Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supplementary data for FRET-based dual-labeled oligonucleotide probe detects target DNA by probing a minor groove environment

Shoutoku Koboku, Takumi Tsukada, Yurino Oku, Saika Kobayashi, and Yoshio Saito*

Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan Email Address: <u>saitoy@chem.ce.nihon-u.ac.jp</u>

Contents

Figure S1: Excitation and UV absorption spectra of AM37zA (1) in various solvents of different	
polarities	S2
Figure S2: HPLC analysis of the reaction mixture	S3
Figure S3: CD spectra of ODN(^{N37z} A) and ODN(^{F37z} A) hybridized with complementary ODNs	S4
Table S1: MALDI-TOF-MS spectral data for ODN(^{N37z} A) and ODN(^{F37z} A).	S5
Figure S4-S14: ¹ H- and ¹³ C-NMR data of newly synthesized compounds	S6

Figure S1: (a) Excitation and (b) UV absorption spectra of $^{AM37z}A$ (1) in various solvents of different polarities. All measurements were performed at a concentration of 10 μ M.

Figure S2. HPLC analysis of the reaction mixture (40° C, 15 h). The analysis was carried out on a CHEMCOBOND 5-ODS-H column (10×150 mm) eluted with 0.05 M ammonium formate buffer containing acetonitrile. Gradient from 3 to 30 % acetonitrile at a flow rate 2.0 ml/min over 45 min (UV detector at 260 nm).

Figure S3. CD spectra of ODN(^{N37z}A)/cODN(T) and ODN(^{F37z}A) /cODN(T) (2.5 µM duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

ODNs	Sequences	MALDI-TOF-MS	
		calcd. $[M + H]^+$	found $[M + H]^+$
ODN(^{N37z} A)	5'-d(CGCAAC ^{N37z} A CAACGC)-3'	4127.7	4127.5
$ODN(^{F37z}A)$	5'-d(CGCAAC F37zA CAACGC)-3'	4485.8	4485.1

Table S1. MALDI-TOF-MS spectral data for ODNs

Figure S4. ¹H-NMR spectrum of compound 3 (DMSO-*d*₆)

Figure S5. ¹³C-NMR spectrum of compound 3 (CD₃OD)

*:solvent impurities

Figure S6. ¹H-NMR spectrum of compound **4** (DMSO-*d*₆)

Figure S7. ¹³C-NMR spectrum of compound 4 (DMSO-*d*₆)

Figure S9. ¹³C-NMR spectrum of $^{AM37z}A(1)$ (DMSO- d_6)

Figure S10. ¹H-NMR spectrum of compound **5** (DMSO-*d*₆)

Figure S11. ¹³C-NMR spectrum of compound 5 (DMSO-*d*₆)

Figure S12. ¹H-NMR spectrum of compound **6** (DMSO-*d*₆)

Figure S13. ¹³C-NMR spectrum of compound 6 (DMSO-*d*₆)

