Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

A stereochemical journey around spirocyclic glutamic acid analogs

Anton V. Chernykh,^a Alla V. Chernykh,^a Dmytro S. Radchenko,^{a,b} Pratik Rajesh Chheda,^c Eduard B. Rusanov,^d Oleksandr O. Grygorenko,^{a,b} M. Ashley Spies,^{c,e} Dmitriy M. Volochnyuk,^{a,b,d} Igor V. Komarov^{*a,b}

^a Enamine Ltd. (<u>www.enamine.net</u>) Chervonotkatska Street 78, Kyiv 02094, Ukraine

^b Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine

^c Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy University of Iowa City, Iowa 52246, USA

^d Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine ^e Department of Biochemistry, Carver College of Medicine University of Iowa City, Iowa 52246, USA

*Corresponding author. E-mail: <u>igor.komarov@knu.ua</u>

Table of contents.

¹ H NMR spectrum of compound 14a	S4
APT ¹³ C{ ¹ H} NMR spectrum of compound 14a	S5
¹ H NMR spectrum of compound 14b	S6
APT ¹³ C{ ¹ H} NMR spectrum of compound 14b	S7
¹ H NMR spectrum of compound 17a	S8
APT ¹³ C{ ¹ H} NMR spectrum of compound 17a	S9
¹ H NMR spectrum of compound 17b	S10
APT ¹³ C{ ¹ H} NMR spectrum of compound 17b	S11
¹ H NMR spectrum of compound 18a	S12
APT ¹³ C{ ¹ H} NMR spectrum of compound 18a	S13
¹ H NMR spectrum of compound 18b	S14
APT ¹³ C{ ¹ H} NMR spectrum of compound 18b	S15
¹ H NMR spectrum of compound 19a	S16
APT ¹³ C{ ¹ H} NMR spectrum of compound 19a	S17
¹ H NMR spectrum of compound 19b	S18
APT ¹³ C{ ¹ H} NMR spectrum of compound 19b	S19
¹ H NMR spectrum of compound 21a	S20
APT ¹³ C{ ¹ H} NMR spectrum of compound 21a	S21
¹ H NMR spectrum of compound 21b	S22
APT ¹³ C{ ¹ H} NMR spectrum of compound 21b	S23
¹ H NMR spectrum of compound 22a	S24
APT ¹³ C{ ¹ H} NMR spectrum of compound 22a	S25
¹ H NMR spectrum of compound 22b	S26
APT ¹³ C{ ¹ H} NMR spectrum of compound 22b	S27
¹ H NMR spectrum of compound 29	S28
APT ¹³ C{ ¹ H} NMR spectrum of compound 29	S29

¹ H NMR spectrum of compound 30a	S30
APT ¹³ C{ ¹ H} NMR spectrum of compound 30a	\$31
¹ H NMR spectrum of compound 30b	\$32
APT ¹³ C{ ¹ H} NMR spectrum of compound 30b	\$33
¹ H NMR spectrum of compound 38	\$34
APT ¹³ C{ ¹ H} NMR spectrum of compound 38	S35
¹ H NMR spectrum of compound 39	\$36
APT ¹³ C{ ¹ H} NMR spectrum of compound 39	\$37
¹ H NMR spectrum of compound 40	\$38
APT ¹³ C{ ¹ H} NMR spectrum of compound 40	\$39
¹ H NMR spectrum of compound 41	S40
APT ¹³ C{ ¹ H} NMR spectrum of compound 41	S41
¹ H NMR spectrum of compound 42	S42
APT ¹³ C{ ¹ H} NMR spectrum of compound 42	S43
¹ H NMR spectrum of compound 43	S44
APT ¹³ C{ ¹ H} NMR spectrum of compound 43	S45
¹ H NMR spectrum of compound 45	S46
APT ¹³ C{ ¹ H} NMR spectrum of compound 45	S47
³¹ P{ ¹ H} NMR spectrum of compound 45	S48
¹ H NMR spectrum of compound 46	S49
APT ¹³ C{ ¹ H} NMR spectrum of compound 46	\$50
¹ H NMR spectrum of compound 47	S51
APT ¹³ C{ ¹ H} NMR spectrum of compound 47	S52
¹ H NMR spectrum of compound 48a	\$53
APT ¹³ C{ ¹ H} NMR spectrum of compound 48a	S54
¹ H NMR spectrum of compound 48b	S55
APT ¹³ C{ ¹ H} NMR spectrum of compound 48b	S56
¹ H NMR spectrum of compound 49a	S57
APT ¹³ C{ ¹ H} NMR spectrum of compound 49a	S58
¹ H NMR spectrum of compound 49b	\$59
APT ¹³ C{ ¹ H} NMR spectrum of compound 49b	S60
¹ H NMR spectrum of compound 50a	S61
APT ¹³ C{ ¹ H} NMR spectrum of compound 50a	S62
¹ H NMR spectrum of compound 50b	S63
APT ¹³ C{ ¹ H} NMR spectrum of compound 50b	S64
¹ H NMR spectrum of compound 51a	S65
APT ¹³ C{ ¹ H} NMR spectrum of compound 51a	S66
¹ H NMR spectrum of compound 51b	S67
APT ¹³ C{ ¹ H} NMR spectrum of compound 51b	S68

¹ H NMR spectrum of compound 52a	S69
APT ¹³ C{ ¹ H} NMR spectrum of compound 52a	S70
¹ H NMR spectrum of compound 52b	S71
APT ¹³ C{ ¹ H} NMR spectrum of compound 52b	S72
¹ H NMR spectrum of compound 53a	S73
APT ¹³ C{ ¹ H} NMR spectrum of compound 53b	S74
¹ H NMR spectrum of compound 53b	S75
APT ¹³ C{ ¹ H} NMR spectrum of compound 53b	S76
¹ H NMR spectrum of compound 54b	S77
APT ¹³ C{ ¹ H} NMR spectrum of compound 54b	S78
¹ H NMR spectrum of compound 55a	S79
APT ¹³ C{ ¹ H} NMR spectrum of compound 55a	S80
¹ H NMR spectrum of compound 59	S81
APT ¹³ C{ ¹ H} NMR spectrum of compound 59	S82
¹ H NMR spectrum of compound 60	S83
APT ¹³ C{ ¹ H} NMR spectrum of compound 60	S84
¹ H NMR spectrum of compound 62a	S85
APT ¹³ C{ ¹ H} NMR spectrum of compound 62a	S86
¹ H NMR spectrum of compound 62b	S87
APT ¹³ C{ ¹ H} NMR spectrum of compound 62b	S88
¹ H NMR spectrum of compound 63a	S89
APT ¹³ C{ ¹ H} NMR spectrum of compound 63a	S90
¹ H NMR spectrum of compound 63b	S91
APT ¹³ C{ ¹ H} NMR spectrum of compound 63b	S92
X-Ray diffraction studies and ORTEP diagrams for the compounds 50–62	S93
Inhibition of <i>H. Pylori</i> glutamate racemase by the spiro[3.3]heptane-derived amino acids (dose – response curves)	S106
References	S107

¹H NMR spectrum of compound **14a**

APT ¹³C{¹H} NMR spectrum of compound **14a**

¹H NMR spectrum of compound **14b**

APT ¹³C{¹H} NMR spectrum of compound **14b**

¹H NMR spectrum of compound **17a**

APT ¹³C{¹H} NMR spectrum of compound **17a**

¹H NMR spectrum of compound **17b**

APT ¹³C{¹H} NMR spectrum of compound **17b**

¹H NMR spectrum of compound **18a**

APT ¹³C{¹H} NMR spectrum of compound **18a**

¹H NMR spectrum of compound **18b**

APT ¹³C{¹H} NMR spectrum of compound **18b**

¹H NMR spectrum of compound **19a**

APT ¹³C{¹H} NMR spectrum of compound **19a**

¹H NMR spectrum of compound **19b**

¹³C{¹H} NMR spectrum of compound **19b**

S19

¹H NMR spectrum of compound **21a**

APT ¹³C{¹H} NMR spectrum of compound **21a**

¹H NMR spectrum of compound **21b**

APT ¹³C{¹H} NMR spectrum of compound **21b**

¹H NMR spectrum of compound **22a**

APT ¹³C{¹H} NMR spectrum of compound 22a

¹H NMR spectrum of compound **22b**

APT ¹³C{¹H} NMR spectrum of compound **22b**

¹H NMR spectrum of compound **29**

¹H NMR spectrum of compound **30a**

APT ¹³C{¹H} NMR spectrum of compound **30a**

¹H NMR spectrum of compound **30b**

APT ¹³C{¹H} NMR spectrum of compound **30b**

¹H NMR spectrum of compound **38**

APT ¹³C{¹H} NMR spectrum of compound **38**

¹H NMR spectrum of compound **39**

¹H NMR spectrum of compound **40**

¹H NMR spectrum of compound **41**

¹H NMR spectrum of compound **42**

¹H NMR spectrum of compound **43**

S44

¹H NMR spectrum of compound **45**

S48

¹H NMR spectrum of compound **46**

¹H NMR spectrum of compound **47**

¹H NMR spectrum of compound **48a**

¹H NMR spectrum of compound **48b**

¹H NMR spectrum of compound **49a**

¹H NMR spectrum of compound **49b**

¹H NMR spectrum of compound **50a**

¹H NMR spectrum of compound **50b**

¹H NMR spectrum of compound **51a**

¹H NMR spectrum of compound **51b**

S67

¹H NMR spectrum of compound **52a**

¹H NMR spectrum of compound **52b**

¹H NMR spectrum of compound **53a**

APT ¹³C{¹H} NMR spectrum of compound **53a**

¹H NMR spectrum of compound **53b**

APT ¹³C{¹H} NMR spectrum of compound **53b**

¹H NMR spectrum of compound **54b**

APT ¹³C{¹H} NMR spectrum of compound **54b**

¹H NMR spectrum of compound **55a**

APT ¹³C{¹H} NMR spectrum of compound **55a**

¹H NMR spectrum of compound **59**

APT ¹³C{¹H} NMR spectrum of compound **59**

¹H NMR spectrum of compound **60**

APT ¹³C{¹H} NMR spectrum of compound **60**

¹H NMR spectrum of compound 62a

APT ¹³C{¹H} NMR spectrum of compound 62a

¹H NMR spectrum of compound **62b**

APT ¹³C{¹H} NMR spectrum of compound **62b**

¹H NMR spectrum of compound 63a

APT ¹³C{¹H} NMR spectrum of compound 63a

¹H NMR spectrum of compound **63b**

APT ¹³C{¹H} NMR spectrum of compound **63b**

X-Ray diffraction studies and ORTEP diagrams of compounds 50-62

Crystal data for compound 50a: $C_{16}H_{26}N_2O_3S$, M = 326.45, monoclinic, space group *C2*, a = 18.407(3), b = 6.1109(8), c = 18.265(2)Å, $\theta = 118.358(4)^{\circ}$ V = 1808.0(4)Å³, Z = 4, d_c = 1.199 g·cm⁻³, $\mu = 0.192$ mm⁻¹, F(000) = 704, crystal size ca. 0.07 × 0.13 × 0.52 mm. All crystallographic measurements were performed at 138K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \le 25.5^{\circ}$ using Mo-K $_{\alpha}$ radiation ($\lambda = 0.71073$ Å). The intensities of 9459 reflections were collected (3160 unique reflections, R_{merg} = 0.0333). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were placed at calculated positions and refined as 'riding' model, and NH hydrogen was found in DF synthesis of the electron density maps and refined isotropically. The solvate water molecule could not be modeled satisfactorily thus SQUEEZE routine in the PLATON software^[2, 3] were applied for correction of the data. Convergence was obtained at R₁ = 0.0332 and wR₂ = 0.0715 for 2877 observed reflections with I $\geq 2\sigma(I)$, R₁ = 0. 0388 and wR₂ = 0.0739, GOF = 1.047 for 3160 independent reflections, 203 parameters, Flack parameter = 0.02(4), the largest and minimal peaks in the final difference map 0.21 and -0.16 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108576. The molecular structure of compound **50a** is shown in Figure S1.

Figure S1. ORTEP diagram of compound 50a including thermal displacement ellipses with 50% probability.

Crystal data for compound 50b: $C_{16}H_{26}N_2O_3S$, M = 326.45, monoclinic, space group $P2_1$, a = 10.091(3), b = 6.9401(17), c = 13.251(3)Å, $\delta = 93.847(10)^{\text{e}}$, V = 925.9(4)Å³, Z = 2, d_c = 1.171 g·cm⁻³, $\mu = 0.188$ mm⁻¹, F(000) = 352, crystal size ca. 0.07 × 0.25 × 0.50 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 26.6^{\circ}$ using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The intensities of 14193 reflections were collected (3777 unique reflections, R_{merg} = 0.0511). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen

atoms were placed at calculated positions and refined as 'riding' model, and NH hydrogen was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0450 and wR₂ = 0.0988 for 3118 observed reflections with I $\geq 2\sigma$ (I), R₁ = 0. 0591 and wR₂ = 0.1064, GOF = 1.055 for 3777 independent reflections, 197 parameters, Flack parameter = 0.01(6), the largest and minimal peaks in the final difference map 0.26 and - 0.25e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108577. The molecular structure of compound **50b** is shown in Figure S2.

Figure S2. ORTEP diagram of compound 50b including thermal displacement ellipses with 50% probability

Crystal data for compound 51a: C₁₆H₂₆N₂O₃S, M = 326.45, monoclinic, space group *P2*₁, *a* = 9.675(2), *b* = 8.970(2), *c* = 11.079(3)Å, *β* = 112.311(9)⁹, V = 889.5(4)Å³, Z = 2, d_c = 1.219 g·cm⁻³, μ = 0.195 mm⁻¹, F(000) = 352, crystal size ca. 0.38 × 0.43 × 0.48 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $θ_{max} \le 25.05^{\circ}$ using Mo-K_α radiation (λ = 0.71073 Å). The intensities of 8575 reflections were collected (3026 unique reflections, $R_{me}R_{g}$ = 0.0261). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were

placed at calculated positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at $R_1 = 0.0310$ and $wR_2 = 0.0784$ for 2903 observed reflections with $I \ge 2\sigma(I)$, $R_1 = 0.0331$ and $wR_2 = 0.0799$, GOF = 1.002 for 3026 independent reflections, 203 parameters, Flack parameter = 0.03(3), the largest and minimal peaks in the final difference map 0.21 and -0.18 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108578. The molecular structure of compound **51a** is shown in Figure S3.

Figure S3. ORTEP diagram of compound 51a including thermal displacement ellipses with 50% probability.

Crystal data for compound 51b: $C_{16}H_{26}N_2O_3S$, M = 326.45, monoclinic, space group $P2_{1}$, a = 9.705(3), b 8.9445(19), c = 11.226(2)Å, $\delta = 110.390(4)^{\circ}$, V = 913.4(4)Å³, Z = 2, d_c = 1.187 g·cm⁻³, $\mu = 0.190$ mm⁻¹, F(000) = 352, crystal size ca. 0.19 × 0.26 × 0.32 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \le 27.26^{\circ}$ using Mo-K $_{\alpha}$ radiation ($\lambda = 0.71073$ Å). The intensities of 14266 reflections were collected (4062 unique reflections, $R_{me}R_{g} = 0.0498$). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were

placed at calculated positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at $R_1 = 0.0428$ and $wR_2 = 0.0913$ for 3359 observed reflections with $I \ge 2\sigma(I)$, $R_1 = 0.0579$ and $wR_2 = 0.0974$, GOF = 1.049 for 4062 independent reflections, 203 parameters, Flack parameter = -0.04(4), the largest and minimal peaks in the final difference map 0.22 and -0.22 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108579. The molecular structure of compound **51b** is shown in Figure S4.

Figure S4. ORTEP diagram of compound 51b including thermal displacement ellipses with 50% probability.

Crystal data for compound 52a: $C_{16}H_{26}N_2O_3S$, M = 326.45, orthorhombic, space group $P2_12_12_1$, a = 9.5944(16), b = 12.7794(19), c = 14.847(3)Å, V = 1820.4(6)Å³, Z = 4, d_c = 1.191 g·cm⁻³, $\mu = 0.191$ mm⁻¹, F(000) = 704, crystal size ca. 0.17 × 0.30 × 0.45 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \le 26.0^{\circ}$ using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The intensities of 17158 reflections were collected (3577 unique reflections, R_{me}R_g = 0.0496). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen

atoms were placed at calculated positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0384 and wR₂ = 0.0763 for 2998 observed reflections with I $\geq 2\sigma$ (I), R₁ = 0. 0511 and wR₂ = 0.0812, GOF = 1.034 for 3577 independent reflections, 206 parameters, Flack parameter = 0.04(4), the largest and minimal peaks in the final difference map 0.22 and -0.23 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108580. The molecular structure of compound **52a** is shown in Figure S5.

Figure S5. ORTEP diagram of compound 52a including thermal displacement ellipses with 50% probability.

Crystal data for compound 52b: $C_{16}H_{26}N_2O_3S$, M = 326.45, hexagonal, space group $P6_5$, a = 11.311(3), c = 25.025(16)Å, V = 2773(2)Å³, Z = 6, d_c = 1.173 g·cm⁻³, μ = 0.188 mm⁻¹, F(000) = 1056, crystal size ca. 0.14 × 0.33 × 0.36 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 26.4^{\circ}$ using Mo-K_{α} radiation (λ = 0.71073 Å). The intensities of 30833 reflections were collected (3791 unique reflections, R_{me}R_g = 0.0847). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were placed at calculated

positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0401 and wR₂ = 0.0701 for 2854 observed reflections with I $\geq 2\sigma$ (I), R₁ = 0. 0697 and wR₂ = 0.0807, GOF = 1.013 for 3791 independent reflections, 208 parameters, Flack parameter = 0.05(5), the largest and minimal peaks in the final difference map 0.18 and -0.23 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108581. The molecular structure of compound **52b** is shown in Figure S6.

Figure S6. ORTEP diagram of compound 52b including thermal displacement ellipses with 50% probability.

Crystal data for compound 53a: $C_{16}H_{26}N_2O_3S$, $C_9 H_{10} N_2 O$, M = 488.64, orthorhombic, space group $P2_12_12_1$, a = 11.3229(14), b = 12.9953(15), c = 17.423(2)Å, V = 2563.7(5)Å³, Z = 4, d_c = 1.266 g·cm⁻³, $\mu = 0.164$ mm⁻¹, F(000) = 1048, crystal size ca. 0.22 × 0.26 × 0.37 mm. All crystallographic measurements were performed at 138K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 25.5^{\circ}$ using Mo-K $_{\alpha}$ radiation ($\lambda = 0.71073$ Å). The intensities of 26501 reflections were collected (4768 unique reflections, $R_{me}R_g = 0.0734$). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program

package.¹ All CH hydrogen atoms were placed at calculated positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0401 and wR₂ = 0.0767 for 3834 observed reflections with $l \ge 2\sigma(I)$, R₁ = 0.0605 and wR₂ = 0.0838, GOF = 1.028 for 4768 independent reflections, 318 parameters, Flack parameter = -0.04(5), the largest and minimal peaks in the final difference map 0.18 and -0.20 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108582. The molecular structure of compound **53a** is shown in Figure S7.

Figure S7. ORTEP diagram of compound 53a including thermal displacement ellipses with 50% probability.

Crystal data for compound 54b: $C_{16}H_{26}N_2O_3S$, M = 326.45, trigonal, space group $P3_1$, a = 9.7014(14), c = 16.297(3)Å, V = 1328.3(4)Å³, Z = 3, d_c = 1.224 g·cm⁻³, $\mu = 0.196 \text{ mm}^{-1}$, F(000) = 528, crystal size ca. 0.10 × 0.12 × 0.46 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 25.5^{\circ}$ using Mo-K $_{\alpha}$ radiation ($\lambda = 0.71073$ Å). The intensities of 8230 reflections were collected (2879 unique reflections, $R_{me}R_{g} = 0.0634$). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were placed at calculated

positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0394 and wR₂ = 0.0656 for 2074 observed reflections with $l \ge 2\sigma(l)$, R₁ = 0.0599 and wR₂ = 0.0708, GOF = 0.728 for 2879 independent reflections, 203 parameters, Flack parameter = 0.11(7), the largest and minimal peaks in the final difference map 0.15 and -0.17 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108583. The molecular structure of compound **54b** is shown in Figure S8.

Figure S8. ORTEP diagram of compound 54b including thermal displacement ellipses with 50% probability.

Crystal data for compound 55a: $C_{16}H_{26}N_2O_3S$, M = 326.45, trigonal, space group $P3_1$, a = 10.673(3), c = 13.675(8)Å, V = 1349.0(12)Å³, Z = 3, d_c = 1.206 g·cm⁻³, μ = 0.193 mm⁻¹, F(000) = 528, crystal size ca. 0.13 × 0.13 × 0.50 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 26.4^{\circ}$ using Mo-K_{α} radiation (λ = 0.71073 Å). The intensities of 4749 reflections were collected (3326 unique reflections, R_{me}R_g = 0.0673). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were placed at calculated

positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0679 and wR₂ = 0.1142 for 1947 observed reflections with I $\geq 2\sigma$ (I), R₁ = 0.1236 and wR₂ = 0.1409, GOF = 0.944 for 3326 independent reflections, 203 parameters, Flack parameter = -0.14(16), the largest and minimal peaks in the final difference map 0.28 and -0.40 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108584. The molecular structure of compound **55a** is shown in Figure S9.

Figure S9. ORTEP diagram of compound 55a including thermal displacement ellipses with 50% probability.

Crystal data for compound 59: $C_{16}H_{26}N_2O_3S$, M = 326.45, trigonal, space group $P3_2$, a = 9.6924(9), c = 16.293(4)Å, V = 1325.5(4)Å³, Z = 3, d_c = 1.227 g·cm⁻³, $\mu = 0.197$ mm⁻¹, F(000) = 528, crystal size ca. 0.07 × 0.36 × 0.50 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \le 25.5^{\circ}$ using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The intensities of 7786 reflections were collected (2911 unique reflections, R_{me}R_g = 0.0529). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were placed at calculated positions and refined as 'riding' model, and NH hydrogen

atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R_1 = 0.0815 and wR_2 = 0.3003 for 2449 observed reflections with $l \geq 2\sigma(l), R_1$ = 0. 0923 and wR_2 = 0.3115, GOF = 1.143 for 2911 independent reflections, 206 parameters, Flack parameter = 0.06(5), the largest and minimal peaks in the final difference map 0.55 and -0.45 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108585. The molecular structure of compound[**59** is shown in Figure S10.

Figure S10. ORTEP diagram of compound 59 including thermal displacement ellipses with 50% probability.

Crystal data for compound 60: $C_{16}H_{26}N_2O_3S$, M = 326.45, trigonal, space group $P3_2$, a = 10.6671(8), c = 13.665(2)Å, V = 1346.5(3)Å³, Z = 3, d_c = 1.208 g·cm⁻³, $\mu = 0.194$ mm⁻¹, F(000) = 528, crystal size ca. 0.14 \times 0.13 \times 0.50 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 26.0^{\circ}$ using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The intensities of 10864 reflections were collected (3414 unique reflections, R_{me}R_g = 0.0537). The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were placed at calculated

positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0391 and wR₂ = 0.0708 for 2876 observed reflections with I $\geq 2\sigma$ (I), R₁ = 0. 0505 and wR₂ = 0.0735, GOF = 0.955 for 3414 independent reflections, 206 parameters, Flack parameter = -0.01(4), the largest and minimal peaks in the final difference map 0.18 and -0.26 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108586. The molecular structure of compound **60** is shown in Figure S11.

Figure S11. ORTEP diagram of compound 60 including thermal displacement ellipses with 50% probability.

Crystal data for compound 62a: $C_{16}H_{26}N_2O_3S$, M = 326.45, monoclinic, space group $P2_1$, a = 6.1605(12), b = 9.3672(16), c = 32.178(7)Å, $\beta = 94.850(8)^{\circ}$, V = 1850.2(6)Å³, Z = 4, d_c = 1.172 g·cm⁻³, $\mu = 0.188$ mm⁻¹, F(000) = 704, crystal size ca. 0.08 × 0.16 × 0.50 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \le 25.5^{\circ}$ using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The intensities of 17702 reflections were collected (6575 unique reflections, R_{me}R_g = 0.0510. The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen

atoms were placed at calculated positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0512 and wR₂ = 0.0985 for 5257 observed reflections with I $\geq 2\sigma(I)$, R₁ = 0. 0692 and wR₂ = 0.1060, GOF = 1.010 for 6575 independent reflections, 479 parameters, Flack parameter = 0.03(5), the largest and minimal peaks in the final difference map 0.26and -0.23 e/Å^3 . Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108587. The molecular structure of compound **62a** is shown in Figure S12.

Figure S12. ORTEP diagram of compound 62a including thermal displacement ellipses with 50% probability (two independent molecules are shown).

Crystal data for compound 62b: $C_{16}H_{26}N_2O_3S$, M = 326.45, orthorhombic, space group $P2_12_12_1$, a = 7.0729(19), b = 9.1807(18), c = 28.272(6)Å, V = 1835.8(7)Å³, Z = 4, d_c = 1.181 g·cm⁻³, $\mu = 0.189$ mm⁻¹, F(000) = 704, crystal size ca. 0.03 × 0.12 × 0.56 mm. All crystallographic measurements were performed at 173 K on a Bruker Smart Apex II diffractometer operating in the ω scans mode. The intensity data were collected within the $\theta_{max} \leq 26.4^{\circ}$ using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The intensities of 19832 reflections were collected (3753 unique reflections, $R_{me}R_g = 0.0726$. The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.¹ All CH hydrogen atoms were

placed at calculated positions and refined as 'riding' model, and NH hydrogen atom was found in DF synthesis of the electron density maps and refined isotropically. Convergence was obtained at R₁ = 0.0492 and wR₂ = 0.1010 for 2940 observed reflections with I $\geq 2\sigma$ (I), R₁ = 0. 0707 and wR₂ = 0.1110, GOF = 1.026 for 3753 independent reflections, 206 parameters, Flack parameter = 0.04(6), the largest and minimal peaks in the final difference map 0.27and -0.25 e/Å³. Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2108588. The molecular structure of compound **62b** is shown in Figure S13.

Figure S13. ORTEP diagram of compound 62b including thermal displacement ellipses with 50% probability.

Inhibition of *H. Pylori* glutamate racemase by the spiro[3.3]heptane-derived amino acids (dose – response curves)

References

- 1. G. M. Sheldrick, *ActaCryst., Sect. A*, 2008, **64**, 112–122.
- 2. A. L. Spek, J. Appl. Cryst. 2003, **36**, 7–13.
- 3. P.van der Sluis, A. L. Spek, *Acta Cryst.* 1990, **A46**, 194–201.