Supplementary Information

Structure–Activity Relationship Studies on an Antitumor Marine Macrolide Using Aplyronine A–Swinholide A Hybrid

Takayuki Ohyoshi,*¹ Atsuhiro Takano,¹ Imari Kikuchi,¹ Tomotaka Ogura,¹ Mayu Namiki,¹ Yuto Miyazaki,¹ Takahiro Hirano,¹ Shota Konishi,¹ Yuta Ebihara,¹ Koichi Takeno,¹ Ichiro Hayakawa,² Hideo Kigoshi*¹

¹Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan ²Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui Setagaya-Ku, Tokyo 156-8550, Japan

Table of Contents

- 1. Stereochemistry at C25 and C26 in compound 13 (S3)
- 2. Stereochemistry at C19 in compound 26 (S4)
- 3. SDS-PAGE of the supernatants and the precipitates (S5-S6)
- 4. ¹H and ¹³C NMR spectra of synthetic compounds (S7–S70)

Determination of the absolute configurations at C25 and C26 in 13

The stereochemistry of **13** was determined as follows (Scheme S1). Acetylene **13** was converted into 1,3-acetonide **S1**. The relative stereochemistry of C23 and C25 in **S1** was determined to be anti by the ¹³C chemical shifts of two acetonide methyl groups (δ_C 23.6, 25.0).¹ In addition, acetylene **13** was converted into 1,3-acetonide **S3**, and the relative stereochemistry of C25 and C26 was determined to be anti by ¹H-¹H coupling constants.

Scheme S1. Determination of the absolute configurations at C25 and C26 in 13

Reference

1) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.

Determination of the absolute configuration at C19 of S26

(S)-MTPA ester of 26

To a stirred solution of alcohol **26** (2.5 mg, 2.5 μ mol) in CH₂Cl₂ (1.0 mL) were added (*R*)-(+)-MTPACl (9.4 μ L, 50 μ mol) and DMAP (9.1 mg, 75 μ mol). The reaction mixture was stirred at room temperature for 2 h, poured into saturated aqueous NaHCO₃ (2.0 mL), and extracted with CH₂Cl₂ (3.0 mL × 3). The combined extracts were washed with brine (5 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by preparative TLC (hexane–EtOAc 9 : 1) to afford (*S*)-MTPA ester of **26** (2.6 mg, 87%) as a colorless oil.

(R)-MTPA ester of 26

A solution of alcohol **26** (2.9 mg, 2.9 μ mol) in CH₂Cl₂ (1.0 mL) was similarly treated with (*S*)-(–)-MTPACl and DMAP to afford (*R*)-MTPA ester of **26** (2.8 mg, 80%) as a colorless oil.

Figure S1. The $\Delta\delta$ values ($\delta s - \delta R$) for MTPA esters of **26**

Figure S2. SDS-PAGE of the supernatants

Tubulin was polymerized with taxol in the presence of actin and/or 1 or 5, and then precipitated by ultracentrifugation. Depolymerized proteins in the supernatant were analyzed by SDS-PAGE, and detected with CBB stain.

Figure S3. SDS-PAGE of the precipitates

Tubulin was polymerized with taxol in the presence of actin and/or 1 or 5, and then precipitated by ultracentrifugation. Polymerized proteins in the precipitate were analyzed by SDS-PAGE, and detected with CBB stain.

