d, *J* = 13.8 Hz, 2H), 3.80 (s, 3H), 3.55 (s, 3H). ¹³**C** NMR (CDCl₃, 126MHz) δ : 148.9, 148.8, 134.8 (d, *J* = 3.1 Hz), 134.6 (d, *J* = 9.5 Hz), 130.0 (d, *J* = 12.6 Hz), 123.7 (d, *J* = 6.2 Hz), 119.0 (d, *J* = 9.0 Hz), 118.3, 117.8, 115.0, (d, *J* = 4.8 Hz), 111.0 (d, *J* = 3.4 Hz), 56.1, 55.80, 30.5, 30.2. ³¹P{¹H} NMR (CDCl₃, 201.64 MHz) δ : 22.5 (s). Characterization data is consistent with literature.⁸

Benzyltriphenylphosphonium bromide (7b): White powder (76%). ¹**H NMR** (CDCl₃, 400MHz) δ : 7.78–7.72 (m, 9H), 7.65–7.60 (td, J = 7.8 Hz, 3.6 Hz, 6H), 7.23–7.19 (m, 1H), 7.14–7.09 (m, 4H), 5.43 (d, J = 14.4 Hz, 2H). ¹³**C NMR** (CDCl₃, 176 MHz) δ : 135.0 (d, J = 3.1 Hz), 134.5 (d, J = 9.8 Hz), 131.6 (d, J = 5.6 Hz), 130.2 (d, J = 12.3 Hz), 128.9 (d, J = 3.4 Hz), 128.4 (d, J = 3.9 Hz), 127.2 (d, J = 8.7 Hz), 118.0 (d, J = 85.6 Hz), 31.0 (d, J = 46.6 Hz). ³¹**P**{¹**H**} NMR (CDCl₃, 162 MHz) δ : 23.2 (s). Characterization data is consistent with literature.⁹

3-Methoxybenzyltriphenylphosphonium bromide (**7c**): White powder (65%). ¹**H** NMR (CDCl₃, 400MHz) δ : 7.78–7.73 (m, 9H), 7.63 (td, *J* = 7.7 Hz, 3.4 Hz, 6H), 7.02 (t, *J* = 8.0 Hz, 1H), 6.82 (q, *J* = 1.8 Hz, 1H), 6.76 (dt, *J* = 8.2 Hz, 2.1 Hz, 1H), 6.63 (d, *J* = 7.5, 1H), 5.40 (d, *J* = 14.4 Hz, 2H), 3.55 (s, 3H). ¹³C NMR (CDCl₃, 176 MHz) δ : 159.7, 135.0 (d, *J* = 3.1 Hz), 134.6 (d, *J* = 9.8 Hz), 130.1 (d, *J* = 12.6 Hz), 129.7 (d, *J* = 3.1 Hz), 123. 5 (d, *J* = 5.9 Hz), 118.2, 117.7, 116.3 (d, *J* = 5.3 Hz), 115.4 (d, *J* = 3.9 Hz), 55.5, 31.9 (d, *J* = 46.8 Hz). ³¹P{¹H} NMR (CDCl₃, 161.913 MHz) δ : 23.23 (s). Characterization data is consistent with literature.¹⁰

4-Methoxybenzyltriphenylphosphonium bromide (**7d**): White powder (65%). ¹**H** NMR (CDCl₃, 400MHz) δ : 7.77–7.71 (m, 9H), 7.64–7.61 (m, 6H), 7.03 (dd, J = 2.5 Hz, 8.8 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 5.35 (dd, J = 3.2 Hz, 14.0 Hz, 2H), 3.72 (s, 3H). ¹³**C** NMR (CDCl₃, 176 MHz) δ : 159.7, 134.9 (d, J = 3.1 Hz), 134.5 (d, J = 9.5 Hz), 132.8 (d, J = 5.3 Hz), 130.2 (d, J = 12.6 Hz), 118.3, 117.8, 114.3 (d, J = 3.1 Hz), 55.3, 30.2 (d, J = 46.6 Hz). ³¹**P**{¹**H**} NMR (CDCl₃, 161.913 MHz) δ : 22.4 (s). Characterization data is consistent with literature.¹¹

2-Methylbenzyltriphenylphosphonium bromide (7e): White powder (71%). ¹**H** NMR (CDCl₃, 400MHz) δ : 7.81–7.76 (m, 3H), 7.72–7.61 (m, 12H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 7.0–6.96 (m, 2H), 5.37 (d, *J* = 14.1 Hz, 2H), 1.68 (s, 3H). ¹³**C** NMR (CDCl₃, 176 MHz) δ : 138.6, 135.1 (d, *J* = 2.8 Hz), 134.4 (d, *J* = 9.8 Hz), 131.6, 131.0, 130.22 (d, *J* = 12.6 Hz), 128.8, 126.7, 125.7, 122.0, 118.2, 117.8, 28.5 (d, *J* = 46.6 Hz). ³¹**P**{¹**H**} NMR (CDCl₃, 161.913 MHz) δ : 22.2 (s). Characterization data is consistent with literature.¹²

2-Bromobenzyltriphenylphosphonium bromide (**7f**): White powder (87%). ¹**H NMR** (CDCl₃, 400MHz) δ: 7.81–7.77 (m, 3H), 7.75–7.70 (m, 6H), 7.66–7.59 (m, 7H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.13 (tt, *J* = 7.7 Hz, 2.0 Hz, 1H), 5.75 (d, *J* = 14.3 Hz, 2H). ¹³**C NMR** (CDCl₃, 126 MHz) δ: 135.2 (d, *J* = 2.8 Hz), 134.5 (d, *J* = 9.8 Hz), 133.5 (d, *J* = 4.9 Hz), 132.9, 130.2 (d, *J* = 12.6 Hz), 128.5 (d, *J* = 3.6 Hz), 118.0, 117.3, 31.1 (d, *J* = 48.2 Hz). Characterization data is consistent with literature.¹³

Synthesis of Banglenes and Derivatives (8-19) via a Wittig reaction¹

In a flame dried RBF, the corresponding Wittig salt **7** (0.6 mmol) was dissolved in toluene (5 mL) and tetrahydrofuran (5 mL) and cooled to -70 °C. n-Butyl lithium (0.73 mmol) was added slowly, and the reaction mixture was allowed to stir at -70 °C for 1 hour. The reaction solution was then warmed up to -20° C, the corresponding aldehyde (**6**) was added, and the reaction was then heated at reflux for 3 hours. The reaction mixture was quenched with saturated aqueous NH₄Cl (5 mL), and then concentrated in vacuo. The crude oil was dissolved in ethyl acetate (30 mL), washed with water (10 mLx2), and NaHCO₃ (sat. aq.) (10 mLx2), was dried over Na₂SO₄ and then concentrated in vacuo. The resulting oil was purified with column chromatography.

	silica column	product	separation method	HPLC	isol			
product	conditions	mass (% yield)		injection		amount	R _t (min)	ee
					(+) 8E	10 mg	5.8	99%
8E	20% EtOAc/hex	93 mg	i-amylose-3 column.	80	(-) 8E	19 mg	8.0	>99%
8Z	$R_{\mathrm{f}}=0.4$	(48%)	97% hex/EtOH (15 min)	80 mg	(+) 8Z	not	5.5	-
					(-) 8Z	isolated	7.2	-

(±) 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*E*)-styryl]cyclohex-1-ene (8):

¹**H NMR** (CDCl₃, 500MHz) δ : 7.26–7.25 (m, 4H, *overlaps with* CDCl₃), 7.16 (m, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.72 (dd, J = 2.0 Hz, 8.1 Hz, 1H), 6.70 (d, J = 1.9 Hz, 1H), 6.16 (d, J = 3.3 Hz, 2H), 5.90 (tdd, J = 2.4 Hz, 4.1 Hz, 10.0 Hz, 1H), 5.68 (dq, J = 10.0 Hz, 2.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H), 3.19 (dq, J = 11.2 Hz, 2.7 Hz, 1H), 2.41–2.35 (m, 1H), 2.27–2.17 (m, 2H), 1.95–1.91 (m, 1H), 1.72–1.64 (m, 1H). ¹³**C NMR** (CDCl₃, 126 MHz) δ : 148.6 (C), 147.4 (C), 137.8 (C), 137.5 (C), 134.1 (CH), 130.3 (CH), 129.3 (CH), 128.5 (CH), 127.6 (CH), 126.9 (CH), 126.0 (2xCH), 120.4 (CH), 111.7 (CH), 110.9 (CH), 55.9 (CH₃), 55.9 (CH₃), 48.0 (CH), 45.5 (CH), 27.8 (CH₂), 24.6 (CH₂).

(+) **8E:** White oil; $[\alpha]^{25}_{D}$ +296 (*c* = 0.10, CH₂Cl₂). **HRMS** (EI, C₂₂H2₄O₂, M⁺): calcd.: 320.1776, found: 320.1771. **FTIR** (cast film): 3022, 2929, 2835, 1516, 1261, 1139, 1030 cm⁻¹.

(-) **8E:** White oil; $[\alpha]^{25}_{D}$ –290 (c = 0.99, CH₂Cl₂). **HRMS** (EI, C₂₂H2₄O₂, M⁺): calcd.: 320.1776, found: 320.1774. **FTIR** (cast film): 3022, 2929, 2835, 15116, 1261, 1139, 1030 cm⁻¹.

	silica column	product mass (% yield)	separation method	HPLC	isola			
product	conditions			injection		amount	R _t (min)	ee
					(+)9E	13 mg	5.8	99%
9E	15% EtOAc/hex	123 mg	i-amylose-3 column.	110	(-) 9E	25 mg	7.8	>99%
14Z	$R_{\rm f} = 0.3$	(58%)	95% hex/EtOH (15 min)	110 mg	(+) 14Z	9 mg	5.2	>99%
					(-) 14Z	9 mg	6.3	>99%

(±) 3(S/R)-(3,4-dimethoxyphenyl)-4(R/S)-[(E)-3-methoxystyryl]cyclohex-1-ene (9):

¹**H NMR** (CDCl₃, 700MHz) δ: 7.17 (t, J = 7.9 Hz, 1H), 6.87 (bd, J = 7.7 Hz, 1H), 6.80 (t, J = 2.0 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.74–6.72 (m, 2H), 6.80 (d, J = 1.9 Hz, 1H), 6.18–6.12 (m, 2H), 5.90 (tdd, J = 2.4 Hz, 4.4 Hz, 10.0 Hz, 1H), 5.68 (dq, J = 10.0 Hz, 2.2 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 3.19 (dq, J = 11.0 Hz, 2.7 Hz, 1H), 2.40–2.36 (m, 1H), 2.28–2.18 (m, 2H), 1.93 (tdd, J = 3.1 Hz, 5.2 Hz, 12.8 Hz 1H), 1.71–1.65 (m, 1H). ¹³**C NMR** (CDCl₃, 176 MHz) δ: 159.8 (C), 148.7 (C), 147.4 (C), 139.3 (C), 137.5 (C), 134.5 (CH), 130.3 (CH), 129.4 (CH), 129.2 (CH), 127.6 (CH), 120.4 (CH), 118.7 (CH),

112.4 (CH), 111.7 (CH), 111.5 (CH), 110.9 (CH), 55.9 (CH₃), 55.9 (CH₃), 55.2 (CH₃), 48.0 (CH), 45.5 (CH), 27.8 (CH₂), 24.5 (CH₂).

(+) **9:** White oil; $[\alpha]^{25}_{D}$ +300 (c = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1878. **FTIR** (cast film): 3018, 2931, 2835, 1598, 1515, 1464, 1261, 1155, 1030 cm⁻¹.

(-) **9:** White oil; $[\alpha]^{25}_{D}$ -294 (*c* = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1875. **FTIR** (cast film): 3019, 2931, 2835, 1598, 1515, 1464, 1261, 1155, 1030 cm⁻¹.

(±) 3(*S/R*)-(3,4-dimethoxyphenyl)-4(*R/S*)-[(*Z*)-3-methoxystyryl]cyclohex-1-ene (14): ¹H NMR (CDCl₃, 500MHz) δ: 7.10 (t, *J* = 7.9 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.69 (dd, *J* = 2.2 Hz, 8.2 Hz, 1H), 6.64 (dd, *J* = 2.0 Hz, 8.2 Hz, 1H), 6.54 (d, *J* = 2.0 Hz, 1H), 6.45 (br. d, *J* = 7.6 Hz, 1H), 6.42 (br. s, 1H), 6.31 (d, *J* = 11.7 Hz, 1H), 5.83 (tdd, *J* = 2.4 Hz, 4.3 Hz, 10 Hz, 1H), 5.64 (dq, *J* = 10.0 Hz, 2.2 Hz, 1H), 5.56 (dd, *J* = 10.5 Hz, 11.6 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 3.72 (s, 3H), 3.14 (dq, *J* = 11.2 Hz, 2.8 Hz, 1H), 2.85 (dq, *J* = 2.5 Hz, 10.0 Hz, 1H), 2.23–2.12 (m, 2H), 1.82 (tdd, *J* = 3.1 Hz, 5.2 Hz, 13.0 Hz, 1H), 1.67–1.59 (m, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ: 159.3 (C), 148.8 (C), 147.4 (C), 139.1 (C), 137.3 (C), 136.9 (CH), 130.4 (CH), 128.8 (CH), 128.8 (CH), 127.3 (CH), 120.9 (CH), 120.4 (CH), 113.9 (CH), 111.9 (CH), 111.2 (CH), 110.8 (CH), 55.9 (CH3), 55.7 (CH₃), 55.1 (CH₃), 48.1 (CH), 40.6 (CH), 28.5 (CH₂), 24.3 (CH₂).

(+) **14:** White solid; $[\alpha]^{25}_{D}$ +23 (c = 0.85, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1876. **FTIR** (cast film): 3000, 2930, 2834, 1576, 1515, 1464, 1260, 1140, 1030 cm⁻¹.

(-) **14:** White solid; $[\alpha]^{25}_{D} - 12$ (c = 0.78, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1882. **FTIR** (cast film): 2999, 2931, 2834, 1577, 1515, 1464, 1260, 1140, 1030 cm⁻¹.

n vo du at	silica column conditions	product	separation method	HPLC		00			
product		(% yield)		injection		mass	R _{ta} (min)	R _{tb} (min)	ee
			sequential runs:		(+) 10E	13 mg	16.3	10.6	>99%
10E 15Z	20% EtOAc/hex $R_{\rm f} = 0.4$ (4)	100 mg (48%)	i-amylose-3 column. a. 95% hex/EtOH (30 min)	90 mg	(-) 10E	20 mg	20.1	-	99%
					(+)15Z	9 mg	16.3	11.9	98%
			b. 97% hex/EtOH (20 min)		(-) 15Z	109mg	16.3	9.3	99%

(±) 3(S/R)-(3,4-dimethoxyphenyl)-4(R/S)-[(E)-4-methoxystyryl]cyclohex-1-ene (10):

¹**H NMR** (CDCl₃, 700MHz) δ : 7.20 (d, *J* = 8.7 Hz, 2H), 6.79 (dd, *J* = 17.0 Hz, 8.5 Hz, 3H), 6.72 (dd, *J* = 1.8 Hz, 8.1 Hz, 1H), 6.70 (d, *J* = 1.8 Hz, 1H), 6.11 (d, *J* = 15.9 Hz, 1H), 6.02 (dd, 7.5 Hz, 15.9 Hz, 1H), 5.89 (tdd, *J* = 2.5 Hz, 4.5 Hz, 10.0 Hz, 1H), 5.68 (dq, *J* = 9.8 Hz, 2.3 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.17 (dq, *J* = 11.2 Hz, 2.8 Hz, 1H), 2.35 (dq, *J* = 2.6 Hz, 8.9 Hz, 1H), 2.24–2.18 (m, 2H), 1.92 (tdd, *J* = 3.1 Hz, 5.3 Hz, 12.8 Hz, 1H), 1.69–1.64 (m, 1H). ¹³**C NMR** (CDCl₃, 176 MHz) δ : 158.7

(C), 148.6 (C), 147.4 (C), 137.7 (C), 132.0 (C), 130.7 (CH), 130.4 (CH), 128.6 (CH), 127.6 (CH), 127.1 (2 CH), 120.4 (CH), 113.9 (2 CH), 111.8 (CH), 110.9 (CH), 55.9 (CH₃), 55.9 (CH₃), 55.3 (CH₃), 48.1 (CH), 45.4 (CH), 27.9 (CH₂), 24.6 (CH₂).

(+) **10:** White oil; $[\alpha]^{25}_{D}$ +335 (c = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1875. **FTIR** (cast film): 3018, 2931, 2835, 1607, 1512, 1250, 1139, 1031 cm⁻¹.

(-) **10:** White oil; $[\alpha]^{25}_{D}$ -303 (c = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): 350.1882, found: 350.1879. **FTIR** (cast film): 3018, 2931, 2835, 1607, 1512, 1250, 1139, 1031 cm⁻¹.

(±) 3(*S/R*)-(3,4-dimethoxyphenyl)-4(*R/S*)-[(*Z*)-4-methoxystyryl]cyclohex-1-ene (15): ¹H NMR (CDCl₃, 500MHz) δ: 6.78 (d, *J* = 8.6 Hz, 2H), 6.73 (t, *J* = 5.5 Hz, 3H), 6.66 (dd, *J* = 2.0 Hz, 8.2 Hz, 1H), 6.55 (d, *J* = 1.9 Hz, 1H), 6.27 (d, *J* = 11.7 Hz, 1H), 5.84 (tdd, *J* = 2.4 Hz, 4.3 Hz, 10.0 Hz, 1H), 5.65 (dq, *J* = 10.0 Hz, 2.2 Hz, 1H), 5.49 (dd, *J* = 10.4 Hz, 11.6 Hz, 1H), 3.84 (s, 3H), 3.77 (s, 3H), 3.72 (s, 3H), 3.14 (dq, *J* = 11.1 Hz, 2.8 Hz, 1H), 2.81 (dq, *J* = 2.3 Hz, 10.0 Hz, 1H), 2.23–2.12 (m, 2H), 1.82 (tdd, *J* = 3.1 Hz, 5.3 Hz, 13.0 Hz, 1H), 1.67–1.59 (m, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ: 158.1(C), 148.8 (C), 147.4 (C), 137.4 (C), 135.5 (CH), 130.4 (CH), 130.3 (C), 129.5 (CH), 128.3 (CH), 127.4 (CH), 120.5 (CH), 113.3 (CH), 111.3 (CH), 110.8 (CH), 56.0 (CH₃), 55.7 (CH₃), 55.2 (CH₃), 48.1 (CH), 40.5 (CH), 28.4 (CH₂), 24.4 (CH₂).

(+) **15:** White solid; $[\alpha]^{25}_{D}$ +16 (c = 1.10, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1876. **FTIR** (cast film): 350.1882, found: 350.1878. **FTIR** (cast film): 2999, 2929, 2835, 1607, 1512, 1249, 1139, 1031 cm⁻¹.

(-) **15:** White solid; $[\alpha]^{25}_{D} - 8$ (c = 1.10, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): 350.1882, found: 350.1878. **FTIR** (cast film): 2999, 2929, 2835, 1607, 1512, 1249, 1139, 1031 cm⁻¹.

n vo d v ot	silica column	product	separation method	HPLC	isola			
product	conditions	(% yield)		injection		amount	R _t (min)	ee
					(+)11E	20 mg	10.7	98%
11E	20% EtOAc/hex	141 mg	i-amylose-3 column.	140	(-) 11E	24 mg	12.6	99%
16Z	$R_{\mathrm{f}}=0.4$	(70%)	97% hex/EtOH (20 min)	140 mg	(+) 16Z	20 mg	9.7	99%
					(-) 16Z	19 mg	11.7	99%

(±) 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*E*)-2-methylstyryl]cyclohex-1-ene (11):

¹**H NMR** (CDCl₃, 700MHz) δ: 7.33 (d, *J* = 8.4 Hz, 1H), 7.12–7.07 (m, 3H), 6.78 (d, *J* = 8.2 Hz, 1H), 6.73 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 6.71 (d, *J* = 2.1 Hz, 1H), 6.31 (d, *J* = 15.7 Hz, 1H), 5.98 (dd, *J* = 7.9 Hz, 15.9 Hz, 1H), 5.89 (tdd, *J* = 2.5 Hz, 4.6 Hz, 2.5 Hz, 1H), 5.69 (dq, 10.1 Hz, 2.2 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.19 (dq, *J* = 8.8 Hz, 2.8 Hz, 1H), 2.40 (dq, *J* = 2.6 Hz, 9.3 Hz, 1H), 2.29–2.19 (m, 2H), 2.15 (s, 3H), 2.0 (tdd, *J* = 3.1 Hz, 5.4 Hz, 12.9 Hz, 1H), 1.73–1.67 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ: 148.7 (C), 147.4 (C), 137.6 (C), 137.1 (C), 135.5 (C), 135.1 (CH), 130.5 (CH), 130.1(CH), 127.5 (CH), 127.5 (CH), 126.8 (CH), 125.9 (CH), 125.5 (CH), 120.6 (CH), 111.7 (CH), 111.0 (CH), 56.0 (CH₃), 55.9 (CH₃), 48.2 (CH), 46.0 (CH), 28.2 (CH₂), 24.7 (CH₂), 19.8 (CH₃).

(+)**11.** Colourless oil; $[\alpha]^{25}_{D}$ +266 (*c* = 1, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₂, M⁺): calcd.: 334.1933, found: 334.1930. **FTIR** (cast film): 3018, 2931, 2835, 1515, 1261, 1030 cm⁻¹.

(-)11. Colourless oil; $[\alpha]^{25}_{D}$ -201 (*c* = 1, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₂, M⁺): 334.1933, found: 334.1928. **FTIR** (cast film): 3018, 2931, 2835, 1515, 1261, 1030 cm⁻¹.

(±) 3(S/R)-(3,4-dimethoxyphenyl)-4(R/S)-[(Z)-2-methylstyryl]cyclohex-1-ene (16): ¹H NMR (CDCl₃,

700MHz) δ: 7.07 (t, *J* = 7.4 Hz, 1H), 7.04 (d, *J* = 7.3, 1H) 7.0 (t, *J* = 7.4 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.58 (dt, *J* = 1.7 Hz, 8.4 Hz, 2H), 6.38 (d, *J* = 2.0 Hz, 1H), 6.27 (d, *J* = 11.3 Hz, 1H), 5.78 (dq, *J* = 9.8 Hz, 3.2 Hz, 1H), 5.60–5.57 (m, 2H), 3.85 (s, 3H), 3.64 (s, 3H), 3.10 (dq, *J* = 9.0 Hz, 2.8 Hz, 1H), 2.58 (dq, *J* = 2.8 Hz, 10.3 Hz, 1H), 2.16–2.13 (m, 2H), 1.87 (s, 3H), 1.81–1.77 (m, 1H), 1.66–1.60 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ: 148.8 (C), 147.4 (C), 137.6 (C), 137.0 (C), 136.3 (CH₂), 130.6 (CH₂), 129.3 (CH), 128.8 (CH₂), 128.4 (CH), 127.1 (CH), 126.6 (CH), 125.0 (CH), 120.5 (CH₂), 110.9 (CH), 110.8 (CH), 56.0 (CH₃), 55.7 (CH₃), 48.2 (CH), 40.7 (CH), 28.7 (CH₂), 24.4 (CH₂), 19.5 (CH₃).

(+) **16.** White solid; $[\alpha]^{25}_{D}$ +64 (c = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₂, M⁺): calcd.: 334.1933, found: 334.1934. **FTIR** (cast film): 3018, 2924, 2835, 1516, 1261, 1031 cm⁻¹.

(-)16. White solid; $[\alpha]^{25}_{D}$ -43 (c = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₃H₂₆O₂, M⁺): calcd.: 334.1933, found: 334.1928. **FTIR** (cast film): 3018, 2928, 2834, 1516, 1261, 1031 cm⁻¹.

	silica column	product	separation method	HPLC	isol			
product	conditions	(% yield)		injection		amount	R _t (min)	æ
					(+) 12E	18 mg	13.1	>99%
12E	20% EtOAc/hex	71 mg	i-amylose-3 column.	70 m a	(-) 12E	18 mg	17.0	99%
12Z	$R_{\rm f}=0.3$	(29%)	97% hex/EtOH (30 min)	70 mg	(+) 12Z	not	11.4	-
					(-) 12Z	isolated	14.8	-

(±) 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*E*)-2-bromostyryl]cyclohex-1-ene (12):

¹**H NMR** (CDCl₃, 700MHz) δ : 7.48 (dd, *J* = 7.9 Hz, 1.2 Hz, 1H), 7.40 (dd, *J* = 7.8Hz, 1.5 Hz, 1H), 7.20 (dt, *J* = 0.8 Hz, 7.5 Hz, 1H), 7.03 (dt, *J* = 1.5 Hz, 7.7 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.74 (dd, *J* = 8.1 Hz, 2.0 Hz, 1H), 6.72 (d, *J* = 2.1 Hz, 1H), 6.53 (d, *J* = 15.8 Hz, 1H), 6.10 (dd, *J* = 7.6 Hz, 15.9 Hz, 1H), 5.9 (tdd, *J* = 2.5 Hz, 4.6 Hz, 10.0 Hz, 1H), 5.68 (dq, *J* = 10.0 Hz, 2.2 Hz, 1H), 3.85 (s, 3H), 3.85 (s, 3H),

3.22 (dq, *J* = 11.1 Hz, 2.8 Hz, 1H), 2.46 (dq, *J* = 2.1 Hz, 9.0 Hz, 1H), 2.29–2.19 (m, 2H), 1.97 (tdd, *J* = 3.1 Hz, 5.1 Hz, 12.9 Hz, 1H), 1.74–1.68 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ: 148.8 (C), 147.5(C), 137.7 (C), 137.4 (C), 137.2 (CH), 132.8 (CH), 130.4 (CH), 128.3 (CH), 128.2 (CH), 127.5 (CH), 127.3 (CH), 126.9 (CH), 123.3 (C), 120.5 (CH), 111.6 (CH), 111.1 (CH), 55.9 (CH₃), 55.9 (CH₃), 48.0 (CH), 45.3 (CH), 27.7 (CH₂), 24.6 (CH₂).

(+)**12E:** Colourless oil; $[\alpha]^{25}_{D}$ +214 (*c* = 1.00, CH₂Cl₂). **HRMS** (EI, C₂₂H₂₃BrO₂, M⁺): calcd.: 400.0861, found: 400.0861. **FTIR** (cast film): 3018, 2930, 2834, 1515, 1465, 1261, 1139, 1029 cm⁻¹.

(-)12E: Colourless oil; $[\alpha]^{25}_{D}$ –230 (c = 0.99, CH₂Cl₂). **HRMS** (EI, C₂₂H₂₃BrO₂, M⁺): calcd.: 400.0861, found: 400.0871. **FTIR** (cast film): 3018, 2930, 2834, 1515, 1465, 1261, 1139, 1029 cm⁻¹.

(±) 3(S/R)-(3,4-dimethoxyphenyl)-4(R/S)-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene (13):

nuaduat	silica column	product	concretion method	HPLC			isolated components				
product	conditions	(% yield)	separation metrou	injection		mass _a	R _{ta} (min)	mass _b	R _{tb} (min)	ee	
			sequential runs:		(+) t-BG	144 mg	12.0	67 mg	11.9	99%	
t-BG	20% EtOAc/hex $R_{\rm f} = 0.3$	527 mg (77%)	a. AD-H column. 18% ⁱ PrOH/CO ₂ b. C8 column. 50→100% ACN/H ₂ O (30 min)	479 mg	(-) t-BG	146 mg	15.2	50 mg	11.9	93%	
13					(+) 13Z	44 mg	9.4	12 mg	10.1	96%	
					(-) 13Z	50 mg	10.8	18 mg	10.1	95%	

*HPLC Method B used to remove minor impurities

¹**H NMR** (CDCl₃, 700MHz) δ: 6.72 (d, *J* = 8.2 Hz, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 6.65 (dd, *J* = 2.1 Hz, 8.2 Hz, 1H), 6.56 (d, *J* = 2.1 Hz, 1H), 6.43–6.41 (m, 2H), 6.27 (d, *J* = 11.5 Hz, 1H), 5.84 (tdd, *J* = 2.4 Hz, 4.2 Hz, 10.1 Hz, 1H), 5.65 (dq, *J* = 2.2 Hz, 9.8 Hz, 1H), 5.51 (dd, *J* = 10.4 Hz, 11.5 Hz), 3.84 (s, 3H), 3.83 (s, 3H), 3.76 (s, 3H), 3.73 (s, 3H), 3.15 (dq, *J* = 8.8 Hz, 2.8 Hz, 1H), 2.84 (dq, *J* = 2.5 Hz, 10.1 Hz, 1H), 2.19–2.15 (m, 2H), 1.83 (tdd, *J* = 3.1 Hz, 5.0 Hz, 12.8 Hz, 1H), 1.67–1.61 (m, 1H). ¹³**C NMR** (CDCl₃, 176 MHz) δ: 148.7, 148.4, 147.6, 147.4, 137.4, 135.9, 130.7, 130.5, 128.5, 127.3, 120.8, 120.3, 111.8, 111.3, 110.8, 110.8, 55.9, 55.8, 55.7, 48.1, 40.7, 28.6, 24.5. Characterization data is consistent with literature.⁷

(+) **t- BG:** Colourless oil: $[\alpha]^{25}_{D}$ +325 (c = 1.00, CH₂Cl₂). (-) **t-BG:** Colourless oil: $[\alpha]^{25}_{D}$ -275 (c = 1.00, CH₂Cl₂). (+)**13:** Colourless oil: $[\alpha]^{25}_{D}$ +6.4(c = 1.00, CH₂Cl₂). (-)**13:** Colourless oil: $[\alpha]^{25}_{D}$ -3.3 (c = 1.90, CH₂Cl₂).

n vo d v ot	silica column	product	concretion mathed	HPLC	isol	ated compo	nents
product	conditions	(% yield)	separation method	injection		amount	R _t (min)
17E	15% EtOAc/hex	66 mg	i-amylose-3 column.	50 mg	(±) 17E	22 mg	7.8
17Z	$R_{f} = 0.2$	(52%)	97% hex/EtOH (20 min)	50 mg	(±) 17Z	not is	olated

(±) 3(S/R)-(3-methoxyphenyl)-4(R/S)-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (17):

17E: White oil. ¹**H NMR** (CDCl₃, 700MHz) δ : 7.19 (t, J = 7.8 Hz, 1H), 6.82–6.73 (m, 6H), 6.13 (d, J = 15.9 Hz, 1H), 6.03 (dd, J = 7.6 Hz, 16.0 Hz 1H), 5.90 (tdd, J = 2.4 Hz, 4.0 Hz, 10.0 Hz, 1H), 5.68 (dq, J = 10.0 Hz, 2.1 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.77 (s, 3H), 3.23 (dq, J = 9.4 Hz, 2.7 Hz, 1H), 2.41 (dq, J = 2.6 Hz, 9.3 Hz, 1H), 2.26–2.18 (m, 2H), 1.92 (dq, J = 12.5 Hz, 4.2 Hz, 1H), 1.70–1.64 (m, 1H). ¹³C NMR (CDCl₃, 176 MHz) δ : 159.5 (C), 149.0 (C), 148.3 (C), 146.7 (C), 132.2 (CH), 131.1 (C), 130.0 (CH), 129.0 (CH), 128.9 (CH), 127.6 (CH), 121.1 (CH), 118.9 (CH), 114.3 (CH), 111.5 (CH), 111.2 (CH), 108.8 (CH), 56.0 (CH₃), 55.8 (CH₃), 55.2 (CH₃), 48.5 (CH), 45.1 (CH), 27.8 (CH₂), 24.5 (CH₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1874. **FTIR** (cast film): 3019, 2931, 2835, 1601, 1515, 1465, 1263, 1157, 1028 cm⁻¹.

(±) (3(S/R)-(4-methoxyphenyl)-4(R/S)-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (18):

nroduct	silica column	product	sonaration method	HPLC	isol	ated compo	onents
product	conditions	(% yield)	separation method	injection		amount	R _t (min)
18E	20% EtOAc/hex	206 mg	i-amylose-3 column.	100 m a	(±) 18E	22 mg	9.2
18Z	$R_{f} = 0.2$	(85%)	97% hex/EtOH (10 min)	100 mg	(±) 18Z	not is	olated

¹**H NMR** (CDCl₃, 500MHz) δ: 7.12–7.09 (m, 2H), 6.83–6.76 (m, 5H), 6.11 (d, J = 16.0 Hz, 1H), 6.02 (dd, J = 7.4 Hz, 16.0 Hz, 1H), 5.89 (dq, J = 10.0, 3.3 Hz, 1H), 5.66 (dq, J = 10 Hz, 2.2 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.78 (s, 3H), 3.20 (dq, J = 11.0 Hz, 2.8 Hz, 1H), 2.36 (dq, J = 2.9 Hz, 9.8 Hz, 1H), 2.24–2.19 (m, 2H), 1.91 (dq, J = 12.5 Hz, 4.2 Hz, 1H), 1.70–1.63 (m, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ: 158.0 (C), 149.0 (C), 148.3 (C), 137.1 (C), 132.3 (C), 131.1 (CH), 130.5 (CH), 129.4 (2 CH), 128.8 (CH), 127.4 (CH), 118.8 (CH), 113.6 (2 CH), 111.2 (CH), 108.8 (CH), 56.0 (CH₃), 55.9 (CH₃), 55.263 (CH₃), 47.6 (CH), 45.5 (CH), 27.9 (CH₂), 24.6 (CH₂). **HRMS** (EI, C₂₃H₂₆O₃, M⁺): calcd.: 350.1882, found: 350.1878. **FTIR** (cast film): 3018, 2931, 2835, 1608, 1513, 1262, 1139, 1029 cm⁻¹.

(±) 3(S/R)-(3-methoxy-4-hydroxyphenyl)-4(R/S)-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (19):

product	silica column conditions	product mass (% vield)	separation method	HPLC injection	isol	ated compo	nents R _t (min)
19E	$10 \rightarrow 25\%$ EtOAc/bex	40 mg	C8 column. 50→100%	10 m a	(±) 19E	8 mg	18.0
19Z	$R_{\rm f} = 0.2$	(32%)	ACN/H ₂ O (30 min)	40 mg	(±) 19Z	not is	olated

¹**H NMR** (CDCl₃, 500MHz) δ: 6.83–6.76 (m, 4H), 6.70–6.67 (m, 2H), 6.10 (d, *J* = 16.0 Hz, 1H), 6.02 (dd, *J* = 16.0 Hz, 7.5 Hz, 1H), 5.91–5.87 (m, 1H), 5.67 (dq, *J* = 10.5 Hz, 2.5 Hz, 1H), 5.45 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.82 (s, 3H), 3.17–3.15 (m, 1H), 2.35–2.33 (m, 1H), 2.22–2.20 (m, 2H), 1.93–1.90 (m, 1H), 1.69–1.64 (m, 1H). Characterization data are consistent with literature.⁷

*Synthesized via 5d without racemization to 6d

Synthesis of 24 and 25:

Pd/C (5 mg) was added to a flame dried flask under N₂ followed by (±) *t*-BG or (±)*c*-BG (25.0 mg, 0.06 mmol) in ethyl acetate. After a quick exposure to vacuum, then N₂, the flask was placed under reduced pressure. A hydrogen (H₂) balloon was inserted, and the reaction was then stirred for 18 hours. The contents of the flask were filtered through celite and rinsed with CH₂Cl₂. The solvent was concentrated in vacuo, providing products **24** and **25** without the need for further purification.

(±) 4-((1*R*,2*S*)-2-(3,4-dimethoxyphenylethy)cyclohexyl)-1,2-dimethoxy benzene (24): White solid (99%). ¹H NMR (CDCl₃,700 MHz) δ : 6.75 (d, *J* = 7.7 Hz, 1H), 6.70 (d, *J* = 7.7 Hz, 1H), 6.62 (dd, *J* = 7.7 Hz, 1.4 Hz, 1H), 6.59 (d, *J* = 1.4 Hz, 1H), 6.51 (dd, *J* = 7.7 Hz, 1.4 Hz, 1H), 6.46 (d, *J* = 1.4 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 2.56–2.52 (m, 1H), 2.32–2.27 (m, 1H), 2.17–2.14 (m, 1H), 2.06–2.02 (m, 1H), 1.82–.77 (m, 3H), 1.52–1.42 (m, 2H), 1.39–1.31 (m, 3H), 1.20–1.16 (m, 1H), 1.10, 1.04 (m, 1H). ¹³C NMR (CDCl₃,175 MHz) δ : 148.7, 148.6, 147.0, 146.9, 139.4, 135.4, 120.0, 119.5, 111.6, 111.0, 110.6, 55.9, 55.8, 55.7, 55.7, 50.4, 41.5, 36.3, 35.9, 32.2, 32.1, 26.9, 26.5. HRMS (EI, C₂₄H₃₂O₄, M⁺): calcd: 385.2301, found: 385.2342.

(±) 4-((1S,2S)-2-(3,4-dimethoxyphenylethy)cyclohexyl)-1,2-dimethoxy benzene (25): White solid (95%). ¹H NMR (CDCl₃,700 MHz) δ : 6.77 (d, *J* = 8.4 Hz, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.67 (dd, *J* = 8.4, 1.4 Hz, 1H), 6.65 (d, *J* = 1.4 Hz, 1H), 6.49 (dd, *J* = 7.7, 1.4 Hz, 1H), 6.45 (d, *J* = 1.4 Hz, 1H), 3.85 (s, 3H), 3.82 (app s, 6H), 3.77 (s, 3H), 2.80-2.77 (m, 1H), 2.48-2.45 (m, 1H), 2.14-2.11 (m, 1H), 1.89-1.85 (m, 3H), 1.75-1.67 (m, 2H), 1.59-1.46 (m, 4H), 1.41-1.37 (m, 1H), 1.31-1.26 (m, 1H) ppm. ¹³C-NMR (CDCl₃,175 MHz) δ : 148.6, 148.5, 146.9, 146.9, 138.5, 135.3, 120.0, 119.2, 111.6, 111.2, 111.0, 110.7, 55.9, 55.9, 55.8, 55.7, 45.9, 39.3, 33.6, 29.6, 27.3, 26.5, 25.7, 20.6HRMS (EI, C₂₄H₃₂O₄, M⁺): calcd: 385.2301, found: 385.2342.

Synthesis of 26 and 27¹⁴

Rhodium acetate dimer (1 mg) and a solution of (±)*t*-BG (50 mg, 0.13 mmol) or (±)*c*-BG (24 mg, 0.06 mmol) in CH₂Cl₂ (0.50 mL) was added to a flame dried round bottom flask. The reaction solution was stirred while ethyl diazoacetate (33 wt% CH₂Cl₂ solution, 16 μ L dissolve in 0.5 mL CH₂Cl₂ for t-BG and 8 μ L dissolve in 0.5 mL CH₂Cl₂ for c-BG) was added dropwise. The reaction was stirred at rt for 3 hours and then concentrated in vacuo. The residue was dissolved in acetonitrile and was purified by HPLC

product	separation method	product mass (% yield)	R _t (min)
26	C8 column. $50 \rightarrow 100\%$	9.4 mg (16%)	17.8
27	ACN/H_2O (20 min)	4.5 mg (15%)	9.9

(±) **1-((1***R*,2*S*,3*S*,6*R*,7*S*)-3-(3,4-dimethoxyphenethyl)-2-(3,4-dimethoxyphenyl)bicyclo[4.1.0]heptan-7yl)-2-methoxyethanone (26): Yellow oil (16%). ¹H NMR (CDCl₃,700 MHz) δ : 6.80 (m, 2H), 6.73–6.72 (m, 2H), 6.70–6.69 (m, 2H), 5.92 (d, *J* = 16.1 Hz, 1H), 5.73 (dd, *J* = 16.1 Hz, 7.7 Hz, 1H), 4.10–4.05 (m, 2H), 3.83 (s, 6H), 3.83 (s, 3H), 3.82 (s, 3H), 2.55 (dd, *J* = 10.5 Hz, 0.7 Hz, 1H), 2.16–2.14 (m, 1H), 2.05–1.98 (m, 2H), 1.86–1.84 (m, 1H), 1.75–1.69 (m, 2H), 1.59 (app t, *J* = 4.2 Hz, 1H), 1.23 (t, *J* = 7 Hz, 3H),1.16 (dd, *J* = 12.6 Hz, 4.2 Hz, 1H). ¹³C NMR (CDCl₃,175 MHz) δ : 174.1, 148.9, 148.7, 148.3, 147.3, 139.0, 131.8, 130.8, 129.0, 120.2, 118.7, 111.4, 111.1, 111.0, 108.7, 60.4, 55.9, 55.9, 55.8, 55.7, 28.2, 25.7, 25.4, 23.3, 22.5, 14.3. HRMS (EI, C₂₈H₃₅O₆, [M+H]⁺): calcd: 467.2355, found: 467.2439. (±) 1-((1*R*,2*R*,3*S*,6*R*,7*S*)-3-(3,4-dimethoxyphenethyl)-2-(3,4-dimethoxyphenyl)bicyclo[4.1.0]heptan-7-yl)-2-methoxyethanone (27): Yellow oil (15%). ¹H NMR (CDCl₃, 700 MHz) δ : 6.88 (dd, *J* = 7.7 Hz, 2.1 Hz, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.76 (d, *J* = 2.1 Hz, 2H), 6.74 (dd, *J* = 7.7 Hz, 2.1 Hz, 2H), 6.17 (d, *J* = 16.1 Hz, 1H), 5.60 (dd, *J* = 16.1 Hz, 9.1 Hz, 1H), 4.12 (q, *J* = 7 Hz, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.83 (s, 3H), 3.74 (s, 3H), 3.23 (app. d, *J* = 4.9 Hz, 1H), 2.29–2.23 (m, 2H), 1.89 (appt, *J* = 4.2 Hz, 2H), 1.82–1.78 (m, 1H), 1.60 (t, *J* = 4.2 Hz, 1H), 1.52–1.48 (m, 1H), 1.27–1.21 (m, 4H). ¹³C NMR (CDCl₃ ,175 MHz) δ : 174.2, 148.9, 148.4, 148.1, 147.5, 134.9, 131.3, 130.7, 129.1, 121.3, 118.8, 113.3, 111.2, 110.5, 108.6, 60.4, 55.9, 55.8, 55.7, 43.7, 40.0, 28.3, 26.2, 23.1, 20.9, 20.8, 14.3. HRMS (EI, C₂₈H₃₆O₆, [M+H]⁺): calcd: 467.2355, found: 467.2442.

Optical Purity Data

Enantiomeric excess (% ee) was determined by chiral HPLC analysis, with one of the following methods:

- (a) 5% IPA: Hexane. Daicel CHIRALPAK IG column.
- (b) 20% isopropanol/CO₂, 100 bar. Daicel CHIRALPAK AD-H column.
- (c) 10% IPA: Hexane. Daicel CHIRALPAK IC column.

* Absolute stereochemistry was assigned according to published data in ref. 7

8. (±) 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*E*)-styryl]cyclohex-1-ene: (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.275	MM	0.1110	4269.88037	640.98907	48.6412
2	4.451	MM	0.1608	4508.44580	467.26389	51.3588
Total	s :			8778.32617	1108.25296	

(-)8. 3(*R*)-(3,4-dimethoxyphenyl)-4(*S*)-[(*E*)-styryl]cyclohex-1-ene (> 99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1	4.475	MM	0.1612	2.05837e4	2128.18555	100.0000	(–)8
Total	s :			2.05837e4	2128.18555		

9. 3(S/R)-(3,4-dimethoxyphenyl)-4(R/S)-[(E)-3-methoxystyryl]cyclohex-1-ene: (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Totals :

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.762	MM	0.1832	572.23199	52.04971	1.4663
2	6.236	MM	0.2170	1.91519e4	1471.11340	49.0750
3	8.519	MF	0.3142	1.90123e4	1008.52759	48.7173
4	8.997	FM	0.1510	289.30722	31.94090	0.7413

3.90258e4 2563.63160

(+)9. 3(S)-(3,4-dimethoxyphenyl)-4(R)-[(E)-3-methoxystyryl]cyclohex-1-ene(>99% ee): (Method a)

Peak RetTime Type Width Height Area Area Description [min] [min] [mAU*s] [mAU] % # _ _ _ _ _ _ _ _ ----|-----|----|-----|------| ----| 0.2057 1023.30310 Impurity 5.785 MM 82.91499 3.5128 1 2 6.250 MM 0.2190 2.81073e4 2139.51660 96.4872 (+)9 Totals : 2.91306e4 2222.43159

(-)9. 3(*R*)-(3,4-dimethoxyphenyl)-4(*S*)-[(*E*)-3-methoxystyryl]cyclohex-1-ene(>99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1	6.333	MM	0.2538	37.55331	2.46581	0.1881	(+)9
2	8.569	MF	0.3149	1.95090e4	1032.60400	97.7390	(–)9
3	9.001	FM	0.1763	413.75418	39.11983	2.0729	Impurity

Totals : 1.99603e4 1074.18965

14. 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*Z*)-3-methoxystyryl]cyclohex-1-ene: (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.775	MM	0.1600	3783.56592	394.04947	50.1046
2	6.001	MM	0.2238	3767.76880	280.64569	49.8954
Total	s :			7551.33472	674.69516	

(+)14. 3(*S*)-(3,4-dimethoxyphenyl)-4(*R*)-[(*Z*)-3-methoxystyryl]cyclohex-1-ene (>99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1	4.167	MM	0.1578	67.01202	7.07963	1.5252	Impurity
2	4.509	MF	0.1259	40.99306	5.42767	0.9330	Impurity
3	4.760	FM	0.1605	4285.70508	444.97592	97.5418	(+)14
Total	s :			4393.71016	457.48322		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
 1	6.000	 MM	0.2197	 4306.78857	326.78674	100.0000	()14
Total	s :			4306.78857	326.78674		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.822	MM	0.2920	318.83115	18.19932	0.7639
2	7.481	MM	0.2679	2.08579e4	1297.71582	49.9733
3	9.423	MM	0.3424	440.60825	21.44956	1.0557
4	10.730	MM	0.4021	2.01207e4	833.89203	48.2072

Totals : 4.17381e4 2171.25673

(+)10. 3(*S*)-(3,4-dimethoxyphenyl)-4(*R*)-[(*E*)-4-methoxystyryl]cyclohex-1-ene (>99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
 1 2	6.818 7.470	MM MM	0.2138 0.2671	148.12431 2.22274e4	11.54741 1386.85339	0.6620 99.3380	Impurity (+)10
Total	s :			2.23755e4	1398.40080		

(-)10. 3(*R*)-(3,4-dimethoxyphenyl)-4(*S*)-[(*E*)-4-methoxystyryl]cyclohex-1-ene (99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1	6.733	MM	0.2292	20.99214	1.10117	0.1393	Impurity
2	7.431	MM	0.3088	73.65749	3.97611	0.4887	(+)10
3	9.296	MM	0.3646	362.90045	16.59074	2.4080	Impurity
4	10.607	MM	0.4010	1.46134e4	607.34192	96.9640	(-)10

Totals: 1.50709e4 629.00994

15. 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*Z*)-4-methoxystyryl]cyclohex-1-ene: (Method a)

(+) 15. 3(S)-(3,4-dimethoxyphenyl)-4(R)-[(Z)-4-methoxystyryl]cyclohex-1-ene (98% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1 2	5.992 7.532	 MM MM	0.2014	4040.65259	334.44958	99.1590	(-)15 (+)15
2	7.002		0.2000	04.20020	2.20000	0.0410	(+)15

3.32363e4 2413.15369

Totals :

4074.92084 336.68266

Totals :

8778.69983 548.70400

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU*s] # [min] [min] [mAU] % ----|-----|-----|------|------|------| ----| 1 3.710 MM 0.1154 1.29200e4 1865.38831 49.7547 2 5.226 MM 0.1773 1.30474e4 1226.50244 50.2453

Totals : 2.59673e4 3091.89075

(+) 11. 3(S)-(3,4-dimethoxyphenyl)-4(R)-[(E)-2-methylstyryl]cyclohex-1-ene (98%ee): (Method a)

(-) 11. 3(*R*)-(3,4-dimethoxyphenyl)-4(*S*)-[(*E*)-2-methylstyryl]cyclohex-1-ene (99%ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1	3.696	MM	0.1361	120.48663	14.74946	0.3724	(+)11
2	5.165	MM	0.1827	3.22329e4	2940.39087	99.6276	(-)11

Totals: 3.23534e4 2955.14033

16. 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*Z*)-2-methylstyryl]cyclohex-1-ene: (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.676	MM	0.0916	747.41486	135.98724	52.8446
2	2.849	MM	0.0947	134.14784	23.60262	9.4847
3	3.375	MM	0.1194	532.80042	74.35267	37.6707
Total	s :			1414.36311	233.94253	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak I	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
-							
1	2.677	MM	0.0911	2077.39697	380.17612	91.4516	(+)16
2	2.849	MM	0.0947	187.19553	32.93308	8.2408	impurity
3	3.371	MM	0.1600	6.98739	7.27885e-1	0.3076	(-)16
							· /
Totals	s :			2271.57989	413.83708		

(-)16. 3(*R*)-(3,4-dimethoxyphenyl)-4(*S*)-[(*Z*)-2-methylstyryl]cyclohex-1-ene (99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak F #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
-							
1	2.665	MM	0.1076	11.27477	1.74601	0.4541	(+)16
2	2.855	MM	0.1014	343.70029	56.51110	13.8428	impurity
3	3.378	MM	0.1196	2127.91309	296.63055	85.7031	(
Totals	s :			2482.88815	354.88767		

12. 3(S/R)-(3,4-dimethoxyphenyl)-4(R/S)-[(E)-2-bromostyryl]cyclohex-1-ene: (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	4.529 6.721	MM MM	0.1522 0.2411	1.63185e4 1.72312e4	1787.35388 1191.35974	48.6397 51.3603

Totals : 3.35496e4 2978.71362

(+)12. 3(S)-(3,4-dimethoxyphenyl)-4(R)-[(E)-2-bromostyryl]cyclohex-1-ene (>99% ee): (Method a)

(-)12. 3(*R*)-(3,4-dimethoxyphenyl)-4(*S*)-[(*E*)-2-bromostyryl]cyclohex-1-ene (99% ee): (Method a)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1	4.537	MM	0.1676	65.53897	6.51827	0.4414	(+)12
2	6.734	MM	0.2394	1.47828e4	1029.02100	99.5586	(-)12
Total	s :			1.48483e4	1035.53927		

13. 3(*S*/*R*)-(3,4-dimethoxyphenyl)-4(*R*/*S*)-[(*Z*)-3,4-dimethoxystyryl]cyclohex-1-ene: (Method b)

(+)13. 3(S)-(3,4-dimethoxyphenyl)-4(R)-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene: (Method b)

Index	Time (min)	Area (%) 220 nm
impurity	8.18	0.715
(+)13	8.61	93.027
(-)13	9.74	0.717
(+) <i>t</i> -BG	11.86	2.579
(-) <i>t</i> -BG	14.32	2.961
Total		100.00

(-)13. 3(*R*)-(3,4-dimethoxyphenyl)-4(S)-[(*Z*)-3,4-dimethoxystyryl]cyclohex-1-ene: (Method b)

Index	Time (min)	Area (%) 220 nm
(+)13	8.82	2.051
(-)13	9.71	96.518
impurity	10.43	1.368
Total		100.00

Since this analytical method led to different retention times for (+) 13 and (-) 13 as compared to the trace 13 (which is a mixture of (+) 13, (-) 13, (+) t-BG and (-) t-BG) another round of analytical validation was done to establish the enantiomeric purity (spectra shown below). Due to limited material remaining, a mixture containing 85:15 of the two enantiomers was prepared. These enantiomers were dissolved in DMSO which results in a solvent peak at ~1.6 min, this peak was ignored while integrating these spectra.

15:85 of (+) 13: (-) 13: (Method b)

	Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
			[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
(+)13	1	UNKNOWN	2.85	3.05	3.19	0.00	15.95	192.6	29.1	15.946
(-)13	2	UNKNOWN	3.19	3.35	3.81	0.00	84.05	883.9	153.3	84.054
	Total						100.00	1076.5	182.4	100.000

(+)13. 3(S)-(3,4-dimethoxyphenyl)-4(R)-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene (96% ee): (Method b-round 2)

	Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
			[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
(+)13	1	UNKNOWN	2.90	3.08	3.30	0.00	98.31	511.5	82.2	98.311
(-)13	2	UNKNOWN	3.30	3.30	3.52	0.00	1.69	13.3	1.4	1.689
	Total						100.00	524.8	83.6	100.000

(-)13. 3(R)-(3,4-dimethoxyphenyl)-4(S)-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene (95% ee) : (Method b-round 2)

	Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
			[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
(+)13	1	UNKNOWN	2.92	3.08	3.20	0.00	2.42	36.2	5.3	2.416
(-)13	2	UNKNOWN	3.20	3.37	3.77	0.00	97.58	1182.0	213.9	97.584
	Total						100.00	1218.2	219.2	100.000

t-BG-3(*S*/*R*)-(3,4-Dimethoxyphenyl)-4(*R*/*S*)-[(*E*)-3,4-dimethoxystyryl]cyclohex-1-ene: (Method c)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	34.363 41.874	MM MM	1.4701 1.7187	7143.75244 6600.07324	80.99113 64.00153	 51.9779 48.0221
Tota	ls:			1.37438e4	144.99266	

(+)*t*-BG-3(*S*)-(3,4-Dimethoxyphenyl)-4(*R*)-[(*E*)-3,4-dimethoxystyryl]cyclohex-1-ene (99% ee): (Method c)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

(-) t-BG- 3(R)-(3,4-Dimethoxyphenyl)-4(S)-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (93% ee): (Method c)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Description
1 2	34.867 41.644	MM MM	1.3973 1.7276	406.12741 1.08815e4	4.84431 104.97392	3.5980 96.4020	(+) <i>t</i> -BG (-) <i>t</i> -BG
Tota	ls:			1.12876e4	109.81823		

S38

PC-12 cell assays procedures

Cell line maintenance

PC-12 cells (CRL-1721) were obtained from ATCC and maintained in Dulbecco's modified Eagle's medium (DMEM) (GibcoTM LS11965092) containing 5% horse serum (HS) (GibcoTM LS10438018), 5% fetal bovine serum (FBS) (GibcoTM LS26050070) and 100 U/mL penicillin with 100 µg/mL streptomycin (1% Pen-Strep) (GibcoTM LS15140148). Cells were cultured for a month to reach passage 4 and then used for neuritogenesis assays. Living cells were counted using trypan blue exclusion staining.

Coating with collagen IV

The assay to determine neuritogenesis was carried out in 96 well plates (Ibidi USA μ -Plate 96 Well, ibiTreat -#1.5 polymer coverslip, #89626). Each well was coated with 4-6 μ g/cm² of Collagen IV (Sigma-C5533 - Collagen from human placenta Bornstein and Traub Type IV) dissolved in Hanks' balanced salt solution (HBSS). After overnight incubation at 8°C, the plates were sterilized with 70% ethanol and then washed with HBSS (3 times) to remove any residual ethanol.

Neuritogenesis assay¹⁵

Passage 4 PC-12 cells (at 70% confluency) were seeded in the collagen-IV coated wells at a density of 2 $\times 10^4$ cells/cm² and cultured in DMEM medium containing 5% HS, 5% FBS and 1% Pen-Strep for 24 hours, then the medium was changed to DMEM containing 2% HS, 1% FBS and a given treatment was added (see below). The cells were cultured for a further 48 hours and then visualized and/or stained for analysis.

Treatments: All the test compounds and commercial inhibitors were dissolved in DMSO and added as a solution. Compounds were tested at 30 μ M concentration, unless otherwise noted. The final concentration of DMSO does not exceed 0.6% in any test. NGF (10ng/mL) with 0.6% DMSO was used as the positive control and 0.6% DMSO as the negative control.

For testing the perturbation of pathways associated with Nerve growth factor (NGF) mediated signalling, the following chemical inhibitors were used – triciribine hydrate (**iAkt**, 5 μ M; Sigma T3830), Gö 6983 (**iPkc**, 0.5 μ M; Sigma G1918), and SCH772984 (**iErk**, 10 μ M; AbMole BioScience M2084).

All compounds and controls were tested as triplicate independent experiments. Importantly, to reduce inter-assay variations caused by evaporation of cell culture medium, cells were cultured only in wells B2-G11, the wells on the outer boundary of the plate were flooded with 300 μ l of HBSS over the time course of the entire assay.

Immunofluorescence staining procedure^{16,17}

48 hours after addition of test compounds and controls, the cells were fixed with 4:1 ratio of 20% formaldehyde and 5% sucrose for 30 min. After aspirating, the fixative was washed with HBSS (2 times), and the residual formaldehyde was treated with 0.1% NaBH₄ for 7 min and washed with HBSS (2 times). The cells were blocked and permeabilized with 5% goat serum in 0.3% Triton X-100 for 25 min. Cells were incubated with primary mouse anti-β-tubulin III antibody (Sigma T8578), 1:1000 diluted in antibody buffer (5% goat serum in 0.1% Triton X-100) overnight at 4°C. The primary antibody was aspirated and washed with HBSS (2 times). Neurites were stained with secondary antibody goat antimouse, Alexa Fluor Plus 488, Secondary Antibody (InvitrogenTM A28175) and the nuclei were stained with 0.5 µg/well of Hoechst 33342 (InvitrogenTM LSH3570) for 1h at 37°C. After the secondary antibody was aspirated and washed with HBSS (2 times), mounting solution (80% glycerol and 0.5% n-propyl gallate) was added.

Imaging acquisition parameters and data analyses

Images were acquired on a high content analysis system (Metaxpress XLS, Molecular Devices) with a Nikon $10 \times$ Plan Fluor lens. 25 sites per well (covering the entire well) with 0 µm between images in X and Y direction were taken with a 100 ms exposure time for DAPI filter set and an 1800 ms exposure time for Alexa 488 filter set. A digital confocal mode was used to image neurites with five Z sections separated by 2 µm steps which were combined into a single stack for analysis. Proper image acquisition was confirmed in several wells to ensure that gain and exposure levels didn't result in images with saturated regions. The images were segmented and analyzed using Metaxpress' Neurite Outgrowth module, the parameters were set as shown:

Segemented region	ed region Parameter	
Cell bodies	Approximate maximum width	25 μm
Cell bodies	Minimum area	90 μm ²
Nuclear stein	Approximate minimum width	4 µm
Nuclear stan	Approximate maximum width	15 µm
Outgrowth	Maximum width	4 μm
Outgrowth	Minimum cell growth to log as significant	5 µm

For each well, the data generated for 25 images was added up to give the total number of cells and the total number of cells with significant outgrowth. An average cell body area was also calculated. Statistical analyses and graphing were done using GraphPad Prism version 9.2.0. p-values were determined by One-way ANOVA followed by Dunnett's multiple comparisons test or unpaired t-tests as mentioned in figures. Bar graphs have been plotted to show data as mean \pm standard deviation.

Fig S1. Image of *cis*-BG crystal at 10X magnification taken 24 h after addition of *cis*-BG in DMEM medium with 5% HS and 5% FBS. Similar results were seen when *cis*-BG was added to DMEM medium without any serum proteins.

Fig S2. Dose response curve of the potentiating effect of (–) *trans*-banglene when dosed along with 10 ng/mL of NGF. Curve simulated by GraphPad Prism using a dose-response curve model with variable slope (four parameters) with least squares fit.

Conc. (µM) of (-) t-BG

Fig S3. Fold change of neuritogenesis after treatment with increasing (μ M) concentrations of (–) *trans*banglene for 48 h. % Neuritogenesis was calculated as a percentage of total number of cells that had neurites > 5 μ m. Fold change was calculated as % neuritogenesis (Compound) / % neuritogenesis (DMSO). p-value measured by unpaired t-test vs. DMSO ***p<0.001

Treatments compared	Figure ref.	p-Value
Vitamin E vs NGF + 0.6% DMSO	4a	0.8440
(-) 13 vs DMSO	4c	0.3061
(+) 13 vs DMSO	4c	0.4437
(+) <i>t</i> -BG vs NGF + 0.6% DMSO	4d	0.0788
(-) 10 vs DMSO	6	0.4035
(±) 18 vs DMSO	6	0.3440

Table S1. p-Values for key treatment comparisons which were not statistically significant

References:

- 1. Kim, S. S.; Fang, Y.; Park, H. Synthesis and Anti-Inflammatory Activity of Phenylbutenoid Dimer Analogs. *Bull. Korean Chem. Soc.* **2015**, *36* (6), 1676–1680.
- 2. Fuchs, M.; Schober, M.; Pfeffer, J.; Kroutil, W.; Birner-Gruenberger, R.; Faber, K. Homoallylic Alcohols via a Chemo-Enzymatic One-Pot Oxidation-Allylation Cascade. *Adv. Synth. Catal.* **2011**, *353* (13), 2354–2358.
- 3. Huang, X. R.; Pan, X. H.; Lee, G. H.; Chen, C. C2-Symmetrical Bipyridyldiols as Promising Enantioselective Catalysts in Nozaki-Hiyama Allylation. *Adv. Synth. Catal.* **2011**, *353* (11–12), 1949–1954.
- 4. Fillion, E.; Dumas, A. M.; Hogg, S. A. Modular Synthesis of Tetrahydrofluorenones from 5-Alkylidene Meldrum's Acids. *J. Org. Chem.* **2006**, *71* (26), 9899–9902.
- 5. Davenport, E.; Fernandez, E. Transition-Metal-Free Synthesis of Vicinal Triborated Compounds and Selective Functionalisation of the Internal C–B Bond. *Chem. Commun.* **2018**, *54* (72), 10104–10107.
- Amatayakul, T.; Cannon, J. R.; Dampawan, P.; Dechatiwongse, T.; Giles, R. G. F.; Huntrakul, C.; Kusamran, K.; Mokkhasamit, M.; Raston, C. L.; Reutrakul, V.; White, A. H. Syntheses of Some Constituents of Zingiber Cassumunar. *Aust. J. Chem.* **1980**, *33* (4), 913–916.
- 7. Chu, J.; Suh, D.; Lee, G.; Han, A.; Chae, S.; Lee, H.; Seo, E.; Lim, H. Synthesis and Biological Activity of Optically Active Phenylbutenoid Dimers. *J. Nat. Prod.* **2011**, *74* (8), 1817–1821.
- 8. Diaz-Muñoz, G.; Isidorio, R. G.; Miranda, I. L.; de Souza Dias, G. N.; Diaz, M. A. N. A Concise and Efficient Synthesis of Tetrahydroquinoline Alkaloids Using the Phase Transfer Mediated Wittig Olefination Reaction. *Tetrahedron Lett.* **2017**, *58* (33), 3311–3315.
- 9. Paul Schmid; Matthias Maier; Hendrik Pfeiffer; Anja Belz; Lucas Henry; Alexandra Friedrich; Fabian Schönfeld; Katharina Edkins; Ulrich Schatzschneider. Catalyst-Free Room-Temperature IClick Reaction of Molybdenum(Ii) and Tungsten(Ii) Azide Complexes with Electron-Poor Alkynes: Structural Preferences and Kinetic Studies. *Dalt. Trans.* **2017**, *46* (39), 13386–13396.
- 10. Ngwendson, J. N.; Schultze, C. M.; Bollinger, J. W.; Banerjee, A. Effect of Base on Alkyltriphenylphosphonium Salts in Polar Aprotic Solvents. *Can. J. Chem.* **2011**, *86* (7), 668–675.
- Mohideen, M.; Zulkepli, S.; Nik-Salleh, N. S.; Zulkefeli, M.; Weber, J. F. F. A.; Rahman, A. F. M. M. Design, Synthesis, in Vitro Cytotoxicity Evaluation and Structure-Activity Relationship of Goniothalamin Analogs. *Arch. Pharm. Res.* 2013, *36* (7), 812–831.
- 12. Moghaddam, F. M.; Farimani, M. M. A Simple and Efficient Total Synthesis of (±)-Danshexinkun A, a Bioactive Diterpenoid from Salvia Miltiorrhiza. *Tetrahedron Lett.* **2010**, *51* (3), 540–542.
- Montgomery, T. P.; Grandner, J. M.; Houk, K. N.; Grubbs, R. H. Synthesis and Evaluation of Sterically Demanding Ruthenium Dithiolate Catalysts for Stereoretentive Olefin Metathesis. *Organometallics* 2017, *36* (20), 3940–3953.
- 14. Díaz, E.; Reyes, E.; Uria, U.; Carrillo, L.; Tejero, T.; Merino, P.; Vicario, J. L. Carboxylates as Nucleophiles in the Enantioselective Ring-Opening of Formylcyclopropanes under Iminium Ion Catalysis. *Chem. A Eur. J.* **2018**, *24* (35), 8764–8768.
- Matsui, N.; Kido, Y.; Okada, H.; Kubo, M.; Nakai, M.; Fukuishi, N.; Fukuyama, Y.; Akagi, M. Phenylbutenoid Dimers Isolated from Zingiber Purpureum Exert Neurotrophic Effects on Cultured Neurons and Enhance Hippocampal Neurogenesis in Olfactory Bulbectomized Mice. *Neurosci. Lett.* 2012, *513* (1), 72–77.
- Radio, N. M.; Breier, J. M.; Shafer, T. J.; Mundy, W. R. Assessment of Chemical Effects on Neurite Outgrowth in PC12 Cells Using High Content Screening. *Toxicol. Sci.* 2008, 105 (1), 106– 118.
- 17. Harrill, J. A.; Mundy, W. R. *Quantitative Assessment of Neurite Outgrowth in PC12 Cells*; Humana Press, Totowa, NJ, **2011**; Vol. 758.

Figure S4: ¹H NMR spectrum of compound 2a (CDCl₃, 400 MHz)

Figure S6: ¹H NMR spectrum of compound **2b** (CDCl₃, 400 MHz)

Figure S7: ¹³C NMR spectrum of compound **2b** (CDCl₃, 176 MHz)

Figure S8: ¹H NMR spectrum of compound 2c (CDCl₃, 700 MHz)

Figure S9: ¹³C NMR spectrum of compound 2c (CDCl₃, 176 MHz)

Figure S10: ¹H NMR spectrum of compound 2d (CDCl₃, 600 MHz)

Figure S11: ¹³C NMR spectrum of compound 2d (CDCl₃, 126 MHz)

Figure S12: ¹H NMR spectrum of compound 3a (CDCl₃, 500 MHz)

Figure S13: ¹³C NMR spectrum of compound 3a (CDCl₃, 126 MHz)

Figure S14: ¹H NMR spectrum of compound 3c (CDCl₃, 500 MHz)

499.787 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) temp 27.7 C -> actual temp = 27.0 C, colddual

но ОМе

Figure S15: ¹³C NMR spectrum of compound 3c (CDCl₃, 126 MHz)

125.685 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) temp 27.7 C -> actual temp = 27.0 C, colddual

но ОМе

+S55 10 120 110 30 20 240 230 220 210 200 190 180 170 160 150 140 130 100 90 80 70 60 50 40 -10 0 f1 (ppm)

Figure S16: ¹H NMR spectrum of compound *c*–**BG** (CDCl₃, 700 MHz)

Figure S17: ¹H NMR magnified spectrum of compound *c*–BG (CDCl₃, 700 MHz)

Recorded on: v700, Nov 1 2019	Sweep Width(Hz): 8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S18: ¹³C NMR spectrum of compound *c*–BG (CDCl₃, 176 MHz)

Figure S19: ¹H NMR spectrum of compound *t*–BG (CDCl₃, 700 MHz)

Figure S20: ¹H NMR magnified spectrum of compound *t*–BG (CDCl₃, 700 MHz)

Recorded on: v700, Nov 1 2019	Sweep Width(Hz): 8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S21: ¹H NMR magnified spectrum of compound *t*–BG (CDCl₃, 700 MHz)

Figure S22: ¹³C NMR spectrum of compound *t*–BG (CDCl₃, 176 MHz)

Recorded on: u500, Sep 1 2020 Sweep Width(Hz): 6009.62 Acquisiton Time(s): 5 Relaxation Delay(s): 0.1 Pulse Sequence: PRESAT Digital Res.(Hz/pt): 0.09 Hz per mm(Hz/mm): 20.82 Completed Scans 8 MeO OMe 9.498 7.260 6.809 6.719 5.988 5.973 3.909 2.158 6.793 6.772 6.768 6.756 6.752 6.722 5.997 5.993 5.983 5.970 5.964 5.836 5.832 5.823 5.819 5.816 5.812 5.803 3.933 3.928 3.925 3.917 3.913 3.844 3.834 2.746 2.733 2.722 2.717 2.276 2.271 2.174 2.168 2.153 1.873 1.862 1.850 1.846 0.069 9.502 5.977 5.827 5.807 3.921 3.851 2.267 1.887 1.877 7 3 9 8 6 5 4 2 1 ppm1.00 ± (1.00 ± 1.06 6.42 ΨΨ. 1.00 -[**98 −** 0.98 Υ $1.01 \\ 1.01 \\ 1.01$ 2.24 2.07 S63

Figure S23: ¹H NMR spectrum of compound 5a (CDCl₃, 500 MHz)

Figure S24: ¹H NMR magnified spectrum of compound 5a (CDCl₃, 500 MHz)

Recorded on: u500, Sep 1 2020	Sweep Width(Hz): 6009.62	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.09	Hz per mm(Hz/mm): 20.82	Completed Scans 8

Figure S25: ¹³C NMR spectrum of compound 5a (CDCl₃, 126 MHz)

Figure S26: ¹H NMR spectrum of compound 5b (CDCl₃, 500 MHz)

Figure S27: ¹³C NMR spectrum of compound 5b (CDCl₃, 176 MHz)

Figure S28: ¹H NMR spectrum of compound 5c (CDCl₃, 700 MHz)

Figure S29: ¹³C NMR spectrum of compound 5c (CDCl₃, 176 MHz)

Figure S30: ¹H NMR spectrum of compound 5d (CDCl₃, 500 MHz)

499.787 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) temp 27.7 C -> actual temp = 27.0 C, colddual probe

Figure S31: ¹³C NMR spectrum of compound 5d (CDCl₃, 126 MHz)

125.685 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) temp 27.7 C -> actual temp = 27.0 C, colddual probe

Figure S32: ¹H NMR spectrum of compound 6a (CDCl₃, 500 MHz)
Figure S33: ¹H NMR magnified spectrum of compound 6a (CDCl₃, 500 MHz)

Recorded on: u500, Sep 1 2020 Pulse Sequence: PRESAT

Figure S34: ¹³C NMR spectrum of compound 6a (CDCl₃, 126 MHz)

Figure S35: ¹H NMR spectrum of compound 6b (CDCl₃, 500 MHz)

203.811			100 201 201	 	77.314	76.806	55.256 \53.867	41.424	23.447 20.924
llander die kandelig verbeiten der bestelligen der bestelligen der bestelligen der bestelligen der bestelligt e Premissionen einer stenste der premission premission operationen president premission operation operation operat	hala an	ulikustani) Alikustani) Alikustani)	adda a baan a baadd y we gan gan gan gan g	had a land a start of the start	unalla attisticad dada prana pri production	Holy Labor of Holy Labor of Holy Public Property	kin faile to the failed at the second	ling of a set of the	hu (kala san pilipi pil

Figure S36: ¹³C NMR spectrum of compound **6b** (CDCl₃, 126 MHz)

Figure S37: ¹H NMR spectrum of compound 6c (CDCl₃, 500 MHz)

Figure S38: ¹³C NMR spectrum of compound 6c (CDCl₃, 126 MHz)

Figure S39: ¹H NMR spectrum of compound 7a (CDCl₃, 400 MHz)

Figure S40: ¹³C NMR spectrum of compound 7a (CDCl₃, 176 MHz)

Figure S41: ³¹P{¹H} NMR spectrum of compound **7a** (CDCl₃, 162 MHz)

Recorded on: mr400, Jul 25 2020	Sweep Width(Hz): 11363.6	Acquisiton Time(s): 1	Relaxation Delay(s): 0.1
Pulse Sequence: s2pul	Digital Res.(Hz/pt): 0.09	Hz per mm(Hz/mm): 47.35	Completed Scans 64

22.524

.

viyedaraan in padalah padalaha

Figure S42: ¹H NMR spectrum of compound 7b (CDCl₃, 400 MHz)

Figure S43: ¹³C NMR spectrum of compound 7b (CDCl₃, 176 MHz)

Figure S44: ³¹P{¹H} NMR spectrum of compound **7b** (CDCl₃, 162 MHz)

Recorded on: mr400, Jul 25 2020	Sweep Width(Hz):	11363.6	Acquisiton Time(s): 1	Relaxation Delay(s): 0.1
Pulse Sequence: s2pul	Digital Res.(Hz/pt):	0.09	Hz per mm(Hz/mm): 47.35	Completed Scans 64

23.201

OMe Recorded on: mr400, Jul 25 2020 Sweep Width(Hz): 4807.69 Acquisiton Time(s): 5 Relaxation Delay(s): 0.1 Pulse Sequence: PRESAT Digital Res.(Hz/pt): 0.07 Hz per mm(Hz/mm): 16.67 Completed Scans 16 ⊕ ⊖ .PPh₃Br 7.783 7.768 7.764 7.761 7.750 7.750 7.732 7.729 7.654 7.645 7.260 7.018 6.813 5.412 1.608 7.634 1.627 7.615 7.611 7.606 3.549 Т 9 8 7 6 5 3 2 4 1 ppm8.84 | 5.94 | 2.00 -[0.57 -[3.01 -[1.02 0.98 1.00 S85

Figure S45: ¹H NMR spectrum of compound 7c (CDCl₃, 400 MHz)

Figure S46: ¹³C NMR spectrum of compound 7c (CDCl₃, 176 MHz)

Figure S47: ³¹P{¹H} NMR spectrum of compound **7c** (CDCl₃, 162 MHz)

Recorded on: mr400, Jul 25 2020	Sweep Width(Hz): 11363.6	Acquisiton Time(s): 1	Relaxation Delay(s): 0.1
Pulse Sequence: s2pul	Digital Res.(Hz/pt): 0.09	Hz per mm(Hz/mm): 47.35	Completed Scans 64

23.226

Figure S48: ¹H NMR spectrum of compound 7d (CDCl₃, 400 MHz)

Figure S49: ¹³C NMR spectrum of compound 7d (CDCl₃, 176 MHz)

Figure S50: ³¹P{¹H} NMR spectrum of compound 7d (CDCl₃, 162 MHz)

Figure S51: ¹H NMR spectrum of compound 7e (CDCl₃, 400 MHz)

⊕ ⊖ PPh₃Br Recorded on: v700, Jul 25 2020 Sweep Width(Hz): 36764.7 Acquisiton Time(s): 1 Relaxation Delay(s): 1 Pulse Sequence: s2pul Digital Res.(Hz/pt): 0.28 Hz per mm(Hz/mm): 139.31 Completed Scans 256 -135.070 -135.054 -134.412 -134.356130.186 118.247 117.764 28.664 -130.981 130.257 128.780 126.752 77.242 76.878 19.669 990 **ppm** S92 180 160 140 120 100 80 20 60 40

Figure S52: ¹³C NMR spectrum of compound 7e (CDCl₃, 176 MHz)

Figure S53: ³¹P{¹H} NMR spectrum of compound **7e** (CDCl₃, 162 MHz)

Recorded on: mr400, Jul 25 2020	Sweep Width(Hz): 11363.6	Acquisiton Time(s): 1	Relaxation Delay(s): 0.1
Pulse Sequence: s2pul	Digital Res.(Hz/pt): 0.09	Hz per mm(Hz/mm): 47.35	Completed Scans 72

-22.191

Figure S54: ¹H NMR spectrum of compound 7f (CDCl₃, 500 MHz)

Figure S55: ¹³C NMR spectrum of compound 7f (CDCl₃, 126 MHz)

Figure S56: ¹H NMR spectrum of compound 8 (CDCl₃, 500 MHz)

Figure S57: ¹H NMR magnified spectrum of compound 8 (CDCl₃, 500 MHz)

Recorded on: u500, Aug 1	2020 Sweep Width(Hz):	6009.62	Acquisiton Time(s):	5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt):	0.09	Hz per mm(Hz/mm)	20.82	Completed Scans 8

Figure S58: ¹³C NMR spectrum of compound 8 (CDCl₃, 126 MHz)

180

Figure S59: ¹H NMR spectrum of compound 9 (CDCl₃, 700 MHz)

Figure S60: ¹³C NMR spectrum of compound 9 (CDCl₃, 176 MHz)

Figure S61: ¹H NMR spectrum of compound 10 (CDCl₃, 700 MHz)

Figure S62: ¹³C NMR spectrum of compound 10 (CDCl₃, 176 MHz)

Figure S63: ¹H NMR spectrum of compound 11 (CDCl₃, 700 MHz)

Figure S64: ¹³C NMR spectrum of compound 11 (CDCl₃, 176 MHz)

Figure S65: ¹H NMR spectrum of compound 12 (CDCl₃, 700 MHz)

Figure S66: ¹³C NMR spectrum of compound **12** (CDCl₃, 176 MHz)

Figure S67: ¹H NMR spectrum of compound 13 (CDCl₃, 700 MHz)

Figure S68: ¹H NMR magnified spectrum of compound 13 (CDCl₃, 700 MHz)

Figure S69: ¹H NMR magnified spectrum of compound 13 (CDCl₃, 700 MHz)

Figure S70: ¹³C NMR spectrum of compound 13 (CDCl₃, 176 MHz)

.OMe Recorded on: u500, Aug 15 2020 Sweep Width(Hz): 6009.62 Acquisiton Time(s): 5 Relaxation Delay(s): 0.1 Pulse Sequence: PRESAT Digital Res.(Hz/pt): 0.09 Hz per mm(Hz/mm): 20.82 Completed Scans 8 MeO 7.112 7.096 7.081 6.733 6.697 6.685 6.654 6.650 6.638 6.543 6.458 6.419 6.293 5.648 3.833 3.723 3.717 2.170 2.166 2.160 ĠМе 7.260 6.717 6.701 6.680 6.634 6.539 6.443 6.422 6.316 5.652 5.632 5.565 5.563 5.542 1.542 1.258 0.073 5.586 9 8 7 5 4 3 2 1 ppm6 1.00 -{ ₩4 66.0 ΥY 0.99 -0.98 -Her under Ψ 11 Т 1.00 3.04 5.89 1.21 66.0 2.14 1.04

S111

Figure S71: ¹H NMR spectrum of compound 14 (CDCl₃, 500 MHz)

Figure S72: ¹³C NMR spectrum of compound 14 (CDCl₃, 126 MHz)

Figure S73: ¹H NMR spectrum of compound 15 (CDCl₃, 500 MHz)

Figure S74: ¹³C NMR spectrum of compound 15 (CDCl₃, 126 MHz)

Figure S75: ¹H NMR spectrum of compound 16 (CDCl₃, 700 MHz)

Figure S76: ¹³C NMR spectrum of compound 16 (CDCl₃, 176 MHz)

Figure S77: ¹H NMR spectrum of compound 17 (CDCl₃, 700 MHz)

Figure S78: ¹H NMR magnified spectrum of compound **17** (CDCl₃, 700 MHz)

Figure S79: ¹H NMR magnified spectrum of compound 17 (CDCl₃, 700 MHz)

Figure S80: ¹³C NMR spectrum of compound 17 (CDCl₃, 176 MHz)

Recorded on: u500, Aug 14 2020 Sweep Width(Hz): 6009.62 Acquisiton Time(s): 5 Relaxation Delay(s): 0.1 .OMe Pulse Sequence: PRESAT Digital Res.(Hz/pt): 0.09 Hz per mm(Hz/mm): 20.82 Completed Scans 8 OMe ÓМе -7.260 -7.111 -7.107 -7.098 -7.093 -6.826 6.815 6.809 6.794 6.089 6.045 6.030 3.877 3.857 3.780 1.535 6.822 6.819 6.790 6.776 6.760 1.258 0.073 Т 9 8 7 6 5 4 3 2 1 ppm1.01 1.01 f 1.97 f 6.16 ∱ 3.05 ∱ 1.99 -0.08 1.00 1.00 1.00 -{ Ψ 1.01 -Ч 1.09 5.02

S121

Figure S81: ¹H NMR spectrum of compound 18 (CDCl₃, 500 MHz)

Figure S82: ¹³C NMR spectrum of compound 18 (CDCl₃, 126 MHz)

Figure S83: ¹H NMR spectrum of compound 19 (CDCl₃, 500 MHz)

Figure S84: ¹³C NMR spectrum of compound 19 (CDCl₃, 126 MHz)

Figure S85: ¹H NMR spectrum of compound 20 (CDCl₃, 700 MHz)

Figure S86: ¹H NMR magnified spectrum of compound 20 (CDCl₃, 700 MHz)

Recorded on: v700, Aug 14 2020	Sweep Width(Hz): 8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S87: ¹H NMR magnified spectrum of compound 20 (CDCl₃, 700 MHz)

Recorded on: v700, Aug 14 2020	Sweep Width(Hz): 8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S88: ¹³C NMR spectrum of compound 20 (CDCl₃, 176 MHz)

Figure S89: ¹H NMR spectrum of compound 21 (CDCl₃, 700 MHz)

Figure S90: ¹H NMR magnified spectrum of compound 21 (CDCl₃, 700 MHz)

Pulse Sequence: PRESAT Digital Res.(Hz/pt): 0.13 Hz per mm(Hz/mm): 29.16 Completed Scans 8	Recorded on: v700, Aug 14 2020	Sweep Width(Hz): 8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
	Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S91: ¹H NMR magnified spectrum of compound 21 (CDCl₃, 700 MHz)

Recorded on: v700, Aug 14 2020	Sweep Width(Hz):	8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt):	0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S92: ¹³C NMR spectrum of compound 21 (CDCl₃, 176 MHz)

Figure S93: ¹H NMR spectrum of compound 22 (CDCl₃, 700 MHz)

Figure S94: ¹H NMR magnified spectrum of compound 22 (CDCl₃, 700 MHz)

Recorded on: v700, Aug 13 2020	Sweep Width(Hz): 8389.26	Acquisiton Time(s): 5	Relaxation Delay(s): 0.1
Pulse Sequence: PRESAT	Digital Res.(Hz/pt): 0.13	Hz per mm(Hz/mm): 29.16	Completed Scans 8

Figure S95: ¹H NMR magnified spectrum of compound 22 (CDCl₃, 700 MHz)

Figure S96: ¹³C NMR spectrum of compound 22 (CDCl₃, 176 MHz)

Figure S97: ¹H NMR spectrum of compound 23 (CDCl₃, 700 MHz)

Figure S98: ¹H NMR spectrum of compound 23 (CDCl₃, 700 MHz)

Figure S99: ¹H NMR spectrum of compound 23 (CDCl₃, 700 MHz)

Recorded on: v700, Aug 14 2020 Sweep Width(Hz): 8389.26 Acquisiton Time(s): 5 Relaxation Dependence Pulse Sequence: PRESAT Digital Res.(Hz/pt): 0.13 Hz per mm(Hz/mm): 29.16 Completed Set	lay(s): 0.1 ans 8
--	------------------------------------

Figure S100: ¹³C NMR spectrum of compound 23 (CDCl₃, 176 MHz)

Figure S102: ¹³C NMR spectrum of compound 24 (CDCl₃, 176 MHz)

Figure S103: ¹H NMR spectrum of compound 25 (CDCl₃, 700 MHz)

Figure S104: ¹³C NMR spectrum of compound 25 (CDCl₃, 176 MHz)

.OMe

ОМе

MeO

ÓМе

2019.01.24.v7_zhk_hydrogenated_cis_PB0_tb659_163382C13_1D	25	63 22 75	<u></u> <u> </u> <u> </u>	Ω	0	999990	
Zain, zhk_hydrogenated_cis_PBD	19.	11110	5 5 5 5 6 7 8	15.9	39.3	33.6 29.6 27.2 26.5	20.5
175.971 MHz C13{H1} 1D in cdcl3 (ref. to CDC13 @ 77.06 ppm)	- 72			Ì	Ĩ		Î
temp 27.5 C -> actual temp = 27.0 C, coldid probe	11	חור	т		1.1	1 1 117	1

S144 10 f1 (ppm)
Figure S105: ¹H NMR spectrum of compound 26 (CDCl₃, 700 MHz)

175.971 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) temp 27.5 C -> actual temp = 27.0 C, coldid probe

