Supplementary Information

Structure-Activity Relationship Studies on an Antitumor Marine Macrolide Using Aplyronine A-Swinholide A Hybrid

Takayuki Ohyoshi,* ${ }^{1}$ Atsuhiro Takano, ${ }^{1}$ Imari Kikuchi, ${ }^{1}$ Tomotaka Ogura, ${ }^{1}$ Mayu Namiki, ${ }^{1}$ Yuto Miyazaki, ${ }^{1}$ Takahiro Hirano, ${ }^{1}$ Shota Konishi, ${ }^{1}$ Yuta Ebihara, ${ }^{1}$ Koichi Takeno, ${ }^{1}$ Ichiro Hayakawa, ${ }^{2}$ Hideo Kigoshi* ${ }^{*}$
${ }^{1}$ Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
${ }^{2}$ Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui Setagaya-Ku, Tokyo 156-8550, Japan

Table of Contents

1. Stereochemistry at C25 and C26 in compound $\mathbf{1 3}$ (S3)
2. Stereochemistry at C19 in compound 26 (S4)
3. SDS-PAGE of the supernatants and the precipitates (S5-S6)
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of synthetic compounds (S7-S70)

Determination of the absolute configurations at C25 and C26 in $\mathbf{1 3}$

The stereochemistry of $\mathbf{1 3}$ was determined as follows (Scheme S1). Acetylene $\mathbf{1 3}$ was converted into 1,3-acetonide $\mathbf{S} 1$. The relative stereochemistry of C23 and C25 in $\mathbf{S} 1$ was determined to be anti by the ${ }^{13} \mathrm{C}$ chemical shifts of two acetonide methyl groups ($\delta_{\mathrm{C}} 23.6,25.0$). ${ }^{1}$ In addition, acetylene $\mathbf{1 3}$ was converted into 1,3-acetonide $\mathbf{S 3}$, and the relative stereochemistry of $\mathbf{C} 25$ and $\mathbf{C} 26$ was determined to be anti by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants.

Scheme S1. Determination of the absolute configurations at C25 and C26 in $\mathbf{1 3}$

Reference

1) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.

Determination of the absolute configuration at C19 of S26

(S)-MTPA ester of 26

To a stirred solution of alcohol $26(2.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added $(R)-(+)-$ $\operatorname{MTPACl}(9.4 \mu \mathrm{~L}, 50 \mu \mathrm{~mol})$ and DMAP $(9.1 \mathrm{mg}, 75 \mu \mathrm{~mol})$. The reaction mixture was stirred at room temperature for 2 h , poured into saturated aqueous $\mathrm{NaHCO}_{3}(2.0 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0$ $\mathrm{mL} \times 3$). The combined extracts were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by preparative TLC (hexane-EtOAc $9: 1$) to afford (S)-MTPA ester of $\mathbf{2 6}(2.6 \mathrm{mg}, 87 \%)$ as a colorless oil.

(R)-MTPA ester of 26

A solution of alcohol $\mathbf{2 6}(2.9 \mathrm{mg}, 2.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was similarly treated with $(S)-(-)-$ MTPACl and DMAP to afford (R)-MTPA ester of $\mathbf{2 6}(2.8 \mathrm{mg}, 80 \%)$ as a colorless oil.

Figure S1. The $\Delta \delta$ values ($\delta s-\delta_{R}$) for MTPA esters of $\mathbf{2 6}$

Figure S2. SDS-PAGE of the supernatants
Tubulin was polymerized with taxol in the presence of actin and/or $\mathbf{1}$ or $\mathbf{5}$, and then precipitated by ultracentrifugation. Depolymerized proteins in the supernatant were analyzed by SDS-PAGE, and detected with CBB stain.

Figure S3. SDS-PAGE of the precipitates
Tubulin was polymerized with taxol in the presence of actin and/or $\mathbf{1}$ or $\mathbf{5}$, and then precipitated by ultracentrifugation. Polymerized proteins in the precipitate were analyzed by SDS-PAGE, and detected with CBB stain.

[mdd]

