Supporting Information

Transition-Metal-Free Alkylation Strategy: A Facile Access of Alkylated Oxindoles via Alkyl Transfer

Wen-Qin Yu,[†] Jian-Hong Fan,[†] Pu Chen, Bi-Quan Xiong, Jun Xie,* Ke-Wen Tang,

Yu Liu,*

^a Department of Chemistry and Chemical Engineering, Hunan Institute of Science and

Technology, Yueyang 414006, China

phone and fax number: +86073-0864-0122

[†] These authors contributed equally to this work.

E-mail addresses: lyxtmj_613@163.com (Yu Liu) and xiejun12018014@163.com

(Jun Xie)

List of Contents

1. General Information	S 1
2. Experimental Section	S1-S8
2.1 General Procedure for the Synthesis of S	ubstrates S1
2.2 Typical Experimental Procedure	S1-S2
2.3 Radical trapping Experiments	S2-S8
3. Reference	S8
4. ¹ H and ¹³ C spectra	S9-S64

1. General Information

Unless otherwise stated, all commercial reagents were used as received. Aniline (BK, 99%), aldehydes (Innochem, >98%) and halohydrocarbon (Innochem, >98%) were used without further treatment. All reagents and solvents were commercially available and used without any further purification unless specified. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (0.25mm, 300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25mm 300-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). All reactions were carried out with magnetic stirring and in dried glassware. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz, 376 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quated in Hz. Thesolvent peak was used as a reference value, for ¹H NMR: TMS = 0.00 ppm, for ¹³C NMR: CDCl₃= 77.00 ppm. The following abbreviations were used to explain multiplicities: s = singlet, d =doublet, dd = doublet of doublet, t = triplet, td = triplet of doublet, q = quartet, m = multiplet, and br = broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF(electrospray ionization-time of flight).

2. Experiment Section

2.1 General Procedure for the Synthesis of Substrates

All *N*-arylacrylamide derivatives 1^1 and 4-alkylated Hantzsch esters 2^{2-3} were synthesized according to the known methods.

2.2 Typical Experimental Procedure

To a Schlenk tube were added N-arylacrylamide derivatives **1** (0.2 mmol, 0.1 M), acyl Hantzsch esters **2** (0.3 mmol, 1.5 equiv), $K_2S_2O_8$ (0.6 mmol, 3 equiv) and PhCl (2 mL) at 100 °C for 20 h. Until complete consumption of the starting material was observed by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture removal of the solvent, the crude product was purified by column chromatography (petroleum ether/ethyl acetate, 10 : 1) to provide the desired products **3**. A scaled-up experiment conducted in the presence of **1a** (5 mmol), **2a** (7.5 mmol, 1.5 equiv), $K_2S_2O_8$ (15 mmol, 3 equiv) and PhCl (50 mL) at 100 °C for 120 h gave the target product **3aa** in 60% yield.

2.3 Radical Trapping Experiments

2.3.1 Using TEMPO as Radical Inhibitor

To a Schlenk tube were added *N*-arylacrylamide derivatives **1a** (0.2 mmol, 0.1 M), acyl Hantzsch esters **2a** (0.3 mmol, 1.5 equiv), $K_2S_2O_8$ (0.6 mmol, 3 equiv), TEMPO (3 equiv) and PhCl (2 mL) at 100 °C for 20 h. The GC-MS analysis of raw reaction mixture showed that onyl 6% yield of target product **3aa** was detected. Additionally, the cyclohexyl-trapping products **4** could be detected by GC-MS analysis of raw reaction mixture.

4, detected by GC-MS Chemical Formula: C₁₅H₂₉NO Exact Mass: 239.2249 Molecular Weight: 239.3969 m/z: 239.2249 (100.0%), 240.2283 (16.2%), 241.2316 (1.2%) Elemental Analysis: C, 75.26; H, 12.21; N, 5.85; O, 6.68

GC-MS analysis of raw reaction mixture by using TEMPO as radical inhibitor

GC spectra

MS spectra of the peak at 9.050 min

%		基峰: 142/8, 379, 310
56 69 83 109	42 1\$7	m/z 109.00 绝对强度 0 相对强度 0.00
3.0-1		
2.5		
2.0	······································	
1. 5-	010	
1 d 1	230	
0.5	224	
ى جوالى واللي والله والله بالبالية البالية البالية جوام و	182 207 267 281 320	341 355 385 401 416 446

[MS Spec	trum]		63.00	16930.02		87.05	14056	0.18
# of Peaks	s281		64.05	563 0.01		88.10	17200	0.22
Raw Spec	trum 9.05	5 (scan :	65.05	24727	24727 0.32 89.10		961 0.01	
1012)			66.05	10544	0.14	90.00	110 0.00	
Backgrou	nd 8.77	0 (scan :	67.05	197888	2.56	91.05	10760	0.14
955)			68.05	88777	1.15	92.10	17960.02	
Base Peak		20 (Inten :	69.05	923219	11.96	93.10	23651	0.31
7,719,651)		70.05	219894	2.85	94.10	14935	0.19
Event#	1		71.05	65901	0.85	95.10	45107	0.58
m/z Abso	olute	Intensity	72.05	104784	1.36	96.10	69264	0.90
Rela	tive Intens	ity	73.05	63164	0.82	97.10	91573	1.19
50.00	30390.04		74.05	595765	7.72	98.10	107027	1.39
51.00	10249	0.13	75.05	21670	0.28	99.15	10320	0.13
52.05	70170.09		76.05	15730.02		100.10	31626	0.41
53.05	102045	1.32	77.05	17077	0.22	101.10	19890.03	
54.10	93252	1.21	78.05	39460.05		102.10	13620.02	
55.05	1674242	21.69	79.05	54108	0.70	102.90	250 0.00	
56.05	667056	8.64	80.10	13075	0.17	104.10	287 0.00	
57.10	191577	2.48	81.05	206945	2.68	105.10	45460.06	
58.05	435891	5.65	82.05	155225	2.01	106.10	19800.03	
59.05	69675	0.90	83.10	426320	5.52	107.10	17391	0.23
60.05	22593	0.29	84.10	225669	2.92	108.15	20011	0.26
61.05	827 0.01		85.10	63152	0.82	109.10	962268	12.47
62.00	829 0.01		86.05	186362	2.41	110.10	122978	1.59

111.10	15860 0.21	159.10	65490.08	220.95	633 0.01
112.15	57100.07	160.10	274 0.00	222.20	253 0.00
113.15	59260.08	161.10	86 0.00	223.25	271 0.00
114.10	55840 0.72	162.10	37 0.00	224.20	25471 0.33
115.10	41070.05	163.10	13 0.00	225.15	35010.05
116.15	10730.01	166.10	197 0.00	226.30	306 0.00
117.10	187 0.00	168.10	142 0.00	227.30	38 0.00
118.20	95 0.00	169.10	20 0.00	228.30	9 0.00
119.20	287 0.00	170.10	5 0.00	230.30	16 0.00
120.25	367 0.00	172.10	96 0.00	231.30	52 0.00
121.15	33200.04	174.10	59 0.00	232.30	5 0.00
122.25	79140.10	175.10	32 0.00	233.30	20 0.00
123.15	157884 2.05	176.10	133 0.00	236.30	31 0.00
124.20	91828 1.19	178.10	222 0.00	237.30	31 0.00
125.20	41526 0.54	179.10	7 0.00	238.20	131 0.00
126.15	51966 0.67	180.10	126 0.00	239.20	65216 0.84
127.20	53480.07	181.10	80 0.00	240.20	11931 0.15
128.20	36370.05	182.10	165 0.00	241.20	11040.01
129.20	90 0.00	184.10	128 0.00	242.20	71 0.00
131.00	123 0.00	185.10	45 0.00	243.20	6 0.00
132.00	48 0.00	190.95	21 0.00	247.20	21 0.00
133.15	31 0.00	191.90	10 0.00	249.20	91 0.00
135.15	355 0.00	193.05	289 0.00	250.20	18 0.00
136.15	17100.02	194.00	88 0.00	251.20	83 0.00
137.10	833 0.01	196.00	126 0.00		
138.15	93450.12	197.00	33 0.00		
139.15	40360.05	198.00	30 0.00		
140.15	48897 0.63	199.00	7 0.00		
141.25	93398 1.21	200.00	2 0.00		
142.20	7719651 100.00	203.00	30 0.00		
143.15	1202386 15.58	205.00	24 0.00		
144.15	71088 0.92	206.00	61 0.00		
145.15	31610.04	207.00	883 0.01		
146.10	187 0.00	208.00	283 0.00		
147.05	555 0.01	209.00	85 0.00		
149.15	143 0.00	210.00	57 0.00		
150.10	56 0.00	212.00	31 0.00		
151.05	242 0.00	213.00	8 0.00		
153.10	48 0.00	215.00	23 0.00		
154.20	906 0.01	216.00	40 0.00		
155.15	13680.02	217.00	10 0.00		
156.15	132436 1.72	218.00	18 0.00		
157.15	1000692 12.96	219.00	27 0.00		
158.10	101371 1.31	220.00	8 0.00		

2.3.2 Using BHT as Radical Inhibitor

To a Schlenk tube were added N-arylacrylamide derivatives **1a** (0.2 mmol, 0.1 M), acyl Hantzsch esters **2a** (0.3 mmol, 1.5 equiv), $K_2S_2O_8$ (0.6 mmol, 3 equiv), BHT (3 equiv) and PhCl (2 mL) at 100 °C for 20 h. The GC-MS analysis of raw reaction mixture showed that onyl 4% yield of target product **3aa** was detected. Additionally, the cyclohexyl-trapping products **5** could be detected by GC-MS analysis of raw reaction mixture.

5, detected by GC-MS Chemical Formula: C₂₁H₃₄O Exact Mass: 302.2610 Molecular Weight: 302.4941 m/z: 302.2610 (100.0%), 303.2643 (22.7%), 304.2677 (2.5%) Elemental Analysis: C, 83.38; H, 11.33; O, 5.29

GC-MS analysis of raw reaction mixture by using BHT as radical inhibitor

GC spectra

[MS Spectrum]			82.15	13216	0.31	125.10	686 0.02	
# of Peaks312			83.10	405811	9.55	126.15	296 0.01	
Raw Spectrum 10.530 (scan :		30 (scan :	84.10	27416	0.65	127.10	15274	0.36
1307)			85.10	18040.04		128.10	58398	1.37
Backgrou	nd 10.4	80 (scan :	86.15	11800.03		129.10	64541	1.52
1297)			87.10	515 0.01		130.10	35834	0.84
Base Peak	cm/z 205.1	15 (Inten :	87.85	409 0.01		131.10	68274	1.61
4,249,046)		89.00	41140.10		132.15	12219	0.29
Event#	1		90.15	22660.05		133.15	85415	2.01
m/z Abso	olute	Intensity	91.10	144842	3.41	134.10	18656	0.44
Rela	tive Intens	ity	92.10	15638	0.37	135.15	72780	1.71
50.00	26110.06		93.10	41842	0.98	136.15	18422	0.43
51.00	10208	0.24	94.10	67120.16		137.15	20304	0.48
52.05	45390.11		95.10	30630	0.72	138.15	27180.06	
53.05	56928	1.34	96.05	28900.07		139.10	17430.04	
54.15	28787	0.68	97.10	17255	0.41	140.15	709 0.02	
55.05	961645	22.63	98.10	14960.04		141.10	37078	0.87
56.10	50300	1.18	99.10	479 0.01		142.10	23718	0.56
57.10	803558	18.91	100.05	330 0.01		143.10	23479	0.55
58.05	37771	0.89	101.05	13090.03		144.15	12399	0.29
59.05	47350.11		102.10	39910.09		145.10	133355	3.14
60.05	250 0.01		103.05	21853	0.51	146.10	23841	0.56
61.00	350 0.01		104.15	85610.20		147.10	50338	1.18
62.05	472 0.01		105.10	168264	3.96	148.10	15009	0.35
63.05	63.05 42750.10		106.10	21355	0.50	149.10	147168	3.46
64.05	24690.06		107.10	46461	1.09	150.10	17384	0.41
65.05	35617	0.84	108.10	10832	0.25	151.10	87590.21	
66.00	75040.18		109.10	23965	0.56	152.10	58260.14	
67.05	79379	1.87	110.15	30360.07		153.10	76380.18	
68.05	57700.14		111.10	31790.07		154.05	41280.10	
69.05	63588	1.50	112.10	176 0.00		155.10	13941	0.33
70.05	48500.11		113.10	225 0.01		156.10	12195	0.29
71.05	84330.20		114.15	685 0.02		157.10	20576	0.48
72.05	11130.03		115.10	59987	1.41	158.10	67260.16	
73.05	10300.02		116.10	25613	0.60	159.10	27946	0.66
74.00	990 0.02		117.10	44618	1.05	160.15	86160.20	
75.00	787 0.02		118.15	76350.18		161.10	127248	2.99
76.05	20510.05		119.10	121282	2.85	162.10	21200	0.50
77.05	65659	1.55	120.15	18636	0.44	163.10	74733	1.76
78.05	14468	0.34	121.10	179741	4.23	164.10	28590	0.67
79.05	72006	1.69	122.15	21596	0.51	165.10	65150.15	
80.10	10506	0.25	123.15	15897	0.37	166.00	20760.05	
81.05	57008	1.34	124.15	21100.05		167.15	14860.03	

168.10	10600.02		211.10	226 0	0.01		259.20	926	0.02
169.10	25540.06		212.10	93 (0.00		260.25	638	0.02
170.05	22530.05		213.10	819 (0.02		261.15	728	0.02
171.10	59930.14		214.15	218 (0.01		263.20	58	0.00
172.05	50600.12		215.15	18120	0.04		264.10	38	0.00
173.10	12520	0.29	216.15	563 (0.01		265.10	224	0.01
174.10	54720.13		217.10	44640).11		266.05	85	0.00
175.10	18162	0.43	218.15	44220	0.10		268.00	57	0.00
176.15	45430.11		219.25	44452	2	1.05	269.05	217	0.01
177.10	285431	6.72	220.15	14966	518	35.22	271.20	562	0.01
178.10	40986	0.96	221.15	24546	60	5.78	272.20	204	0.00
179.05	46630.11		222.10	22006)	0.52	273.20	211	0.00
180.10	473 0.01		223.05	16550	0.04		274.20	109	0.00
181.10	552 0.01		224.00	229 (0.01		276.20	10	0.00
182.05	548 0.01		225.05	778 (0.02		277.20	8	0.00
183.05	742 0.02		226.10	208 0	0.00		278.20	11	0.00
184.15	575 0.01		227.10	10080	0.02		282.05	352	0.01
185.10	19250.05		228.05	266 (0.01		284.00	189	0.00
186.10	18640.04		229.10	5533().13		285.20	1429	0.03
187.10	14432	0.34	230.25	17210	0.04		286.20	612	0.01
188.15	47300.11		231.15	21388	34	5.03	287.25	6448	30.15
189.10	108435	2.55	232.15	36325	5	0.85	288.30	1237	0.03
190.10	18040	0.42	233.15	40230).09		289.30	130	0.00
191.10	24089	0.57	234.15	386 (0.01		290.30	41	0.00
192.05	42790.10		235.10	40 (0.00		294.30	29	0.00
193.00	511 0.01		239.10	197 (0.00		296.30	53	0.00
193.95	183 0.00		240.05	195 (0.00		297.30	64	0.00
195.00	262 0.01		241.05	452 (0.01		298.30	39	0.00
196.10	341 0.01		242.20	135 (0.00		299.30	20	0.00
197.00	664 0.02		243.15	14220	0.03		300.20	540	0.01
198.20	243 0.01		244.20	21270	0.05		301.25	752	0.02
199.15	955 0.02		245.25	10870)	0.26	302.25	1516	0.36
200.10	322 0.01		246.20	36105	54	8.50	303.30	3685	50.09
201.10	37100.09		247.20	67167	'	1.58	304.30	662	0.02
202.15	15330.04		248.10	66810).16		305.30	26	0.00
203.10	42457	1.00	249.20	563 (0.01		306.30	4	0.00
204.15	24654	0.58	251.05	139 (0.00		310.30	100	0.00
205.15	4249046	100.00	252.10	57 (0.00		315.30	6	0.00
206.10	672979	15.84	255.00	55 (0.00		316.30	12	0.00
207.10	57283	1.35	256.00	22 (0.00		318.30	17	0.00
208.05	37110.09		257.20	11080).03		319.30	7	0.00
209.90	262 0.01		258.20	188 (0.00				

2.3.3 Using 1,1-diphenylethene as Radical Inhibitor

To a Schlenk tube were added N-arylacrylamide derivatives **1a** (0.2 mmol, 0.1 M), acyl Hantzsch esters **2m** (0.3 mmol, 1.5 equiv), $K_2S_2O_8$ (0.6 mmol, 3 equiv), 1,1-diphenylethene (3 equiv) and PhCl (2 mL) at 100 °C for 20 h. The GC-MS analysis of raw reaction mixture showed that onyl 3% yield of target product **3am** was detected. The benzyl-trapping products **6** could be obtained in 52% yield.

3. References

- [1] Q.-L. Wang, Q. Zhou, J. Liao, Z. Chen, B.-Q. Xiong, G.-J. Deng, K.-W. Tang and Y. Liu, J. Org., Chem., 2021, 86, 2866-2875.
- [2] F. Gu, W. Huang, X. Liu, W. Chen and X. Cheng, *Adv. Synth. Catal.*, 2018, 360, 925.
- [3] Q.-Y. Wu, Q.-Q. Min, G.-Z. Ao and F. Liu, Org. Biomol. Chem., 2018, 16, 6391.

4. Spectra

3-(Cyclohexylmethyl)-5-methoxy-1,3-dimethylindolin-2-one (3aa)

3-(Cyclohexylmethyl)-1,3-dimethyl-5-phenoxyindolin-2-one (3ba)

$\begin{array}{c} 7.328\\ 7.7.328\\ 7.7.328\\ 7.7.206\\ 7.7.206\\ 7.7.707\\ 7.7.00$

3-(Cyclohexylmethyl)-1,3,5-trimethylindolin-2-one (3ca)

$\begin{array}{c} 7,7,267\\ 7,004\\ 6,5737\\ 7,004\\ 6,5737\\ 6,6,964\\ 6,5737$

5-(Tert-butyl)-3-(cyclohexylmethyl)-1,3-dimethylindolin-2-one (3da)

3-(Cyclohexylmethyl)-1,3-dimethylindolin-2-one (3ea)

$\begin{array}{c} 777288\\ 77288\\ 77288\\ 77288\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77286\\ 77386\\ 7837\\ 78337\\ 78$

3-(Cyclohexylmethyl)-5-fluoro-1,3-dimethylindolin-2-one (3fa)

5-Chloro-3-(cyclohexylmethyl)-1,3-dimethylindolin-2-one (3ga)

5-Bromo-3-(cyclohexylmethyl)-1,3-dimethylindolin-2-one (3ha)

3-(Cyclohexylmethyl)-5-iodo-1,3-dimethylindolin-2-one (3ia)

3-(Cyclohexylmethyl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one (3ja)

Ethyl 3-(cyclohexylmethyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate (3ka)

$\begin{array}{c} & 8.044\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 8.020\\ & 6.881\\ & 6.8$

(1.960) (1.924) (1.924) (1.924) (1.924) (1.924) (1.924) (1.779) (1.779) (1.494) (1.255) (0.098) (0.097)(0.097)

3-(Cyclohexylmethyl)-6-methoxy-1,3-dimethylindolin-2-one (3la)

3-(Cyclohexylmethyl)-4-methoxy-1,3-dimethylindolin-2-one (3la')

6-Chloro-3-(cyclohexylmethyl)-1,3-dimethylindolin-2-one (3ma)

4-chloro-3-(cyclohexylmethyl)-1,3-dimethylindolin-2-one (3ma')

(Cyclohexylmethyl)-1,3,6-trimethylindolin-2-one (3na) and 3-(Cyclohexylmethyl)-1,3,4-trimethylindolin-2-one (3na')

3-(Cyclohexylmethyl)-7-methoxy-1,3-dimethylindolin-2-one (3oa)

3-(Cyclohexylmethyl)-1,3,7-trimethylindolin-2-one (3pa)

3-(Cyclohexylmethyl)-7-iodo-1,3-dimethylindolin-2-one (3qa)

3-(Cyclohexylmethyl)-1,3-dimethyl-1H-pyrrolo[2,3-b]pyridin-2(3H)-one (3ra)

$\begin{array}{c} 8.224 \\ 8.2247 \\ 8.2247 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 8.2322 \\ 1.1518 \\ 1.151$

3-(Cyclohexylmethyl)-1,3-dimethyl-1H-benzo[f]indol-2(3H)-one (3sa)

7, 271 7, 272 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 273 7, 206 7,

3-(Cyclohexylmethyl)-3-methyl-1-phenylindolin-2-one (3ua)

7.541 7.5518 7.7518 7.7518 7.7518 7.7518 7.7518 7.7518 7.7518 7.7518 7.7518 7.7528 7.7

1-Benzyl-3-(cyclohexylmethyl)-3-methylindolin-2-one (3va)

7,7,304 7,7,157 7,7,157 7,7,157 7,7,157 7,7,157 7,7,157 7,7,157 7,7,158 7,7,158 7,7,158 7,7,158 7,7,158 7,7,158 7,7,158 7,7,158 7,7,158 7,7,158 7,7,029 7,7,029 6,7945 6,7945 1,7799 1,7997 1,99777 1,997771,

3-(Cyclohexylmethyl)-3-methyl-1-(4-methylbenzyl)indolin-2-one (3wa)

$\begin{array}{c} 7.7.53\\ 7.7.156\\ 7.7.156\\ 7.7.1156\\ 7.7.1156\\ 7.7.1136\\ 7.7$

$\begin{array}{c} 7.3.02\\ 7.7.287\\ 7.7.287\\ 7.7.287\\ 7.7.271\\ 7.7.271\\ 7.7.271\\ 7.7.271\\ 7.7.271\\ 7.7.271\\ 7.7.271\\ 7.7.271\\ 7.7.1151\\ 7.7.1151\\ 7.7.1151\\ 7.7.1151\\ 7.7.1151\\ 7.7.1151\\ 7.7.1151\\ 7.7.1151\\ 7.7.1121\\ 7.$

3-(Cyclohexylmethyl)-1-(2-iodobenzyl)-3-methylindolin-2-one (3ya)

3-(Cyclohexylmethyl)-1-methyl-3-phenylindolin-2-one (3aaa)

7.377 7.377 7.337 7.337 7.335 7.7335 7.7335 7.7335 7.7312 7.7275 7.7275 7.7229 7.7229 7.7219 7.72219 7.72219 7.72100 7.7229 7.72100 7.72297.722

100 f1 (ppm)

90

80

70

60

50

10

20

110

130 120

100

190

180

170

160

150

140

3-Benzyl-3-(cyclohexylmethyl)-1-methylindolin-2-one (3aba)

(3-(Cyclohexylmethyl)-1-methyl-2-oxoindolin-3-yl)methyl acetate (3aca)

$\left[\begin{array}{c} 7.318\\ 7.7299\\ 7.7299\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7298\\ 7.7208\\ 1.2282\\ 1.2382$

3-(Cyclopentylmethyl)-5-methoxy-1,3-dimethylindolin-2-one (3ab)

$\begin{array}{c} 7,7,275\\ 6,6,773\\ 6,773\\ 6,7$

3-(Cyclohex-3-en-1-ylmethyl)-5-methoxy-1,3-dimethylindolin-2-one (3ac)

Tert-butyl 4-((5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)methyl)piperidine-1carboxylate (3ad)

$\begin{array}{c} 7.281\\ 6.6778\\ 6.6778\\ 6.6778\\ 6.6778\\ 6.6779\\ 6.6778\\ 6.6777\\ 8.2386\\ 6.6777\\ 8.2386\\ 6.6777\\ 8.2386\\ 6.6777\\ 8.2386\\ 6.6777\\ 8.2386\\ 6.6777\\ 8.2386\\ 6.6777\\ 8.2386\\ 6.6778\\ 8.2386\\ 6.6778\\ 8.2386\\ 6.6778\\ 8.2386\\ 1.2386\\$

3-Isobutyl-5-methoxy-1,3-dimethylindolin-2-one (3ae)

5-Methoxy-1,3-dimethyl-3-(2-methylbutyl)indolin-2-one (3af)

5-Methoxy-1,3-dimethyl-3-(2-methylpentyl)indolin-2-one (3ag)

$\langle 180.891 \\ 180.524 \\ 155.898 \\ 155.842 \\ 155.842 \\ 135.757 \\ 135.757 \\ 135.757 \\ 135.757 \\ 135.757 \\ 135.757 \\ 135.782 \\ 135.782 \\ 108.072 \\ 111.412 \\ 111.412 \\ 1135.953 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 108.072 \\ 109.733 \\ 19.578$

3.00-

4.0 3.5 f1 (ppm) 2.99-

3.0

2.5

2.0

2.95

1.0

0.5

0.0

0.48 1.06 0.48 3.04 5.15

1.5

2.93-1

6.5

6.0

5.5

5.0

4.5

7.0

7.5

3-(2,6-Dimethylhept-5-en-1-yl)-5-methoxy-1,3-dimethylindolin-2-one (3ah)

3-(3-(Benzo[d][1,3]dioxol-5-yl)-2-methylpropyl)-5-methoxy-1,3-dimethylindolin-2-one (3ai)

5-Methoxy-1,3-dimethyl-3-(2-phenylpropyl)indolin-2-one (3aj)

3-(2-Ethylhexyl)-5-methoxy-1,3-dimethylindolin-2-one (3ak)

$\begin{array}{c} 7,271\\ 6,677\\ 6,677\\ 6,677\\ 6,677\\ 6,677\\ 6,677\\ 1,928\\ 2,381\\ 3,381\\ 3,382\\ 3,$

 $\begin{array}{c} (1.325\\ 1.120\\ 1.120\\ 1.1034\\ 1.1034\\ 1.1034\\ 1.1034\\ 1.1034\\ 1.005\\ 0.995\\ 0.995\\ 0.995\\ 0.995\\ 0.995\\ 0.913\\ 0.913\\ 0.913\\ 0.913\\ 0.913\\ 0.913\\ 0.913\\ 0.056\\ 0.056\\ 0.057\\ 0.056\\ 0.057\\ 0.0$

5-Methoxy-1,3-dimethyl-3-neopentylindolin-2-one (3al)

5-Methoxy-1,3-dimethyl-3-phenethylindolin-2-one (3am)

77/256 77/2012 72/2012 72/2016 77/2016 77/2016 77/2016 77/2016 77/2016 77/2016 72/2016

5-Methoxy-1,3-dimethyl-3-propylindolin-2-one (3ao)

3-Butyl-5-methoxy-1,3-dimethylindolin-2-one (3ap)

-7.272 6.792 6.776 6.776 6.776 6.770 6.748 6.732

5-Methoxy-1,3-dimethyl-3-pentylindolin-2-one (3aq)

3-Hexyl-5-methoxy-1,3-dimethylindolin-2-one (3ar)

3-Heptyl-5-methoxy-1,3-dimethylindolin-2-one (3as)

Prop-1-ene-1,1,3-triyltribenzene (6)

7,286 7,283 7,264 7,245 7,245 7,171 7,171 7,168 7,168 7,168 7,168 7,168 7,168 7,168 7,168 7,168 7,168 7,060 7,041 6,837 6,837 6,837

$\begin{array}{c} -3.220\\ -3.220\\ 1.935\\ -1.918\\ -1.901\\ -1.918\\ -1.918\\ -1.918\\ -1.918\\ -1.918\\ -1.918\\ -1.918\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -1.450\\ -0.994\\ -0.996\\ -0.900\\ -0.000\\$

7.283 77.265 77.247 77.169 77.151 77.078 77.060 77.041 6.837

