Total Synthesis of Proposed Elgonene C and its (4R,5R)-Diastereomer

Sudip Mandal, Barla Thirupathi*

Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India. Email: <u>thirupathibarla@iiserbpr.ac.in</u>

S. No.	Description	Page No.
1.	General information	S1
2.	Experimental procedure	S2-S4
3.	References	S5
4.	¹ H and ¹³ C-NMR comparison table for natural elgonene C, synthetic compounds 1, 1a	S5-S6
5.	¹³ C-NMR comparison table for natural elgonene C, synthetic compound 1 with traces TFA, H ₂ O and concentration variations	S6-S7
6.	Copies of 1D, 2D NMR spectra, Chiral HPLC traces, and HRMS data	S8-S41
7.	Copies of ¹ HNMR, ¹³ C-NMR of compound 1 with traces TFA, H ₂ O and concentration variations	S42-S44

Table of contents

1. General Experimental Procedure:

All moisture-sensitive reactions were performed in an oven or flame-dried glassware with Teflon coated magnetic stirring bar under argon atmosphere using dry, freshly distilled solvents unless otherwise noted. Air- and moisture-sensitive liquids were transferred *via* a gastight syringe and a stainless-steel needle. Reactions were monitored by thin-layer chromatography (TLC, Silica gel 60 F₂₅₄) plates with UV light, ethanolic anisaldehyde (with 1% AcOH and 3.3% conc. H₂SO₄)-heat and phosphomolybdic acid as developing agents. All workup and purification procedures were carried out with reagent-grade solvents under ambient atmosphere unless otherwise stated. Column chromatography was performed using silica gel 60-120 mesh, 100-200 mesh. Yields are mentioned as chromatographically and spectroscopically homogeneous materials unless otherwise stated. Optical rotations were measured only for pure compounds and not for mixtures using sodium (589, D line; Anton Paar MCP 200 system) lamp and are reported as follows: $[\alpha]_D^{25}$ (*c* = g/100 mL, solvent). HRMS were taken using Quadruple-TOF (Q-TOF) micro MS system using electrospray ionization (ESI) technique. ¹H

NMR spectra were recorded on 400, 700 MHz spectrometers in appropriate solvents and calibrated using residual undertreated solvent as an internal reference, and the chemical shifts are shown in ppm scales. Multiplicities of NMR signals are designated as s (singlet), d (doublet), t (triplet), q (quartet), br (broad), m (multiplet, for unresolved lines), etc. ¹³C spectra were recorded on 100 MHz spectrometers.

2. Experimental procedure:

4-((4-Methoxybenzyl)oxy)but-2-yn-1-ol (S1)

*Procedure adapted from a literature procedure.*¹

To a stirred solution of butyne-1,4-diol **11** (10.0 g, 116.3 mmol) and a catalytic amount of Amberlyst-15 resin (1.0 g, 10% w/w) in anhydrous CH_2Cl_2 (100 mL) was added 4-methoxybenzyl alcohol (16.0 g, 89.5 mmol) at room temperature and the reaction mixture was heated to reflux at 45 °C for 12 h. After completion of the reaction (monitored by TLC), it was filtered through a pad of Celite. The filtrate was washed with CH_2Cl_2 (2 × 50 mL), the combined organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure to obtain a brown oil, which was purified by silica gel column chromatography (30% ethyl acetate in hexanes) afforded the title compound **S1** (15.5 g, 86%).

Physical State: colourless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 4.54 (s, 2H), 4.33 (s, 2H), 4.19 (s, 2H), 3.82 (s, 3H), 2.13 (br, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 159.4, 129.7, 129.3, 113.9, 84.8, 81.7, 71.4, 57.0, 55.3, 51.0.

HRMS (ESI-TOF): calc'd for C₁₂ H₁₄ O₃ [M+Na⁺]: 229.0841, found: 229.0838.

TLC: $R_f = 0.2$ (25% EtOAc in hexanes, phosphomolybdic acid staining).

(E)-4-((4-methoxybenzyl)oxy)but-2-en-1-ol (S2)

Procedure adapted from a literature procedure.¹

Red-Al (31.4 mL, 109.2 mmol, 70% in toluene) was added to a solution of compound S1 (9.0 g, 43.7 mmol) in anhydrous THF (70 mL) at 0 °C and the reaction mixture was allowed to stir at room temperature for 6 h. After complete consumption of the starting material (monitored by TLC), it was quenched with a saturated solution of sodium potassium tartrate (100 mL) at 0 °C and diluted with ethyl acetate (100 mL). The organic layer was separated and the aqueous

layer was extracted with ethyl acetate ($2 \times 75 \text{ mL}$). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (30% ethyl acetate in hexanes) to furnish the desired compound S2 (7.7 g, 85%).

Physical State: colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 5.95 – 5.77 (m, 2H), 4.47 (s, 2H), 4.14 (s, 2H), 4.02 (d, *J* = 5.3 Hz, 2H), 3.81 (s, 3H), 2.10 (br, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 159.2, 132.3, 130.2, 129.4, 127.7, 113.8, 72, 69.8, 62.8, 55.3.

HRMS (ESI-TOF): calc'd for C₁₂ H₁₆ O₃ [M+Na⁺]: 231.0997, found: 231.0995.

TLC: $R_f = 0.2$ (30% EtOAc in hexanes, phosphomolybdic acid staining).

(*E*)-4-((4-methoxybenzyl)oxy)but-2-enal (10)

Procedure adapted from a literature procedure.¹

To a stirred solution of oxalyl chloride (4.1 mL, 48.1 mmol) in CH_2Cl_2 (40 mL), was added DMSO (6.8 mL, 96.1 mmol) at -78 °C. After 20 min, alcohol **S2** (5.0 g, 24.0 mmol) in CH_2Cl_2 (40 mL) was added to the reaction mixture at -78 °C and stirred for 45 min. Then triethylamine (26.7 mL, 192.3 mmol) was added to the reaction mixture and the reaction mixture was stirred at the same temperature for a further 45 min. After completion of the reaction (monitored by TLC), the reaction was quenched with a saturated aqueous NH_4Cl (50 mL) solution and the organic layer was separated. The aqueous layer was extracted with CH_2Cl_2 (2 × 75 mL). The combined organic layer was washed with water (30 mL) and brine (20 mL), dried over anhydrous Na_2SO_4 and concentrated, evaporated to dryness, and then purified by silica gel column chromatography (20% ethyl acetate in hexanes) to obtain the desired product **10** (4.2 g, 86%).

Physical State: colourless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 9.59 (d, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.86 (dt, *J* = 15.8, 4.1 Hz, 1H), 6.40 (ddt, *J* = 15.7, 7.9, 1.8 Hz, 1H), 4.54 (s, 2H), 4.27 (dd, *J* = 4.1, 1.9 Hz, 2H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.3, 159.5, 153.2, 131.8, 129.5, 129.4, 113.9, 72.7, 68.3, 55.3.

HRMS (ESI-TOF): calc'd for C₁₂H₁₄O₃ [M+Na⁺]: 229.0835, found:229.0837.

(S)-5,5-difluoro-3,3-diphenyl-1-(o-tolyl)tetrahydro-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaborole (F2/F0)

Compound **S3** was prepared by following standard literature procedure.² The physical and spectral data were identical to those previously reported for compound **S3**.²

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, *J* = 7.3 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 2H), 7.32 – 7.05 (m, 6H), 4.50 – 4.40 (m, 1H), 3.24 (dd, *J* = 16.8, 10.0 Hz, 2H), 2.29 – 2.07 (m, 1H), 1.94 – 1.77 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.0, 143.9, 128.6, 128.3, 127.1, 126.9, 125.8, 125.2, 76.5, 63.1 (m), 54.0 (m), 35.8 (m).

¹⁹F NMR (377 MHz, CDCl₃) δ -95.4 (m), -99.2 (m).

M. P.; 76 °C (Lit.74-75 °C)

 $[\alpha]_D^{25} = -91.0$ (c =1.34, CHCl₃), {Lit-90.7 (c =1.34, CHCl₃) for >99% ee}.

HRMS (ESI-TOF): calc'd for C₁₂H₂₀ O₅ [M+Na⁺]: 290.1356, found: 290.1365.

(S)-5,5-difluoro-3,3-diphenyl-1-(o-tolyl)tetrahydro-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaborole (F2/F0)

F2/F0 precatalyst was prepared from the known literature procedure²: Compound **S3** (290 mg, 1.15 mmol) was placed in a 25 mL oven- and flame-dried round bottom flask together with anhydrous benzene (15 mL) and diisopropylethylamine (0.44 mL, 2.53 mmol) under nitrogen at 23 °C. A solution of dibromo(*o*-tolyl)borane **S4**² (300 mg; 1.15 mmol) in anhydrous benzene (3 mL) was added *via* syringe over 30 min at 23 °C. After the addition was complete, the resulting white suspension was heated at 45 °C for 1 h. Stirring was stopped and the solids were allowed to settle at the bottom of the flask at room temperature. The supernatant solution was concentrated under reduced pressure on a Schlenk line to afford a pale-yellow oil which was pure by NMR.

Notes:

1. After preparation of the pre-catalyst, supernatant solutions were kept in a freezer at -20 °C under rigorous exclusion of moisture.

2. For the Diels–Alder experiments, concentration of the pre-catalyst solution should be done in a freshly oven- and flame-dried flask under rigorous exclusion of moisture.

3. For analytical purposes, NMR solvents should be rigorously dried and oven-dried NMR tubes should be used to obtain spectroscopically intact samples.

The spectral data for pre-catalyst F2/F0 was in good agreement with literature values.²

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 3H), 7.41 – 7.34 (m, 2H), 7.29 – 7.23 (m, 4H), 7.22 – 7.10 (m, 5H), 4.79 (dd, J = 10.7, 5.9 Hz, 1H), 3.71 (dd, J = 24.1, 12.6 Hz, 1H), 3.49 (dt, J = 17.1, 12.1 Hz, 1H), 2.54 (s, 3H), 2.18 – 2.06 (m, 1H), 1.65 – 1.45 (m, 1H).

References:

- 1. B. Thirupathi and D. K. Mohapatra, *Organic & biomolecular chemistry.*, 2016, **14**, 6212-6224.
- 2. K. Mahender Reddy, E. Bhimireddy, B. Thirupathi, S. Breitler, S. Yu and E. J. Corey, *Journal of the American Chemical Society*, 2016, **138**, 2443-2453.

Table 1. Comparison of ¹H NMR spectral data between natural and synthetic elgonene C.

Position	Natural Elgonene C (¹ H 500MHz, CDCl ₃)	Syntl (¹ H 7	netic compounds 00MHz, CDCl ₃)	Δδ (synthetic-natural) ppm		
	Data reported by	1	1a	1	1a	
	Stadler					
3	6.87 (br d,	6.83 (br d,	6.83 (br d, <i>J</i> = 8.7	-0.04	-0.04	
	<i>J</i> =8.82 Hz)	<i>J</i> = 8.7 Hz)	Hz)			
4	4.53 (dd, <i>J</i> = 8.82, 4.52	4.46 (dd, J	4.47 (dd, $J = 8.7$,	-0.07	-0.06	
	Hz)	= 8.7,	5.7			
		5.7 Hz)	Hz)			
5	4.34 (d,	4.12 (d, <i>J</i>	4.11 (d, $J = 5.5$	-0.22	-0.23	
	J = 4.52 Hz)	= 5.5	Hz)			
		Hz)				
7	2.12 (m)	2.16 (m)	2.13 (m)	+0.04	+0.01	
8	1.49 (m), 1.84(m)	1.56 (m),	1.48 (m), 1.80 (m)	+0.07,	-0.01,	
		1.84 (m)		0.0	-0.04	
9	1.98 (m),	1.79 (m),	1.99 (m),	-0.19,	+0.01,	
	2.04 (m)	2.06 (m)	2.08 (m)	+0.02	+0.04	
11	5.41 (m)	5.41 (m)	5.41 (m)	0.0	0.0	
12	1.99 (m),	1.99 (m),	1.99 (m),	0.0,	0.0,	
	2.08 (m)	2.06 (m)	2.08 (m)	-0.02	0.0	
13	1.66 (s)	1.67 (s)	1.67 (s)	+0.01	+0.01	
14	5.07 (s), 5.22	5.08 (s),	5.09 (s), 5.23 (s)	+0.02,	+0.02,	
		5.23 (s)				
	(s)			+0.02	+0.02	
15	1.92 (s)	1.93 (s)	1.92 (s)	+0.01	0.0	

Table 2.	Comparison	of ¹³ C NMR	spectral da	ta between	natural a	nd synthetic	elgonene
C.							

Position	Natural Elgonene C (¹³ C 125 MHz	Synthetic Elgone in CDCl	ene C (175 MHz, 3	Δδ (synthetic-natural) ppm		
	in CDCl3)	1	1a	1	1a	
1	170.6	172.2	172.0	+1.6	+1.4	
2	130.3	130.0	130.0	-0.3	-0.3	

3	140.1	141.1	141.0	+1.0	+0.9
4	69.9	70.6	70.6	+0.7	+0.7
5	76.4	76.6	76.5	+0.2	+0.1
6	152.7	153.5	153.2	+0.8	+0.5
7	36.8	37.3	37.3	+0.5	+0.5
8	29.6	28.6	29.3	-1.0	-0.3
9	30.6	30.7	30.5	+0.1	-0.1
10	133.7	134.0	133.7	+0.3	+0.0
11	120.5	120.3	120.4	-0.2	-0.1
12	31.6	32.8	31.6	+1.2	0.0
13	23.4	23.4	23.4	0.0	0.0
14	111.3	111.0	111.4	-0.3	0.1
15	13.0	13.0	13.0	0.0	0.0

Table 3. Comparison of ¹³ C NMR spectral data between natural and synthetic el-	gonene
C with traces H ₂ O and TFA	

	Natural	Synthetic Elgone (¹³ CNMR, CDCl	ne C 1 _{3,} 100 MHz)	Δδ (synthetic-natural) ppm		
Position	Elgonene C (¹³ C 125 MHz, in CDCl ₃)	(With trace amount of H ₂ O)	(With traces amount of TFA)	(With traces amount of H ₂ O)	(With traces amount of TFA)	
1	170.6	171.0	171.0	+0.4	+0.4	
2	130.3	130.0	130.0	-0.3	-0.3	
3	140.1	140.9	141.0	+0.8	+0.9	
4	69.9	70.7	70.7	+0.7	+0.8	
5	76.4	76.6	76.6	+0.2	+0.2	
6	152.7	153.7	153.7	+1.0	+1.0	
7	36.8	37.4	37.4	+0.6	+0.6	
8	29.6	28.7	28.7	-0.9	-0.9	
9	30.6	30.8	30.8	+0.1	+0.2	
10	133.7	134.1	134.1	+0.4	+0.4	
11	120.5	120.4	120.4	-0.2	-0.1	
12	31.6	32.9	32.9	+1.3	+1.3	
13	23.4	23.4	23.4	0.0	0.0	
14	111.3	111.0	111.1	-0.3	-0.2	
15	13.0	13.2	13.2	0.1	+0.2	

Table 4: Comparison table of ¹³C-NMR spectrum of compound 1 (CDCl₃, 100 MHz) with concentration variations

Position Natural Elgonene C (¹³ C	Synthetic Elgonene C 1 (¹³ C 100 MHz)
---	---

	125 MHz, in CDCl ₃)	(0.025 M CDCl ₃)	(0.094 M CDCl ₃)	(0.075 M CDCl ₃)
1	170.6	171.6	172.3	172.1
2	130.3	130.0	130.1	130.1
3	140.1	141.0	141.1	141.1
4	69.9	70.7	70.6	70.6
5	76.4	76.6	76.5	76.5
6	152.7	153.7	153.6	153.6
7	36.8	37.4	37.3	37.3
8	29.6	28.7	28.7	28.7
9	30.6	30.8	30.7	30.7
10	133.7	134.1	134.1	134.1
11	120.5	120.4	120.4	120.4
12	31.6	32.9	32.8	32.8
13	23.4	23.5	23.5	23.5
14	111.3	111.1	111.1	111.1
15	13.0	13.2	13.1	13.1

¹H-NMR of intermediate S1 for compound 10 (400 MHz, CDCl₃):

Chiral HPLC: Enantiomeric excess was determined by HPLC analysis (DAICEL CHIRALPAK@OJ-H (250×4.6mm, 5µm), hexanes/*i*-PrOH = 60/40, 1.0 mL/min, 254 nm), $t_{major} = 8.3 \text{ min}, t_{minor} = 7.2 \text{ min}; ee = 97\%.$

HPLC chromatogram of racemic compound 14:


```
Signal 1: DAD1 A, Sig=254,4 Ref=off
Peak RetTime Type Width
                             Height
                     Area
                                     Area
                    [mAU*s]
                             [mAU]
 #
    [min]
              [min]
                                       %
1 7.092 BB
             0.1960 1791.54810 139.34712 47.8075
   8.260 BB
  2
              0.2490 1955.86951 118.23582 52.1925
```

HPLC chromatogram of chiral compound 14:

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.241	BB	0.1749	34.08890	3.03759	1.4146
2	8.323	MM	0.2471	2375.67554	160.26422	98.5854

¹H-NMR spectrum of compound 5 (400 MHz, CDCl₃):

¹³C-NMR spectrum of compound S3 (100 MHz, CDCl₃):

146.02	128.59 128.28 127.13 127.13 126.94 125.19 125.19	.76.50	63.16 63.14 63.08 63.08 54.30 54.30 54.30 53.71	
11		1	$\forall \forall \forall$	\vee

¹⁹F-NMR spectrum of compound S3 (400 MHz, CDCl₃):

 -95.06
 -95.67
 -95.67
 -99.53 0 -10 -50 -60 -100 -110 f1 (ppm) -120 -130 -140 -150 -20 -30 -40 -70 -80 -90 -160 -170 -180 -190 -200 ¹H-NMR spectrum of compound F2/F0 (400 MHz, CDCl₃): 4.79 4.79 4.77 f f / / CH₃ 劜 嵐 1.62-<u>1.00</u> 1.39-3.47-4 2.23-4 4.31-4 5.40-1 2.78H 5.5 5.0 4.5 f1 (ppm) 2.5 2.0 1.5

3.5

3.0

1.0

0.5

0.0

4.0

6.0

6.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

¹⁹F-NMR spectrum of compound 12 (400 MHz, CDCl₃):

¹³C-NMR spectrum of compound 1 (175 MHz, CDCl₃):

¹H, ¹³C HSQC NMR spectrum of Compound 1 (700 MHz, 175 MHz in CDCl₃)

¹H, ¹³C HMBC NMR spectrum of Compound 1 (700 MHz, 175 MHz in CDCl₃)

F2 [ppm]

HRMS (ESI-TOF) Spectra of Compound 1:

Elemental Composition Report										Page 1			
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off													
Monoisotopic Mass, Even Electron Ions 38 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 10-23 H: 10-30 O: 3-200 23Na: 0-1													
TB IISER Berhampur SM-237 11 (0.226) Cm (8:48) 1								1: TC	OF MS ES+ 6.61e+006				
100							289.	1415					m/z
120	140 16	0 180	200	220	240	260	280	300	320	340	360	380	400
Minimum: Maximum:		5.0	5.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	Formula								
289.1415	289.1416	-0.1	-0.3	4.5	C15 H22	04 23Na							

Chiral HPLC: Enantiomeric excess was determined by HPLC analysis (DAICEL CHIRALPAK@OJ-H (250×4.6mm, 5µm), hexanes/*i*-PrOH = 60/40, 1.0 mL/min, 254 nm), $t_{major} = 6.9 \text{ min}, t_{minor} = 8.2 \text{ min}; ee = 98.7\%.$

HPLC chromatogram of racemic compound 19:

HPLC chromatogram of chiral compound 19:

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.928	MM	0.2219	8563.98828	643.21307	99.3682
2	8.199	MM	0.1781	54.45012	5.09442	0.6318

¹H-NMR spectrum of compound 22 (400 MHz, CDCl₃):

¹H-NMR spectrum of compound 23 (400 MHz, CDCl₃):

S39

¹H, ¹H COSY NMR spectrum of Compound 1a (400 MHz in CDCl₃)

¹H, ¹³C HMBC NMR spectrum of Compound 1a (400 MHz, 100 MHz in CDCl₃)

¹H, ¹H ROESY NMR spectrum of Compound 1a (400 MHz in CDCl₃)

HRMS (ESI-TOF) Spectra of Compound 1a:

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Even Electron lons 16 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass) Elements Used: C: 10-20 H: 22-40 O: 0-5 23Na: 0-1

04-Aug-202116:53:04 1: TOF MS ES+ 2.21e+008 TB SM-299 7 (0.147) Cm (7:43) IISER Berhampur 273.1664 100 289.1423 337.2899 365.3208 m/z _____ 400 T 60 100 140 160 180 240 300 340 360 380 80 120 200 220 260 280 320 Minimum: -1.5 5.0 10.0 50.0 Maximum: mDa PPM DBE Mass Calc. Mass Formula 289.1423 C15 H22 O4 23Na 289.1416 0.7 2.4 4.5

Page 1

S41

<0.83 6.81 5.24
 5.24
 5.29
 5.09
 4.48
 4.44
 4.44
 4.44
 4.44
 4.413
 4.11 QH Me CO₂H ŌН Me 5.5 5.0 4.5 f1 (ppm) 0.0 10.0 8.5 8.0 7.5 7.0 6.5 6.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 9.5 9.0 ¹³C-NMR spectrum of compound 1 (100 MHz, in CDCl₃ and traces amount H₂O): - 37.40 32.86 30.76 29.78 - 23.45 OH Me CO₂H ŌН Me 200 0 190 150 . 120 110 100 f1 (ppm) 90 80 , 70 60 50 40 30 20 10 180 170 160 140 130

¹H-NMR spectrum of compound 1 (400 MHz, in CDCl₃ and traces amount H₂O):

¹H-NMR spectrum of compound 1 (400 MHz, in CDCl₃ and traces amount TFA):

¹³C-NMR spectrum of compound 1 (CDCl₃, 100 MHz) with concentration variations