Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Table of Contents

General techniques	2
Micro-flow reactor set-up	2
General procedure for synthesis of 2	4
Examination of amines for micro-flow synthesis of 3a	5
Time-dependent decrease of 2a in the presence of amine	6
Time-dependent decrease of 1a in the presence of amine	7
Optimization of reaction conditions for synthesis of 3a	9
Time-dependent decrease of NCAs 2 in the presence of amine	11
General procedure for examination of substrate scope	13
Evaluation of racemization of UNCA 3 via HPLC analysis	22
Synthesis of dipeptides 6	29
References	31
NMR spectra	33

General techniques

NMR spectra were recorded on a JEOL-ECS400 (400 MHz for ¹H, 100 MHz for ¹³C) or JEOL-ECZ400 (400 MHz for ¹H, 100 MHz for ¹³C) instrument in the indicated solvent. Chemical shifts were reported in units of parts per million (ppm) relative to tetramethylsilane (0.00 ppm) in CDCl₃ for ¹H NMR and CDCl₃ (77.16 ppm) for ¹³C NMR. Multiplicities were reported by using the following abbreviations: s; singlet, d; doublet, t; triplet, q; quartet, m; multiplet, br; broad, J; coupling constants in Hertz (Hz). IR spectra were recorded on a JASCO FT/IR-4100 Fourier Transform Infrared Spectrophotometer. Only the strongest and/or structurally important peaks were reported as the IR data given in cm⁻¹. High resolution mass spectra (HRMS) were obtained on a Bruker Daltonics Compact in electrospray ionization (ESI) method. Column chromatography was performed on Silica Gel PSQ 60B purchased from Fuji Silysia Chemical LTD. Analytical HPLC was carried out using a JASCO PU-4580 / JASCO PU4180 HPLC pump system with a JASCO MD-2018 / MD 4010 PDA Detector, a Shimadzu CTO-20A Column Oven, a JASCO LG-4580 Quaternary Gradient Unit, a JASCO DG-4580 Degassing Unit, a JASCO AS-4550 Autosampler, and a JASCO LCNetII/ADC Interface Box. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm E. Merck silica gel plates (60F-254) with UV light, visualized by *n*-butanolic ninhydrin (contains acetic acid) solution.

Micro-flow reactor set-up

Stainless steel V-shaped and T-shaped mixers were purchased from Sanko Seiki Co. Ltd. (inner diameter: 0.25 mm). Teflon[®] tubes (inner diameter: 0.25 mm or 0.80 mm) were purchased from Senshu Scientific Co., Ltd. PEEK fittings, PEEK unions, stainless steel tubes, stainless steel fittings, stainless steel unions (inner diameter: 0.80 mm) and back pressure regulator (BPR, 40 psi) were purchased from GL Science Inc. Solutions were injected into a micro-flow system with syringe pumps (Harvard PHD ULTRA) equipped gastight syringes (SGE 10 mL). The gastight syringes and the Teflon tubes were connected with joints purchased from Flon Industry Co., Ltd.

The employed micro-flow system for synthesis of α -amino acid *N*-carboxyanhydrides (α -NCAs) was shown in **Figure S-1**. The gastight syringes and V-shaped mixer were connected with the Teflon tubes. The V-shaped mixer and the T-shaped mixer were connected with the reaction tube 1 (Teflon tube). The T-shaped mixer and the BPR were connected with the reaction tube 2 (Teflon tube). The mixers and reaction tubes were immersed in water bath.

The employed micro-flow system for synthesis of urethane-protected α -amino acid *N*-carboxyanhydrides (UNCAs) was shown in **Figure S-2**. The gastight syringes and T-shaped mixer were connected with the Teflon tubes and stainless tubes (for controlling the temperature of solutions). The T-shaped mixer was connected with the reaction tube (Teflon tube). The mixer and reaction tube were immersed in a water bath.

 \Box The employed micro-flow system for examination of time-dependent decrease of α -NCAs or benzyl chloroformate in the presence of amine and synthesis of dipeptides was shown in **Figure S-3**. The gastight syringes and T-shaped mixer 1 were connected with the Teflon tubes and stainless tubes (for controlling the temperature of solutions). The T-shaped mixer 1 and the T-shaped mixer 2 were connected with the reaction tube 1 (Teflon tube). The T-shaped mixer 2 was connected with the reaction tube 2 (Teflon tube). The mixers and reaction tubes were immersed in a water bath.

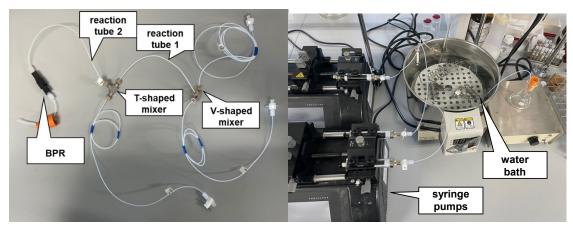


Figure S-1. Micro-flow reactor set-up for synthesis of a-NCAs

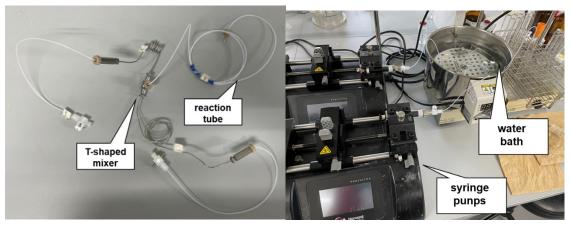


Figure S-2. Micro-flow reactor set-up for synthesis of UNCAs

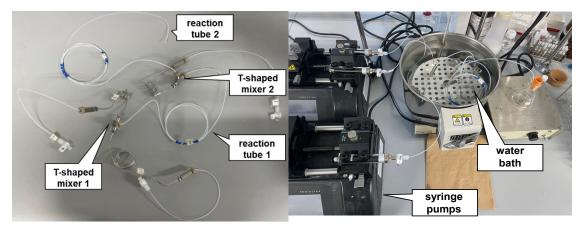
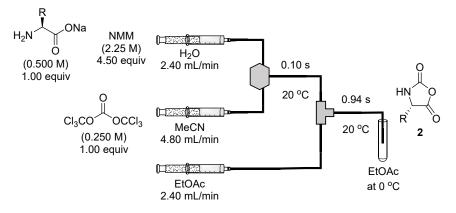



Figure S-3. Micro-flow reactor set-up for examination of time-dependent decrease of α -NCAs or benzyl chloroformate in the presence of amine and synthesis of dipeptides.

General procedure for synthesis of 2

The employed micro-flow system was shown in Figure S-1.^{S1}

A solution of α -amino acid sodium salt (0.500 M, 1.00 equiv), *N*-methylmorpholine (2.25 M, 4.50 equiv) in H₂O (flow rate: 2.40 mL/min) and a solution of triphosgene (0.250 M, 1.00 equiv) in MeCN (flow rate: 4.80 mL/min) were introduced to the V-shaped mixer at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 1 (inner diameter: 0.250 mm, length: 244 mm, volume: 12.0 µL, reaction time: 0.100 s) at the same temperature. Then, the resultant mixture and EtOAc (flow rate: 2.40 mL/min) were introduced to the T-shaped mixer at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 2 (inner diameter: 0.800 mm, length: 298 mm, volume: 150 µL, reaction time: 0.940 s) at the same temperature. After being eluted for *ca*. 20 s to reach a steady state, the resultant mixture was poured into EtOAc (appropriate amount) for appropriate time (amount for UNCA synthesis) at 0 °C. The aqueous layer was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo* at room temperature. The following appropriate purification afforded α -NCA **2**.

Examination of amines for micro-flow synthesis of 3a (for Table 1)

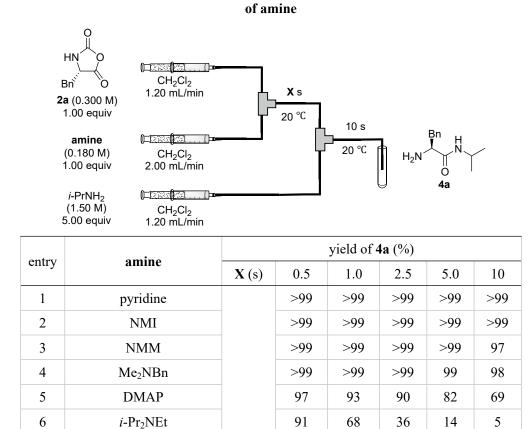
BnO CH₂Cl₂ Bn O 10 s 1.20 mL/min 1a 2a (0.300 M) (0.300 M) BnC 1.00 equiv 20 °C 1.00 equiv Βn amine Lossafra. \cap (0.360 M) 3a $\mathsf{CH}_2\mathsf{CI}_2$ CH₂Cl₂ 2.00 equiv 2.00 mL/min 1 M HČI yield (%) entry amine (pKaH^a) 3a 2a 1 pyridine (5.2)^{S2} 33 67 NMI (7.0)^{S3} 2 27 68 NMM (7.4)^{S2} 3 56 20 *i*-Pr₂NEt (11.4)^{S4} 4 0 0 Me₂NBn (8.9)^{S3} 5 91 0 6 *N*-ethylmorpholine (7.7)^{S3} 36 20 7 Et₂NBn (9.5)^{S3} 5 0 DMAP (9.7)^{S2} 8 33 67

Table S-1. Examination of individual amine for synthesis of UNCA 3a

^aThe pKa of conjugated acids in water.

The employed micro-flow system was shown in Figure S-2.

A solution of phenylalanine-NCA **2a** (0.300 M, 1.00 equiv) and benzyl chloroformate **1a** (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min), a solution of **amine** (0.360 M, 2.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube (inner diameter: 0.800 mm, length: 1062 mm, volume: 533 μ L, reaction time: 10 s) at the same temperature. After being eluted for 40 s to reach a steady state, the resultant mixture was poured into CH₂Cl₂ (5.0 mL) and 1 M HCl (1.0 mL) for 10-25 s at room temperature. The reaction mixture was washed with 1 M HCl twice and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Yields were determined *via* ¹H NMR analysis using 1,1,2-trichloroethane as an internal standard.

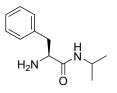

Table S-2. Other amines for synthesis of UNCA 3a								
outur.	entry amine (p <i>K</i> aH ^a)	yield (%)						
entry	amme (pKaH")	3 a	2a					

9	Me ₂ NBn ^b	66	22
10	<i>N</i> -methylpiperidine (10.1) ^{S3}	61	0
11	2,6-lutidine (7.4) ^{S2}	<1	91
12°	NMe ₃ (9.7) ^{S3}	76	0
13	DABCO (8.8) ⁵⁴	38	0
14	DBU (13.2) ^{S5}	0	0

^aThe pKa of conjugated acids in water. ^bThe amount of Me₂NBn was reduced (1.0 equiv). ^cMeCN was used instead of CH₂Cl₂

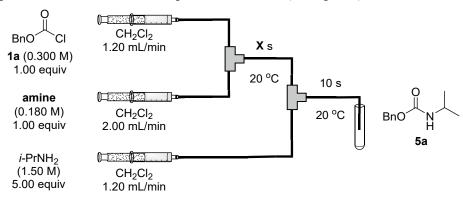
Time-dependent decrease of 2a in the presence of amine (for Figure 1)

Table S-3. Examination of time-dependent decrease of phenylalanine-NCA (2a) in the presence



The employed micro-flow system was shown in Figure S-3.

A solution of **2a** (0.300 M, 1.00 equiv) in CH_2Cl_2 (flow rate: 1.20 mL/min) and a solution of **amine** (0.180 M, 1.00 equiv) in CH_2Cl_2 (flow rate: 2.00 mL/min) were injected into the T-shaped mixer 1 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 1 (reaction time: **X** s) at the same temperature. The resultant mixture and a solution of isopropylamine (1.50 M, 5.00 equiv) in CH_2Cl_2 (flow rate: 1.20 mL/min) were injected into the T-shaped mixer 2 at 20 °C with


the syringe pumps. The resultant mixture was passed through the reaction tube 2 (inner diameter: 0.800 mm, length: 1458 mm, volume: 733 μ L, reaction time: 10 s) at the same temperature. After being eluted for 40-60 s to reach a steady state, the resultant mixture was poured into a test tube for 10-25 s at room temperature. The reaction mixture concentrated *in vacuo*. Yields were determined *via* ¹H NMR analysis using 1,1,2-trichloroethane as an internal standard.

(S)-2-Amino-N-isopropyl-3-phenylpropanamide (4a)

Colorless oil, IR (neat): 3297, 2968, 1649, 1519, 1455, 1171, 742, 700 cm⁻¹; $[\alpha]^{31}_{D} = -67.98$ (c 0.095, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.21 (m, 5H), 6.98 (brs, 1H), 4.09-4.04 (m, 1H), 3.56 (dd, J = 4.0, 9.2 Hz, 1H), 3.25 (dd, J = 4.0, 13.6 Hz, 1H), 2.70 (dd, J = 9.2, 13.6 Hz, 1H), 1.40 (brs, 2H), 1.13 (d, J = 6.8 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.3, 138.2, 129.5, 128.7, 126.8, 56.7, 41.3, 41.0, 22.93, 22.85 ppm; HRMS (ESI): calcd for [C₁₂H₁₈N₂O+Na]⁺ 229.1311, found 229.1311.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S1}

Time-dependent decrease of 1a in the presence of amine (for Figure 2)

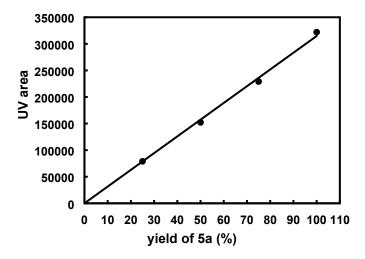
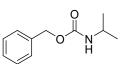


Figure S-4. Calibration curve of 5a

 Table S-4. Examination of time-dependent decrease of benzyl chloroformate (1a) in the presence of amine

		prese		mine				
autur	.	yield of 5a (%)						
entry	amine	X (s)	0.5	1.0	2.5	5.0	10	
1	pyridine		>99	88	83	67	47	
2	NMI		>99	>99	>99	>99	>99	
3	NMM		97	79	69	54	42	
4	Me ₂ NBn		87	62	46	23	15	
5	DMAP		>99	>99	>99	99	97	
6	<i>i</i> -Pr ₂ NEt		>99	>99	99	>99	99	

The employed micro-flow system was shown in Figure S-3.


A solution of benzyl chloroformate (1a) (0.300 M, 1.00 equiv) in CH_2Cl_2 (flow rate: 1.20 mL/min) and a solution of **amine** (0.180 M, 1.00 equiv) in CH_2Cl_2 (flow rate: 2.00 mL/min) were injected into the T-shaped mixer 1 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 1 (reaction time: **X** s) at the same temperature. The resultant mixture and a solution of isopropylamine (1.50 M, 5.00 equiv) in CH_2Cl_2 (flow rate: 1.20 mL/min) were injected into the T-shaped mixer 2 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 2 (inner diameter: 0.800 mm, length: 1458 mm, volume: 733 µL, reaction time: 10 s) at the same temperature. After being eluted for 40-60 s to reach a steady state, the resultant mixture was poured into a test tube for 10-25 s at room temperature. Yields were determined *via* HPLC-UV analysis (condition; COSMOSIL 5C₁₈-AR-II 4.6 × 150 mm, Gradient: MeCN+0.1% formic acid/H₂O+0.1% formic acid, 0-3 min: 10%, 3-5 min: 10 to 50%, 5-15 min: 50 to 100%, 15-20 min: 100%, 20-20.01

min: 100 to 10 %, 20.01-25 min: 10%, flow rate: 1 mL/min, temperature: 40 °C, detection wavelengths: 254 nm, retention time: 10.5 min (5a)). Calibration curve of 5a was shown in Figure S-4.

Calculated reaction rate constants from the obtained data (**Table S-4** and **Figure 2**) are as follows **Table S-5. Calculated reaction rate constants**

	pyridine	NMI	NMM	Me ₂ NBn	DMAP	<i>i</i> -Pr ₂ NEt
reaction rate	1.4×10^{3}	0	2.1×10^{3}	5.2×10^{3}	3.4×10^{1}	2.7×10^{2}
(L/mol s)		Ŭ				

Benzyl isopropyl carbamate (5a)

White solid; mp 51-53 °C, IR (neat): 3326, 2971, 1697, 1532, 1455, 1367, 1322, 1249, 1074, 737, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.25 (m, 5H), 5.08 (s, 2H), 4.65 (brs, 1H), 3.86-3.81 (m, 1H), 1.12 (d, *J* = 8.0 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 136.8, 128.6, 128.1, 66.5, 43.2, 23.1 ppm; HRMS (ESI): calcd for [C₁₁H₁₅NO₂+Na]⁺ 216.0995, found 216.0999.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S7}

Optimization of reaction conditions for synthesis of 3a (for Table 2) **Table S-6. Examination of combined used of amines for synthesis of UNCA 3a**

entry amine1 amine2 X (s) Y (°C) solvent yield (%)		()	solven 1.20 mL/r 0.300 M) 00 equiv ine2 0 M) solven	min t	×	- Bn(O Bn 3a	
	entry	amine1	amine2	X (s)	Y (°C)	solvent –	yield 3 a	(%) 2a
	1	<i>i</i> -Pr ₂ NEt	pyridine	10	20	CH_2Cl_2	92	0
1 i -Pr ₂ NEt pyridine 10 20 CH ₂ Cl ₂ 92 0	2	<i>i</i> -Pr ₂ NEt	Me ₂ NBn	10	20	CH_2Cl_2	84	0
	3	Me ₂ NBn	pyridine	10	20	CH_2Cl_2	94-96 ^a	2-3

						(74) ^b	
4	Et ₂ NBn	pyridine	10	20	CH_2Cl_2	98	0
5	Me ₂ NBn	pyridine	10	0	CH_2Cl_2	84	5
6	Me ₂ NBn	pyridine	10	40	CH_2Cl_2	94	<1
7	Me ₂ NBn	pyridine	5	20	CH_2Cl_2	94	<1
8	Me ₂ NBn	pyridine	2.5	20	CH_2Cl_2	85	11
9	Me ₂ NBn	pyridine	10	20	MeCN	80	<1
10 ^c	Me ₂ NBn	pyridine	10	20	CH_2Cl_2	93	3
11	Me ₂ NBn	pyridine	10	20	CH_2Cl_2	66 ^b	/
12 ^d	Me ₂ NBn	pyridine	10	20	CH_2Cl_2	71-81ª	<1

^aThree independent experiments were carried out. ^bIsolated yield. ^cFlow rate is 4.00 mL/min and 2.40 mL/min. ^dMixing was performed using a magnetic stirrer (1,000 rpm).

The employed micro-flow system was shown in Figure S-2.

A solution of α -NCA **2a** (0.300 M, 1.00 equiv) and benzyl chloroformate **1a** (0.300M, 1.00 equiv) in **solvent** (flow rate: 1.20 mL/min), a solution of **amine1** (0.180 M, 1.00 equiv) and **amine2** (0.180 M, 1.00 equiv) in **solvent** (flow rate: 2.00 mL/min) were injected into the T-shaped mixer at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube (inner diameter: 0.800 mm, length: 1062 mm, volume: 533 µL, reaction time: 10 s) at the same temperature. After being eluted for 40 s to reach a steady state, the resultant mixture was poured into CH₂Cl₂ (5.0 mL) and 1 M HCl (1.0 mL) for 10-25 s at room temperature. The reaction mixture was washed with 1 M HCl twice and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Yields were determined *via* ¹H NMR analysis using 1,1,2-trichloroethane as an internal standard.

4		yield	(%)
entry	entry amine -		2a
13	i-Pr ₂ NEt + NMI	42	0
14	i-Pr ₂ NEt + NMM	50	0
15	$Me_2NBn + NMI$	42	0
16	$Me_2NBn + NMM$	78	0

Table S-7. Other combinations of amine for synthesis of UNCA 3a

Other combinations of amine in Table S-6 did not improve the yield (Ref 25).

Time-dependent decrease of NCAs 2 in the presence of amine

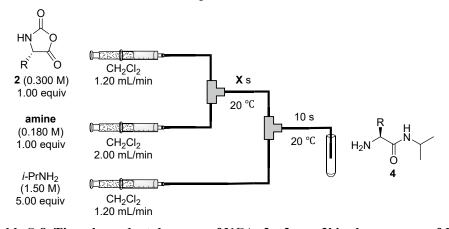


Table S-8. Time dependent decrease of NCAs 2c, 2a, or 2l in the presence of N-

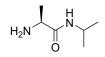
onter	NCA			yield o	f 4 (%)		
entry	NCA	X (s)	0.5	1.0	2.5	5.0	10
1	alanine-NCA (2c)		>99	97	93	91	82
2	phenylalanine-NCA (2a)		>99	>99	>99	>99	98
3	isoleucine-NCA (21)		>99	>99	>99	>99	>99

ethylmorpholine

	Table S-9. Time de	pendent decrease	e of NCAs 2c, 2a	, or 2l in the	presence of Me ₂ NBn
--	--------------------	------------------	------------------	----------------	---------------------------------

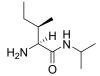
ontr	v NCA	yield (%)						
entr	y NCA	X (s)	0.5	1.0	2.5	5.0	10	
1	alanine-NCA (2c)		96	94	90	82	75	
2	phenylalanine-NCA (2a)		>99	>99	>99	99	98	
3	isoleucine-NCA (21)		>99	>99	>99	>99	>99	

Table S-10. Time dependent decrease of NCAs 2c, 2a, or 2l in the presence of *i*-Pr₂NEt

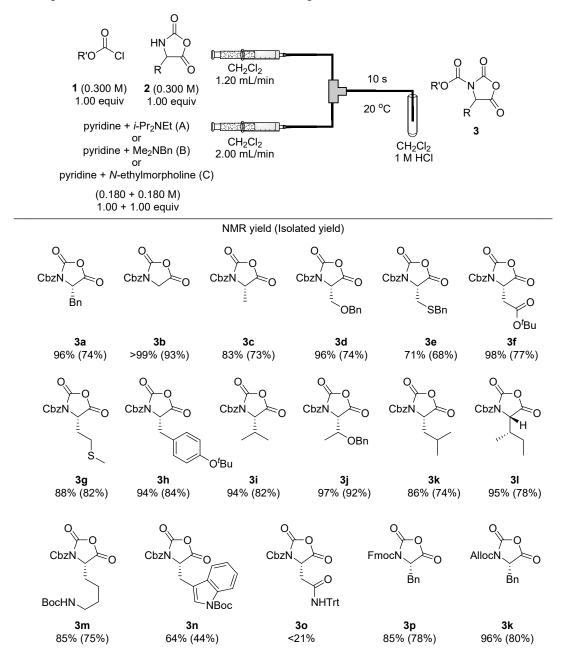

entry	NCA	yield (%)					
		X (s)	0.5	1.0	2.5	5.0	10
1	alanine-NCA (2c)		75	62	31	13	3
2	phenylalanine-NCA (2a)		91	69	36	14	5
3	isoleucine-NCA (21)		>99	>99	>99	98	86

The employed micro-flow system was shown in Figure S-3.

A solution of α -NCA **2** (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min) and a solution of amine (0.180 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer 1 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube


1 (reaction time: **X** s) at the same temperature. The resultant mixture and a solution of isopropylamine (1.50 M, 5.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min) were injected into the T-shaped mixer 2 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 2 (inner diameter: 0.800 mm, length: 1458 mm, volume: 733 μ L, reaction time: 10 s) at the same temperature. After being eluted for 40-60 s to reach a steady state, the resultant mixture was poured into a test tube for 10-25 s at room temperature. The reaction mixture concentrated *in vacuo*. Yields were determined *via* ¹H NMR analysis using 1,1,2-trichloroethane as an internal standard.

(S)-2-Amino-N-isopropylpropanamide (4b)

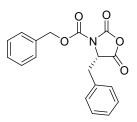

Colorless oil, IR (neat): 3288, 2970, 1647, 1540, 668 cm⁻¹; $[\alpha]^{31}_{D} = -8.33$ (c 0.055, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.05 (brs, 1H), 4.09-4.00 (m, 1H), 3.45 (q, J = 6.8 Hz, 1H), 1.53 (brs, 2H), 1.32 (d, J = 6.8 Hz, 3H), 1.16 (d, J = 2.4 Hz, 3H), 1.15 (d, J = 2.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 174.7, 50.9, 40.8, 22.9, 22.0 ppm; HRMS (ESI): calcd for [C₆H₁₄N₂O+Na]⁺ 153.0998, found 153.1001.

(2S,3R)-2-Amino-N-isopropyl-3-methylpentanamide (4c)

White solid; mp 51-52 °C, IR (neat): 3297, 2965, 1645, 1541, 1457, 668 cm⁻¹; $[\alpha]^{31}_{D} = -62.0$ (c 0.050, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.07 (brs, 1H), 4.10-4.03 (m, 1H), 3.22 (d, J = 4.0 Hz, 1H), 2.01-1.97 (m, 1H), 1.43-1.30 (m, 3H), 1.17-1.08 (m, 7H), 0.96 (d, J = 6.8 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.4, 60.0, 40.8, 38.1, 23.7, 23.1, 22.9, 16.3, 12.1 ppm; HRMS (ESI): calcd for $[C_9H_{20}N_2O+Na]^+$ 195.1468, found 195.1466.

General procedure for examination of substrate scope

Substrate scope was examined using **method A** or **method B** or **method C**. The employed microflow system was shown in Figure S-2.


method A: A solution of α -NCA 2 (0.300 M, 1.00 equiv) and alkyl chloroformate 1 (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min), a solution of *i*-Pr₂NEt (0.180 M, 1.00 equiv) and pyridine (0.180 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube

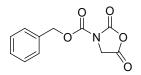
(inner diameter: 0.800 mm, length: 1062 mm, volume: 533 μ L, reaction time: 10 s) at the same temperature. After being eluted for 40 s to reach a steady state, the resultant mixture was poured into CH₂Cl₂ (5.0 mL) and 1 M HCl (1.0 mL) for 10-25 s at room temperature. The reaction mixture was washed with 1 M HCl twice, saturated salt water, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Appropriate purification operation afforded UNCA **3**

method B: A solution of α -NCA 2 (0.300 M, 1.00 equiv) and alkyl chloroformate 1 (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min), a solution of Me₂NBn (0.180 M, 1.00 equiv) and pyridine (0.180 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer at 20 °C with the syringe pumps. The following procedures were same as used in the method A

method C: A solution of α -NCA **2** (0.300 M, 1.00 equiv) and alkyl chloroformate **1** (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min), a solution of *N*-ethylmorpholine (0.180 M, 1.00 equiv) and pyridine (0.180 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer at 20 °C with the syringe pumps. The following procedures were same as used in the method A

Cbz-L-phenylalanine-NCA (3a)

Reaction conditions: method B


Purification method: Recrystallization from t-butylmethylether (TBME)/hexane

35.9 mg, 0.11 mmol, 74%

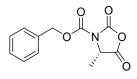
White solid; mp 107-109 °C, IR (neat): 1867, 1809, 1794, 1755, 1390, 1282, 1142, 960, 703 cm⁻¹; $[\alpha]^{31}_{D} = +150.2$ (c 0.93, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.41 (m, 5H), 7.28-7.19 (m, 3H), 6.91-6.88 (m, 2H), 5.41 (s, 2H), 4.94 (dd, J = 2.8, 5.6 Hz, 1H), 3.47 (dd, J = 5.6, 14.0 Hz, 1H), 3.28 (dd, J = 2.8, 14.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 149.3, 145.7, 134.2, 132.1, 129.5, 129.3, 129.0, 128.9, 128.4, 69.9, 61.0, 35.2 ppm; HRMS (ESI): calcd for [C₁₈H₁₅NO₅+Na]⁺ 348.0842, found 348,0841.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S8}

Cbz-glycine-NCA (3b)

*NCA was dissolved in THF instead of CH₂Cl₂

Reaction conditions: method C

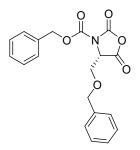

Purification method: Recrystallization from CHCl₃/hexane

33.0 mg, 0.14 mmol, 93%

Yellow solid; mp 132-134 °C, IR (neat): 1872, 1825, 1725, 1395, 1362. 1324, 1263, 1211, 1013, 740, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.38 (m, 5H), 5.35 (s, 2H), 4.52 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 162.1, 149.0, 146.1, 134.1, 129.3, 129.0, 128.8, 70.1, 48.4 ppm; HRMS (ESI): calcd for [C₁₁H₉NO₅+Na]⁺ 258.0373, found 258.0369.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S10}

Cbz-L-alanine-NCA (3c)


Reaction conditions: method B

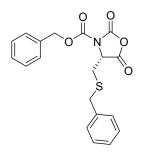
Purification method: Recrystallization from Et₂O/hexane

27.4 mg, 0.11 mmol, 73%

White solid; mp 113-115 °C, IR (neat): 1869, 1810, 1739, 1353, 1310, 1262, 1067, 970, 770, 750 cm⁻¹; [α]³¹_D = +42,4 (c 0.12, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.38 (m, 5H), 5.38 (d, *J* = 12.0 Hz, 1H), 5.33 (d, J = 12.0 Hz, 1H), 4.71 (q, *J* = 6.8 Hz, 1H), 1.68 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 149.2, 146.0, 134.1, 129.2, 129.0, 128.6, 69.9, 56.1, 16.9 ppm; HRMS (ESI): calcd for [C₁₂H₁₁NO₅+Na]⁺ 272.0532, found 272.0532.

Cbz-O-benzyl-L-serine-NCA (3d)

Reaction conditions: method B

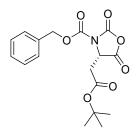

Purification method: Recrystallization from CHCl₃/hexane

39.3 mg, 0.11mmol, 74%

White solid; mp 81-84 °C, IR (neat): 1875, 1815, 1741, 1387, 1360, 1307, 1273, 987, 745, 698 cm⁻¹; $[\alpha]^{31}_{D} = +56.1(c \ 0.41, CH_2Cl_2); {}^{1}H \ NMR \ (400 \ MHz, CDCl_3): \delta \ 7.37-7.26 \ (m, 8H), 7.21-7.19 \ (m, 2H),$ 5.27 (s, 2H), 4.69 (dd, J = 2.0, 2.8 Hz, 1H), 4.51 (d, J = 11.6 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 4.01 (dd, J = 2.8, 10.0 Hz, 1H), 3.87 (dd, J = 2.0, 10.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 149.0, 146.3, 136.6, 134.1, 129.1, 128.9, 128.7, 128.5, 128.3, 127.8, 73.5, 69.7, 65.4, 61.0 ppm; HRMS (ESI): calcd for [C₁₉H₁₇NO₆+Na]⁺ 378.0952, found 378.0948.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S11}

Cbz-S-benzyl-L-cysteine-NCA(3e)


Reaction conditions: method B

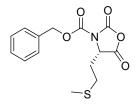
Purification method: Recrystallization from CHCl3/hexane

37.7 mg, 0.10mmol, 67%

White solid; mp 102-107 °C (decomp), IR (neat): 1869, 1808, 1732, 1357, 1265, 973, 764, 698 cm⁻¹; $[\alpha]^{31}_{D} = +49.0$ (c 0.34, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.22 (m, 10H), 5.32 (s, 2H), 4.90 (dd, J = 2.4, 4.4 Hz, 1H), 3.66 (d, J = 13.2 Hz, 1H), 3.59 (d, J = 13.2 Hz, 1H), 3.25 (dd, J = 4.4, 15.2 Hz, 1H), 3.02 (dd, J = 2.4 15.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 149.1, 146.1, 136.9, 134.0, 129.2, 129.1, 129.0, 128.8, 128.6, 127.7, 70.0, 60.8, 37.4, 30.5 ppm; HRMS (ESI): calcd for [C₁₉H₁₇NO₅S+Na]⁺ 394.0719, found 394.0718

Cbz-5-t-butyl-L-glutamte-NCA (3f)

Reaction conditions: method B

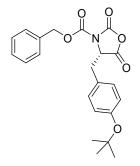

Purification method: Recrystallization from THF/hexane

40.1 mg, 0.11 mmol, 77%

White solid; mp 126-128 °C (decomp.), IR (neat): 1869, 1810, 1738, 1384, 1368, 1299, 1264, 1150, 1007, 977 cm⁻¹; $[\alpha]^{31}_{D} = +53.1$ (c 0.26, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.37 (m, 5H),

5.38 (d, J = 12.4 Hz, 1H), 5.33 (dd, J = 12.4 Hz, 1H), 4.70 (dd, J = 2.8, 4.4 Hz, 1H), 3.26 (dd, J = 4.4, 18.0 Hz, 1H), 3.04 (dd, J = 2.8, 18.0 Hz, 1H), 1.36 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 165.6, 149.4, 146.4, 134.2, 129.1, 129.0, 128.5, 83.9, 69.9, 56.6, 35.2, 28.0 ppm; HRMS (ESI): calcd for [C₁₇H₁₉NO₇+Na]⁺ 372.1052, found 372.1058.

Cbz-L-methionine-NCA (3g)

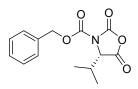

Reaction conditions: method B

Purification method: Recrystallization from CHCl₃/hexane

32.2 mg, 0.12 mmol, 82%

White solid; mp 91-93 °C, IR (neat): 1869, 1809, 1740, 1717, 1387, 1301, 1259, 1142, 997, 754 cm⁻¹; $[\alpha]^{31}_{D} = +99.3$ (c 0.26, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.38 (m, 5H), 5.39 (d, J = 12.0 Hz, 1H), 5.32 (d, J = 12.0 Hz, 1H), 4.81 (dd, J = 3.6, 6.0 Hz, 1H), 2.62-2.59 (m, 1H), 2.48-2.39 (m, 3H), 2.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 149.3, 146.3, 134.1, 129.2, 129.0, 128.6, 70.0, 58.4, 28.4, 28.0, 15.1 ppm; HRMS (ESI): calcd for $[C_{14}H_{15}NO_5S+Na]^+$ 332.0562, found 332.0570.

Cbz-O-t-butyl-L-tyrosine-NCA (3h)


Reaction conditions: method A

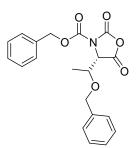
Purification method: Recrystallization from Et₂O/hexane

50.0 mg, 0.13 mmol, 84%

White solid; mp 85-87 °C, IR (neat): 1872, 1809, 1743, 1385, 1361, 1303, 1262, 1005, 745, 698 cm⁻¹; $[\alpha]^{31}_{D} = +110.3$ (c 0.33, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.41 (m, 5H), 6.84-6.77 (m, 4H), 5.40 (s, 2H), 4.90 (dd, J = 2.8, 5.2 Hz, 1H), 3.43 (dd, J = 5.2, 14.0 Hz, 1H), 3.23 (dd, J = 2.8, 14.0 Hz, 1H), 1.30 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 155.6, 149.3, 145.6, 134.2, 130.1, 129.2, 129.0, 128.9, 126.7, 124.7, 78.9, 69.9, 61.2, 34.6, 28.9 ppm; HRMS (ESI): calcd for [C₂₂H₂₃NO₆+Na]⁺ 420.1422, found 420.1424.

Cbz-L-varine-NCA (3i)

Reaction conditions: method A

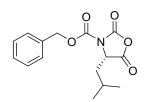

Purification method: Recrystallization from TBME/hexane

34.1 mg, 0.12 mmol, 82%

White solid; mp 78-79 °C, IR (neat): 1870, 1807, 1741, 1387, 1367, 1315, 1239, 1216, 1000, 776, 759 cm⁻¹; $[\alpha]^{31}_{D}$ = +45.6 (c 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.38 (m, 5H), 5.38 (d, *J* = 12.4 Hz, 1H), 5.33 (d, *J* = 12.4 Hz, 1H), 4.60 (d, *J* = 3.6 Hz, 1H), 2.60-2.52 (m, 1H), 1.19 (d, *J* = 7.2 Hz, 3H), 0.94 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 149.4, 146.5, 134.2, 129.1, 129.0, 128.4, 69.9, 64.9, 29.9, 17.9, 15.7 ppm; HRMS (ESI): calcd for [C₁₄H₁₅NO₅+Na]⁺ 300.0842, found 300.0842.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S11}

Cbz-O-benzyl-L-threonine-NCA (3j)


Reaction conditions: method A

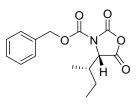
Purification method: Wash by hexane

51.1 mg, 0.14 mmol, 92%

Colorless oil, IR (neat): 1873, 1809, 1744, 1456, 1386, 1360, 1258, 1145, 1067, 744, 698 cm⁻¹; $[\alpha]^{31}_{D}$ = +67.0 (c 0.29, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.23 (m, 10H), 5.31 (s, 2H), 4.78 (dd, J = 0.8, 2.8 Hz, 1H), 4.58 (d, J = 12.0 Hz, 1H), 4.45 (d, J = 12.0 Hz, 1H), 4.11 (dq, J = 2.8, 6.8 Hz, 1H), 1.24 (d, 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 149.8, 146.6, 138.9, 134.1, 129.1, 128.9, 128.6, 128.5, 128.2, 127.8, 73.8, 71.5, 70.0, 64.0, 16.3 ppm; HRMS (ESI): calcd for [C₂₀H₁₉NO₆+Na]⁺ 392.1104, found 392.1105.

Cbz-L-leucine-NCA (3k)

Reaction conditions: method A

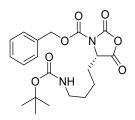

Purification method: Recrystallization from TBME/hexane

32.1 mg, 0.11 mmol, 74%

White solid; mp 74-76 °C, IR (neat): 1871, 1807, 1732, 1393, 1369, 1296, 1217, 1149, 996, 775,761 cm⁻¹; $[\alpha]^{31}_{D} = +75.4$ (c 0.27, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.37 (m, 5H), 5.40 (d, J = 12.0 Hz, 1H), 5.30 (d, J = 12.0 Hz, 1H), 4.69 (dd, J = 3.6, 8.4 Hz, 1H), 1.95-1.85 (m, 3H), 0.93 (d, J = 6.4 Hz, 3H), 0.90 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 149.2, 146.3, 134.1, 129.2, 129.0, 128.7, 69.9, 58.6, 39.2, 24.2, 23.3, 21.8 ppm; HRMS (ESI): calcd for [C₁₅H₁₇NO₅+Na]⁺ 314.1002, found 314.1002.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S10}

Cbz-L-isoleucine-NCA (3l)


Reaction conditions: method A

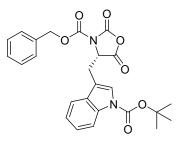
Purification method: Recrystallization from TBME/hexane

34.2 mg, 0.11 mmol, 78%

White solid; mp 97-98 °C, IR (neat): 1871, 1808, 1734, 1392, 1369, 1298, 997, 759 cm⁻¹; $[\alpha]^{31}_{D}$ = +67.0 (c 0.29, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.38 (m, 5H), 5.38 (d, *J* = 12.4 Hz, 1H), 5.32 (dd, *J* = 12.4 Hz, 1H), 4.70 (d, *J* = 3.6 Hz, 1H), 2.30-2.24 (m, 1H), 1.71-1.48 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H), 0.91(d, *J* = 7.2, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 149.2, 146.5, 134.2, 129.1, 129.0, 128.5, 69.9, 63.6, 36.4, 25.1, 13.3 11.8 ppm; HRMS (ESI): calcd for [C₁₅H₁₇NO₅+Na]⁺ 314.1002, found 314.1002.

Cbz-N_e-(t-butoxycarbonyl)-L-lysine-NCA (3m)

*NCA dissolved in THF instead of CH₂Cl₂


Reaction conditions: method A

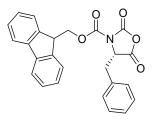
Purification method: Recrystallization from CHCl3/hexane

46.1 mg, 0.11 mmol, 75%

Yellow oil, IR (neat): 2934, 1869, 1809, 1741, 1698, 1456, 1364, 1252, 1001, 765, 691 cm⁻¹; $[\alpha]^{31}_{D}$ = +87.0 (c 0.02, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.27 (m, 5H), 5.40 (d, *J* = 12.4 Hz, 1H), 5.31 (d, *J* = 12.4 Hz, 1H), 4.71 (dd, *J* = 4.0, 6.8 Hz, 1H), 4.53 (brs, 1H), 3.07-3.04 (m, 2H), 2.11-2.05 (m, 2H), 1.49-1.28 (m, 13H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 156.1, 149.1, 146.2, 134.1, 129.2, 129.0, 128.6, 79.4, 69.9, 59.9, 39.9, 29.6, 29.5, 28.5, 20.6 ppm; HRMS (ESI): calcd for [C₂₀H₂₆N₂O₇+Na]⁺ 429.1632, found 429.1637.

Cbz-1-t-butoxycarbonyl-L-tryptophan-NCA (3n)

* Collection time is 20 s


Reaction conditions: method A

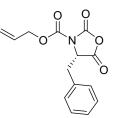
Purification method: Recrystallization from Et₂O/hexane

24.5 mg, 0.070 mmol, 44%

Yellow solid; mp 63-69 °C, IR (neat): 1871, 1809, 1733, 1456, 1381, 1361, 1259, 1156, 1007, 747 cm⁻¹; $[\alpha]^{31}_{D} = +62.0$ (c 0.085, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.0 Hz, 1H), 7.43-7.26 (m, 8H), 7.09 (t, J = 8.4 Hz, 1H), 5.41 (d, J = 12.0 Hz, 1H), 5.37 (d, J = 12.0 Hz, 1H), 4.99 (dd, J = 2.8, 6.0 Hz, 1H), 3.61 (dd, J = 6.0, 14.8 Hz, 1H), 3.46 (dd, J = 2.8, 14.8 Hz, 1H), 1.64 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 149.6, 149.4, 145.7, 134.0, 129.9, 129.2, 129.0, 128.7, 128.3, 125.5, 125.0, 123.1, 118.4, 115.6, 111.4, 84.3, 70.1, 60.6, 28.3, 25.4 ppm; HRMS (ESI): calcd for [C₂₅H₂₄N₂O₇+Na]⁺ 487.1476, found 487.1481.

Fmoc-L-phenylalanine-NCA (3p)

Reaction conditions: method B


Purification method: Recrystallization from Et₂O/hexane

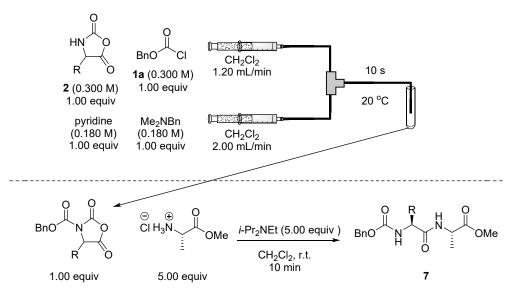
49.6 mg, 0.11 mmol, 76 %

White solid; mp 61-62 °C, IR (neat): 1870, 1807, 1735, 1361, 1265, 957, 741 cm⁻¹; $[\alpha]^{31}_{D}$ = +230.4 (c 0.02, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.77 (dd, *J* = 2.6, 8.0 Hz, 2H), 7.69 (d, *J* = 7.2, 1H), 7.64 (d, *J* = 7.2, 1H), 7.46-7.21 (m, 7H), 6.85 (dd, *J* = 2.8, 4.4 Hz, 2H), 4.78 (dd, *J* = 6.2, 10.6 Hz, 1H), 4.74 (dd, *J* = 6.2, 10.6 Hz, 1H), 4.68 (dd, *J* = 3.2, 5.2 Hz, 1H), 4.34 (t, *J* = 6.2 Hz, 1H), 3.12-3.03 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 149.2, 145.7, 142.93, 142.86, 141.6, 141.2, 132.0, 129.5, 129.3, 128.40, 128.35, 127.64, 127.58, 125.14 125.07, 120.4, 120.3, 69.8, 61.0, 46.6, 34.9 ppm; HRMS (ESI): calcd for [C₂₅H₁₉NO₅+Na]⁺ 436.1155, found 436.1162.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S8}

Alloc-L-phenylalanine-NCA (3q)

Reaction conditions: method B

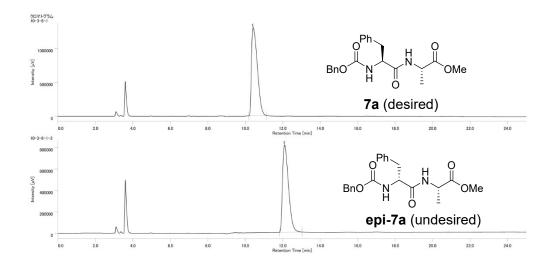

Purification method: Wash with hexane

31.2 mg, 0.12 mmol, 80 %

Colorless oil, IR (neat): 1869, 1807, 1740, 1455, 1374, 1309, 1266, 1011, 957, 747, 702 cm⁻¹; $[\alpha]^{31}_{D}$ = +100.1 (c 0.16, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.30 (m, 3H), 7.07-7.05 (m, 2H), 6.00 (m, 1H), 5.49 (dd, *J* = 1.2, 17.2 Hz, 1H), 5.39 (dd, *J* = 1.2, 10.6 Hz, 1H), 4.97 (dd, *J* = 2.4, 5.6 Hz, 1H), 4.86 (dd, *J* = 1.2, 5.6 Hz, 2H), 3.54 (dd, *J* = 5.6, 14.4 Hz, 1H), 3.34 (dd, *J* = 2.4, 14.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 149.3, 145.7, 132.2, 130.4, 129.6, 129.3, 128.5, 120.6, 68.8, 61.1, 35.3 ppm; HRMS (ESI): calcd for [C₁₄H₁₃NO₅+Na]⁺ 298.0686, found 298.0684. Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous

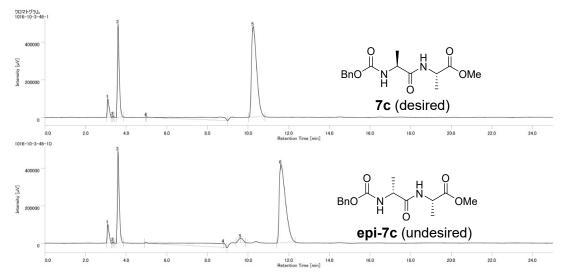
literature.^{S11}

Evaluation of racemization of UNCA 3 via HPLC analysis

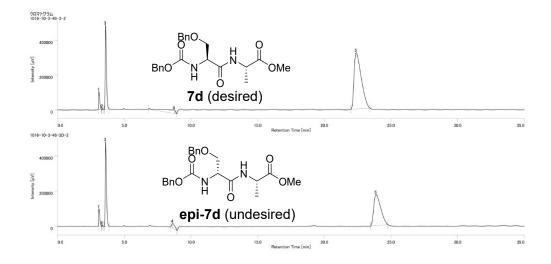


The employed micro-flow system was shown in Figure S-2.

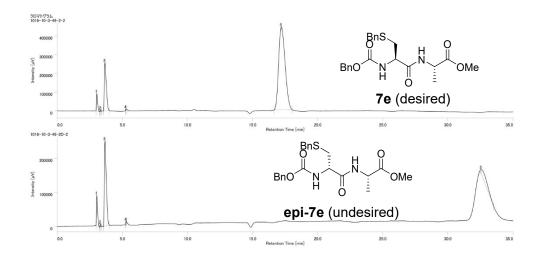
A solution of **2** (0.300 M, 1.00 equiv) and benzyl chloroformate **1a** (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min), a solution of Me₂NBn (0.180 M, 1.00 equiv) and pyridine (0.180 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube (inner diameter: 0.800 mm, length: 1062 mm, volume: 533 μ L, reaction time: 10 s) at the same temperature. After being eluted for 40 s to reach a steady state, the resultant mixture was poured into L-alanine methyl ester hydrochloric acid (104.7 mg, 0.75 mmol, 5.0 equiv), *i*-Pr₂NEt (0.75 mmol, 5.0 equiv) and CH₂Cl₂ (5.00 ml), then the mixture was stirred for 10 min at room temperature. The reaction mixture was washed with 1 M HCl, brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a crude mixture. The crude product was purified by preparative TLC (condition: EtOAc/hexane = 1/1). The rate of racemization was determined by HPLC-UV analysis.


Cbz-L-Phe-L-Ala methyl ester (7a)

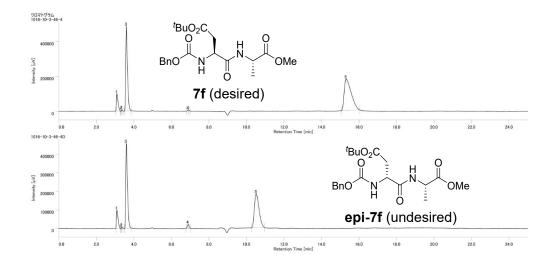
HPLC condition; DAICEL CHIRALPAK IB 4.6×250 mm, hexane/isopropylalcohol = 90/10, flow rate: 1 mL/min, detection wavelengths: 254 nm, temperature: 40 °C, retention time: 10.4 min (Cbz-L-Phe-L-Ala methyl ester (**7a**)), 12.1 min (Cbz-D-Phe-L-Ala methyl ester (**epi-7a**))


Cbz-L-Ala-L-Ala methyl ester (7c)

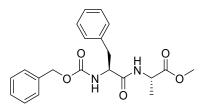
HPLC condition; DAICEL CHIRALPAK IB 4.6 mm × 25 cm, hexane/isopropylalcohol = 90 /10, flow rate: 1 mL/min, detection wavelengths: 254 nm, temperature: 40 °C, retention time: 10.3 min (Cbz-L-Ala-L-Ala methyl ester (**7c**)), 23.9 min (Cbz-D-Ala-L-Ala methyl ester (**epi-7c**))


Cbz-L-Ser(Bn)-L-Ala methyl ester (7d)

HPLC condition; DAICEL CHIRALPAK IB 4.6×250 mm, hexane/isopropylalcohol = 90 /10, flow rate: 1 mL/min, detection wavelengths: 254 nm, temperature: 40 °C, retention time: 22.4 min (Cbz-L-Ser(Bn)-L-Ala methyl ester (7d)), 23.9 min (Cbz-D-Ser(Bn)-L-Ala methyl ester (epi-7d))


Cbz-L-Cys(Bn)-L-Ala methyl ester (7e)

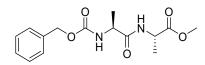
HPLC condition; DAICEL CHIRALPAK IH 4.6×250 mm, hexane/isopropylalcohol = 90/10, flow rate: 1 mL/min, detection wavelengths: 254 nm, temperature: 40 °C, retention time: 17.2 min (Cbz-L-Cys(Bn)-L-Ala methyl ester (7e)), 32.6 min (Cbz-D-Cys(Bn)-L-Ala methyl ester (epi-7e))



Cbz-L-Asp(Ot-Bu)-L-Ala methyl ester (7f)

HPLC condition; DAICEL CHIRALPAK IB 4.6×250 mm, hexane/isopropylalcohol = 90/10, flow rate: 1 mL/min, detection wavelengths: 254 nm, temperature: 40 °C, retention time: 15.3 min (Cbz-L-Asp(Ot-Bu)-L-Ala methyl ester (**7f**)), 10.5 min (Cbz-D- Asp(Ot-Bu)-L-Ala methyl ester (**epi-7f**))

Cbz-L-Phe-L-Ala methyl ester (7a)

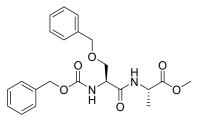


48.3 mg, 0.12 mmol, 84%

White solid; mp 128-129 °C, IR (neat): 3298, 1749, 1689, 1655, 1497, 1453, 1261, 1212, 1047, 743, 698 cm⁻¹; $[\alpha]^{31}_{D}$ = +2.04 (c 0.38, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.20 (m, 10H), 6.27 (d, *J* = 6.8 Hz, 1H), 5.47 (d, *J* = 6.8 Hz, 1H), 5.07 (s, 2H), 4.51-4.46 (m, 2H), 3.70 (s, 3H), 3.10-3.00 (m, 2H), 1.21 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 172.9, 170.5, 156.0, 136.34, 136.26, 129.5, 128.8, 128.6, 128.3, 128.1, 127.2, 67.2, 56.1, 52.6, 48.3, 38.6, 18.4 ppm; HRMS (ESI): calcd for [C₂₁H₂₄N₂O₅+Na]⁺ 407.1582, found 407.1582.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S12}

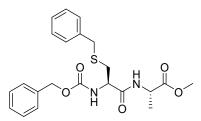
Cbz-L-Ala-L-Ala methyl ester (7c)


38.6 mg, 0.13 mmol, 84%

White solid; mp 105-106 °C, IR (neat): 3307, 1682, 1669, 1539, 1508, 1455, 1368, 1216, 1154, 1049,

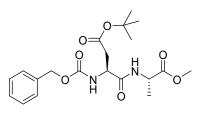
741, 698 cm⁻¹; $[\alpha]^{31}_{D}$ = -11.1 (c 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 5H), 6.67 (brs, 1H), 5.46 (d, *J* = 6.8 Hz, 1H), 5.11 (s, 2H), 4.58-4.54 (m, 1H), 4.30-4.27 (m, 1H), 3.74 (s, 3H), 1.38 (d, *J* = 7.2 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.3, 172.0, 156.0, 136.3, 128.6, 128.3, 128.2, 67.1, 52.6, 50.5, 48.2, 18.8, 18.3 ppm; HRMS (ESI): calcd for $[C_{15}H_{20}N_2O_5+Na]^+$ 331.1262, found 331.1262.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S13}


Cbz-L-Ser(Bn)-L-Ala methyl ester (7d)

52.0 mg, 0.13 mmol, 84%

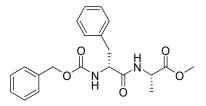
White solid; mp 95-97 °C, IR (neat): 3299, 1741, 1716, 1698, 1682, 1653, 1507, 1455, 1214 cm⁻¹; $[\alpha]^{31}_{D} = +49.0$ (c 0.34, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.26 (m, 10H), 6.90 (brs, 1H), 5.67 (brs, 1H), 5.12 (s, 2H), 4.59-4.54 (m, 3H), 3.93-3.90 (m, 1H), 3.72 (s, 3H), 3.58 (dd, J = 2.8, 9.2Hz, 1H), 1.37 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.1, 169.7, 156.1, 137.4, 136.3, 128.7, 128.6, 128.3, 128.2, 128.1, 127.9, 73.7, 69.9, 67.3, 54.1, 52.5, 48.4, 18.4 ppm; HRMS (ESI): calcd for [C₂₂H₂₆N₂O₆+Na]⁺ 437.1682, found 437.1690.


Cbz-L-Cys(Bn)-L-Ala methyl ester (7e)

45.1 mg, 0.11 mmol, 70%

White solid; mp 124-126 °C, IR (neat): 3298, 1740, 1682, 1650, 1538, 1454, 1272, 1232, 702 cm⁻¹; $[\alpha]^{31}_{D} = +6.51$ (c 0.53, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.26 (m, 10H), 6.79 (brs, 1H), 5.60 (brs, 1H), 5.13 (s, 2H), 4.58-4.52 (m, 1H), 4.28 (d, *J* = 3.2 Hz, 1H), 3.78-3.71 (m, 5H), 2.90 (dd, *J* = 5.6, 16.4 Hz, 1H), 2.74 (dd, *J* = 6.4, 16.4 Hz, 1H), 1.39 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 172.9, 169.9, 156.0, 138.0, 136.2, 129.1, 128.8, 128.7, 128.4, 128.2, 127.4, 67.3, 54.2, 52.7, 48.4, 36.7, 34.0, 18.4 ppm; HRMS (ESI): calcd for $[C_{22}H_{26}N_2O_5S+Na]^+$ 453.1452, found 453.1455.

Cbz-L-Asp (Ot-Bu)-L-Ala methyl ester (7f)

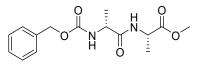


50.7 mg, 0.14 mmol, 97%

White solid; mp 82-84.5 °C, IR (neat): 3307, 1732, 1682, 1669, 1540, 1508, 1456, 1368, 1216, 1154 cm⁻¹; $[\alpha]^{31}_{D} = +19.6$ (c 0.27, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.37- 7.31 (m, 5H), 7.05 (d, J = 6.0 Hz, 1H), 5.96 (d, J = 8.0 Hz, 1H), 5.14 (s, 2H), 4.57-4.51 (m, 2H), 3.73 (s, 3H), 2.92 (dd, J = 4.0, 16.8 Hz, 1H), 2.61 (dd, J = 6.8, 16.8 Hz, 1H), 1.44 (s, 9H), 1.36 (d, J = 8.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 171.4, 170.3, 156.1, 136.2, 128.7, 128.4, 128.3, 82.1, 67.3, 52.6, 51.0, 48.4, 37.6, 28.1, 18.2 ppm; HRMS (ESI): calcd for $[C_{20}H_{28}N_2O_7+Na]^+$ 431.1792, found 431.1793.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S14}

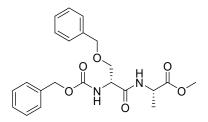
Cbz-D-Phe-L-Ala methyl ester (epi-7a)



56.5 mg, 0.14 mmol, 98%

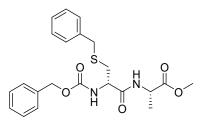
White solid; mp 128-130 °C, IR (neat): 3298, 1750, 1698, 1655, 1540, 1496, 1455, 1212, 1047, 698 cm⁻¹; $[\alpha]^{31}_{D} = -3.51$ (c 0.26, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.20 (m, 10H), 6.27 (d, *J* = 6.8 Hz, 1H), 5.47 (brs,1H), 5.07 (s, 2H), 4.51-4.46 (m, 2H), 3.69 (s, 3H), 3.10-3.00 (m, 2H), 1.21 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.1, 170.3, 156.0, 136.5, 136.3, 129.4, 128.8, 128.6, 128.3, 128.1, 127.2, 67.2, 56.3, 52.6, 48.0, 39.0, 18.2 ppm; HRMS (ESI): calcd for [C₂₁H₂₄N₂O₅+Na]⁺ 407.1582, found 407.1583.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S15}


Cbz-D-Ala-L-Ala methyl ester (epi-7c)

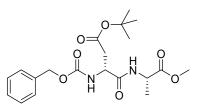
38.2 mg, 0.12 mmol, 83%

White solid; mp 133-134 °C, IR (neat): 3307, 1748, 1661, 1539, 1498, 1455, 1213, 1052, 699 cm⁻¹; $[\alpha]^{31}_{D} = +14.4$ (c 0.40, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.30 (m, 5H), 6.71 (brs, 1H), 5.40 (brs, 1H), 5.11 (s, 2H), 4.58-4.54 (m, 1H), 4.30 (brs, 1H), 3.73 (s, 3H), 1.38 (d, *J* = 7.2 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.4, 172.0, 156.1, 136.3, 128.7, 128.3, 128.2, 67.2, 52.6, 50.6, 48.2, 18.7, 18.3 ppm; HRMS (ESI): calcd for [C₁₅H₂₀N₂O₅+Na]⁺ 331.1262, found 331.1262.

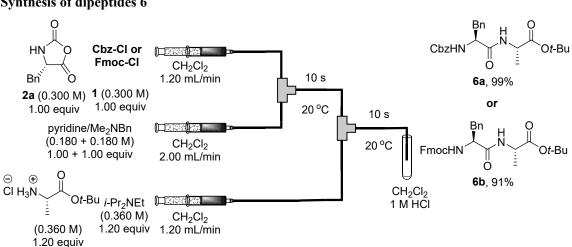

Cbz-D-Ser(Bn)-L-Ala methyl ester (epi-7d)

41.3 mg, 0.11 mmol, 67 %

White solid; mp 111-112 °C, IR (neat): 3311, 1732, 1717, 1670, 1557, 1455, 1153, 1054, 698 cm⁻¹; $[\alpha]^{31}_{D} = -14.8(c \ 0.29, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.26 (m, 10H), 6.90 (brs, 1H), 5.67 (brs, 1H), 5.12 (s, 2H), 4.59-4.49 (m, 3H), 4.38 (brs, 1H), 3.91 (d, *J* = 3.6 Hz, 1H), 3.74 (s, 3H), 3.58 (dd, *J* = 6.4, 9.2 Hz, 1H), 1.36 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 169.5, 156.2, 137.4, 136.2, 128.7, 128.6, 128.4, 128.3, 128.1, 127.9, 73.6, 69.7, 67.3, 54.4, 52.6, 48.3, 18.4 ppm; HRMS (ESI): calcd for [C₂₂H₂₆N₂O₆+Na]⁺ 437.1682, found 437.1687.


Cbz-D-Cys(Bn)-L-Ala methyl ester (epi-7e)

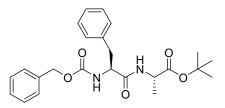
47.0 mg, 0.11 mmol, 73%


White solid; mp 125-126 °C, IR (neat): 3309, 1732, 1716, 1669, 1682, 1557, 1507, 1455, 1367, 1215, 1154, 698 cm⁻¹; $[\alpha]^{31}_{D} = -0.90$ (c 0.29, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.26 (m, 10H), 6.69 (brs, 1H), 5.58 (brs, 1H), 5.12 (s, 2H), 4.57-4.53 (m, 1H), 4.30 (brs, 1H), 3.73 (s, 3H), 2.88 (dd, J = 5.6, 13.6 Hz, 1H), 2.75 (dd, J = 6.8, 13.6 Hz, 1H), 1.38 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 169.8, 156.1, 138.0, 136.2, 129.1, 128.8, 128.7, 128.4, 128.2, 127.4, 67.4, 54.1, 52.6, 48.3, 36.7, 33.9, 18.3 ppm; HRMS (ESI): calcd for $[C_{22}H_{26}N_2O_5S+Na]^+$ 453.1452, found 453.1459.

Cbz-D-Asp(Ot-Bu)-L-Ala methyl ester (epi-7f)

40.7 mg, 0.11 mmol, 67 %

White solid; mp 64-66 °C, IR (neat): 3309, 1733, 1682, 1670, 1557, 1456, 1216, 1154 cm⁻¹; $[\alpha]^{31}_{D} =$ -13.8 (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.31 (m, 5H), 6.99 (d, J = 5.6 Hz, 1H), 5.90 (d, J = 8.0 Hz, 1H), 5.14 (s, 2H), 4.56-4.51 (m, 2H), 3.72 (s, 3H), 2.90 (dd, J = 4.0, 17.2 Hz, 1H), 2.60 (dd, J = 6.8, 17.2 Hz, 1H), 1.42 (s, 9H), 1.37 (d, J = 6.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 171.4, 170.3, 156.1, 136.2, 128.7, 128.4, 128.3, 82.1, 67.3, 52.6, 51.0, 48.4, 37.6, 28.1, 18.2 ppm; HRMS (ESI): calcd for [C₂₀H₂₈N₂O₇+Na]⁺ 431.1792, found 431.1793.

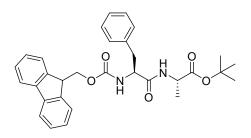


Synthesis of dipeptides 6

The employed micro-flow system was shown in Figure S-3.

A solution of **2a** (0.300 M, 1.00 equiv) and alkyl chloroformate **1** (0.300 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min), a solution of Me₂NBn (0.180 M, 1.00 equiv) and pyridine (0.180 M, 1.00 equiv) in CH₂Cl₂ (flow rate: 2.00 mL/min) were injected into the T-shaped mixer 1 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 1 (inner diameter: 0.800 mm, length: 1062 mm, volume: 533 μ L, reaction time: 10 s) at the same temperature. The resultant mixture and a solution of L-alanine *t*-butyl ester hydrochloric acid (0.360 M, 1.20 equiv) and *i*-Pr₂NEt (0.360 M, 1.20 equiv) in CH₂Cl₂ (flow rate: 1.20 mL/min) were injected into the T-shaped mixer 2 at 20 °C with the syringe pumps. The resultant mixture was passed through the reaction tube 2 (inner diameter: 0.800 mm, length: 1458 mm, volume: 733 μ L, reaction time: 10 s) at the same temperature. After being eluted for 60 s to reach a steady state, the resultant mixture was poured into a test tube including 1.00 ml of 1 M HCl and 5.00 ml of CH₂Cl₂ for 10-25 s at room temperature. The reaction mixture was washed with 1 M HCl twice, saturated salt water, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a crude product. The crude product was purified by preparative TLC.

Cbz-L-Phe-L-Ala t-butyl ester (6a)


Purification method: The crude product was purified by preparative TLC (condition: EtOAc/hexane = 1/1)

63.2 mg, 0.15 mmol, 99%

White solid; mp 99-100 °C, IR (neat): 3296, 2978, 1734, 1698, 1658, 1497, 1455, 1368, 1259, 1148, 1047, 741, 698 cm⁻¹; $[\alpha]^{31}_{D}$ = +3.81 (c 0.21, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.16 (m, 10H), 6.41 (d, *J* = 6.0 Hz, 1H), 5.39 (brs, 1H), 5.08 (s, 2H), 4,45-4.34 (m, 2H), 3.10-3.04 (m, 2H), 1.44 (s, 9H), 1.30 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 170.2, 156.0, 136.3, 129.5, 128.8, 128.7, 128.3, 128.2, 127.2, 82.2, 67.1, 56.2, 48.9, 36.7, 28.1, 18.7 ppm; HRMS (ESI): calcd for [C₂₄H₃₀N₂O₅+Na]⁺ 449.2047, found 449.2047.

Spectral data of ¹H NMR and ¹³C NMR were well consistent with those reported in previous literature.^{S16}

Fmoc-L-Phe-L-Ala t-butyl ester (6b)

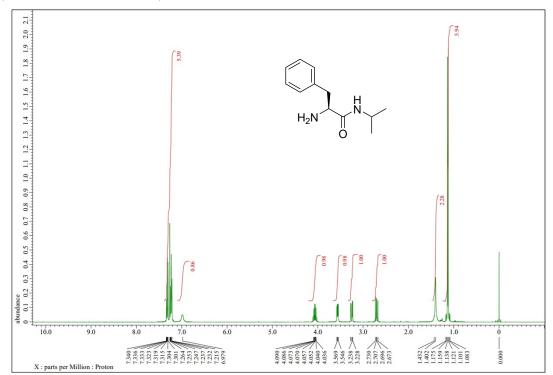
* Collection time was 20 s.

Purification method: The crude product was purified by preparative TLC twice (condition: EtOAc/hexane = 4/1 and 2/1)

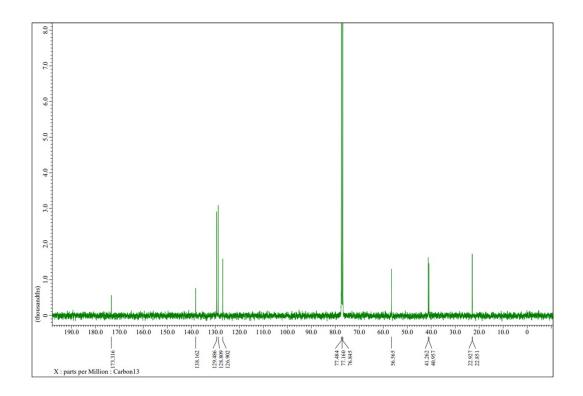
56.1 mg, 0.11 mmol, 91%

White solid; mp 69-71 °C, IR (neat): 3294, 2977, 1733, 1698, 1654, 1540, 1451, 1368, 1261, 1147, 1043, 757, 739, 699 cm⁻¹; $[\alpha]^{31}_{D} = -5.00$ (c 0.33, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 8.0 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.31-7.25 (m, 7H), 6.42 (d, J = 5.2 Hz, 1H), 5.41 (d, J = 5.6 Hz, 1H), 4.43-4.30 (m, 3H), 4.17 (t, J = 7.2 Hz, 1H), 3.11-3.06 (m, 2H), 1.44 (s, 9H), 1.31 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 170.2, 156.0, 143.9, 143.8, 141.4, 136.4, 129.5, 128.8, 127.8, 127.2, 125.2, 120.1, 82.2, 67.2, 56.1, 48.9, 47.2, 38.8, 28.0, 18.7 ppm; HRMS (ESI): calcd for [C₃₁H₃₄N₂O₅+Na]⁺ 537.2360, found 537.2323.

References

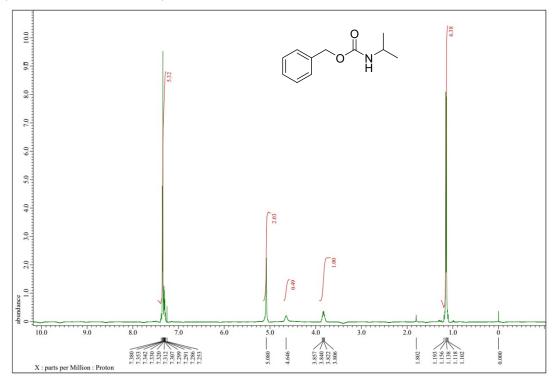

- S1) Y. Otake, H. Nakamura, S. Fuse, Angew. Chem. Int. Ed., 2018, 57, 11389-11393.
- S2) H. K. Hall, J. Phys. Chem., 1956, 60, 63-70.
- S3) M. L. Bender, B. W. Turnquest, J. Am. Chem. Soc., 1957, 79, 1656–1662.
- S4) H. K. Hall, J. Am. Chem. Soc., 1957, 79, 5441-5444.
- S5) C. Faltin, E. M. Fleming, S. J. Connon, J. Org. Chem., 2004, 69, 6496-6499.
- S6) S. Tshepelevitsh A. Kütt, M. Lõkov, I. Kaljurand, J. Saame, A. Heering, P. G. Plieger, R. Vianello,
- I. Leitoand, Eur. J. Org. Chem., 2019, 6735-6748
- S7) J. Y. Guo, C. H. Zhong, Z. Y. He and S. K. Tian, Asian. J. Org. Chem., 2018, 7, 119-122.
- S8) D. Li, H. Jianfeng and T. Liang, United States Patent, 011799 (2003).
- S9) W. D. Fuller, M. Goodman, F. R. Naider and Y. F. Zhu, Biopolymer, 1996, 40, 183-205.
- S10) J. Savrda, L. Chertanova and M. Wakselman, Tetrahedron. Lett., 1994, 50, 18, 5309-5322.
- S11) J. Hang, S. K. Tian, L. Tang and L. Dang, J. Am. Chem. Soc., 2001, 123, 12696-12697.
- S12) S. N. Khattab, Chem Pharm. Bull., 2010, 58, 4, 501-506.
- S13) H. J. Lee, X. Huang, S. Sakai and K. Maruoka, Green. Chem., 2021, 23, 848-855.

- S14) M. C. Clerget, J. Y. Berthon, I. K. Renimel, L. Chaisemartin and B. H. Lipshutz, *Green. Chem.*, **2017**, *19*, 4263-4267.
- S15) L. A. Carpino, H. G. Chao and J. H. Tien, J. Org. Chem., 1989, 54, 4302-4313.
- S16) Z. J. Kaminski, Synthesis, 1987, 917-920.

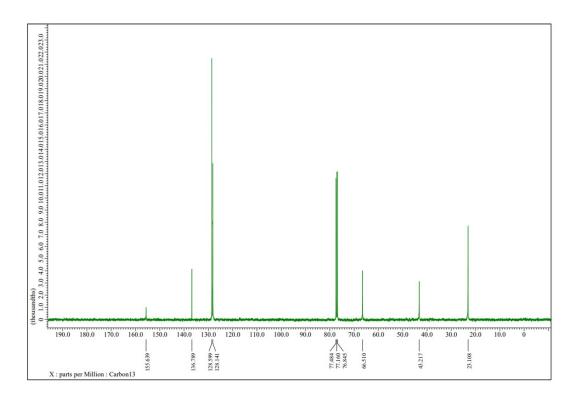

NMR spectra

(S)-2-Amino-N-isopropyl-3-phenylpropanamide (4a)

(¹H NMR, 400 MHz, CDCl₃)

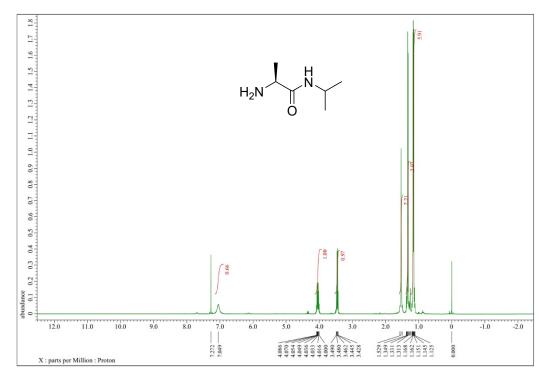


(13C NMR, 100 MHz, CDCl₃)

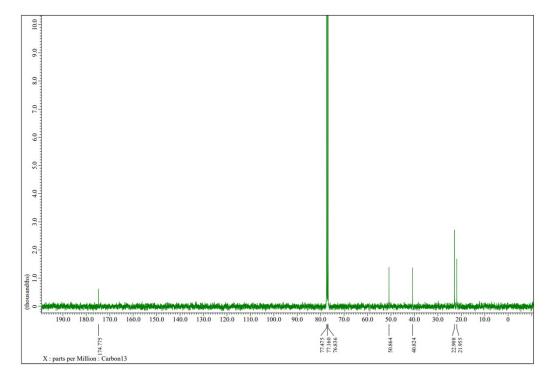


Benzyl isopropyl carbamate (5a)

(¹H NMR, 400 MHz, CDCl₃)

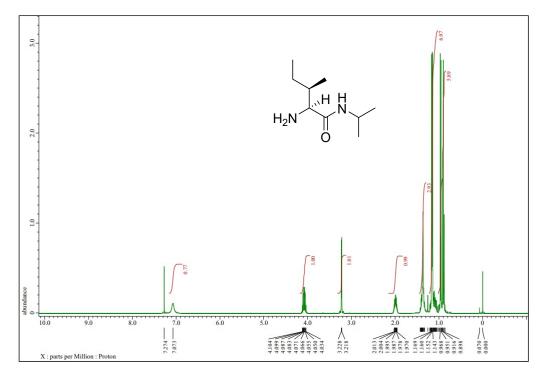


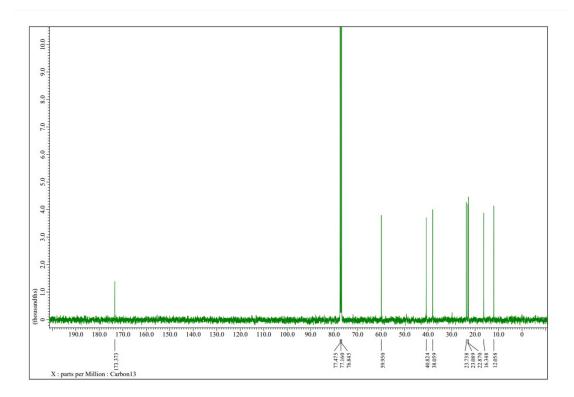
(¹³C NMR, 100 MHz, CDCl₃)

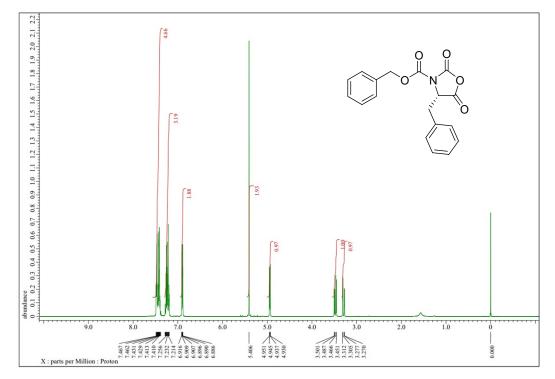


(S)-2-Amino-N-isopropylpropanamide (4b)

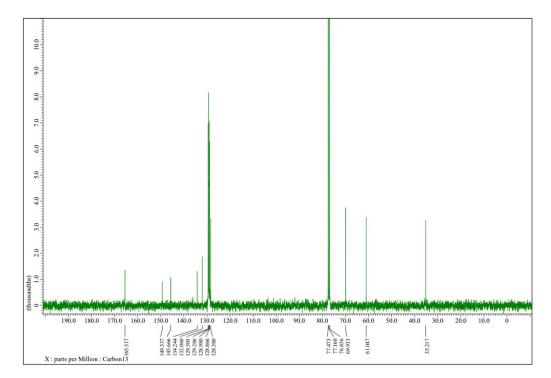
(1H NMR, 400 MHz, CDCl₃)



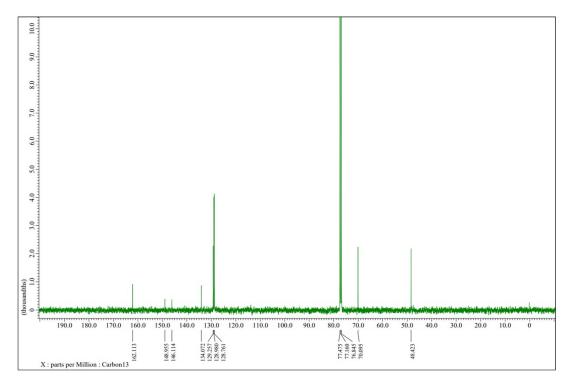

(¹³C NMR, 100 MHz, CDCl₃)


(2S,3R)-2-Amino-N-isopropyl-3-methylpentanamide (4c)

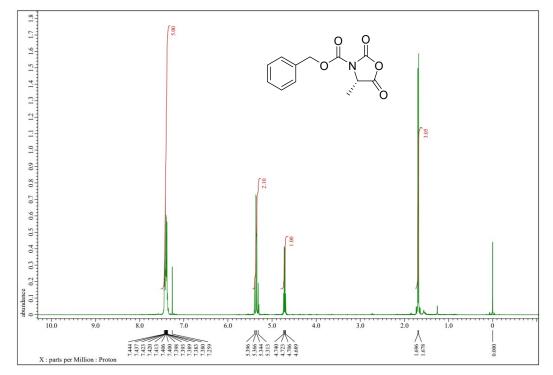
(¹H NMR, 400 MHz, CDCl₃)

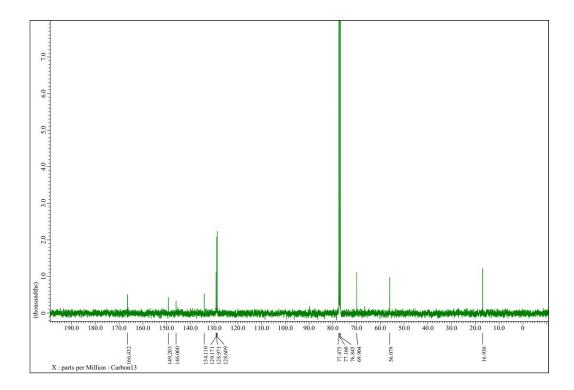


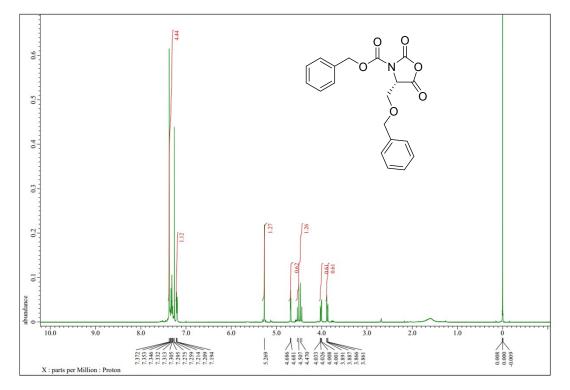

Cbz-L-phenylalanine-NCA (3a)


(¹³C NMR, 100 MHz, CDCl₃)

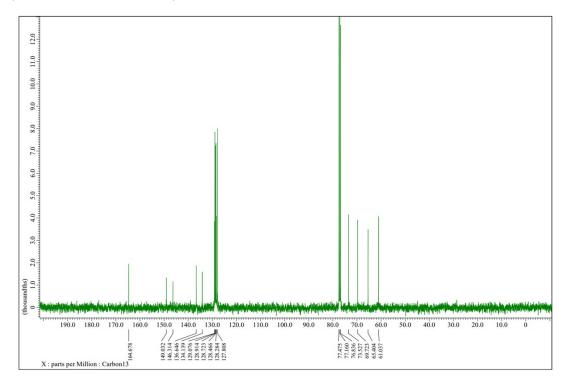
Cbz-glycine-NCA (3b) (¹H NMR, 400 MHz, CDCl₃)

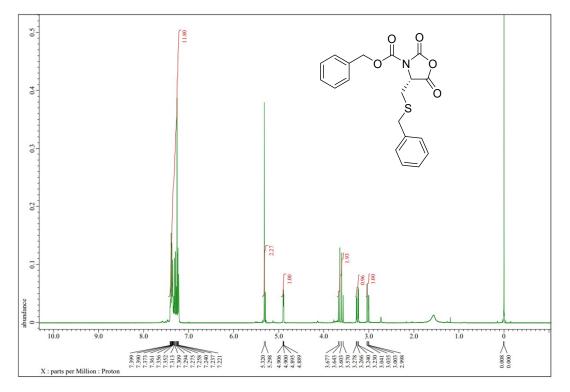


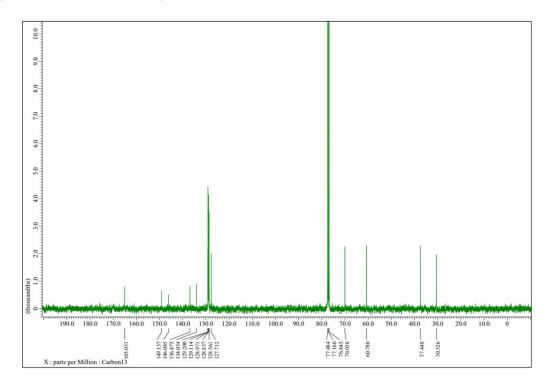

(¹³C NMR, 100 MHz, CDCl₃)

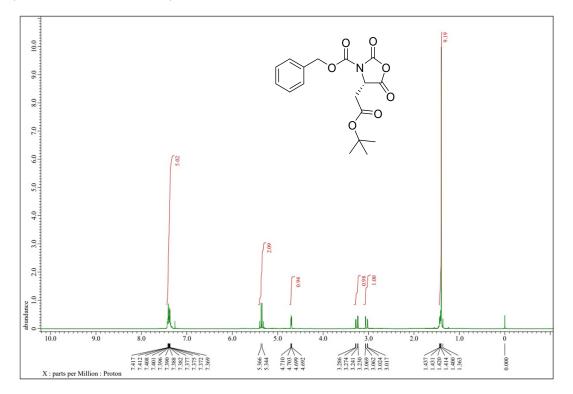

Cbz-L-alanine-NCA (3c)

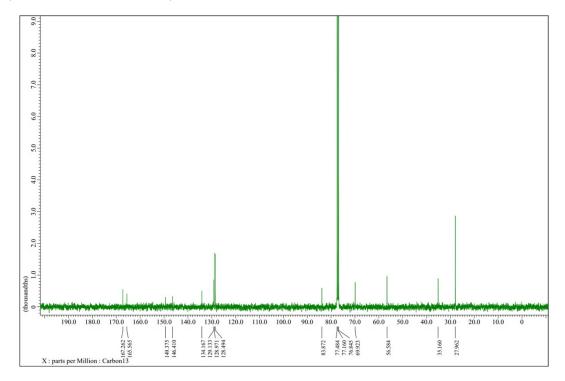
(¹H NMR, 400 MHz, CDCl₃)

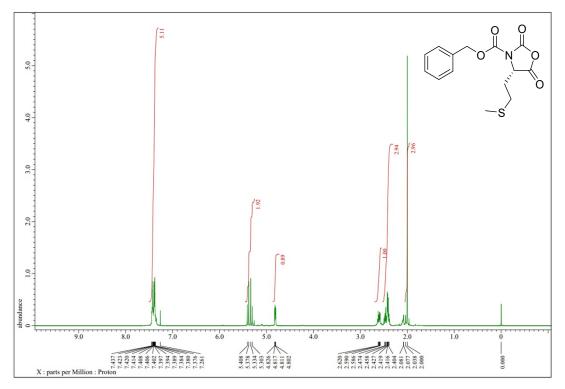


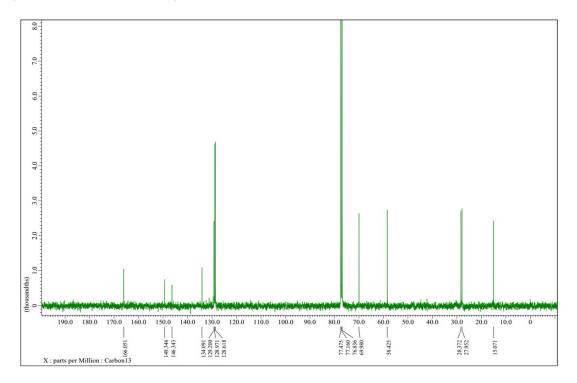

Cbz-O-benzyl-L-serine-NCA (3d)

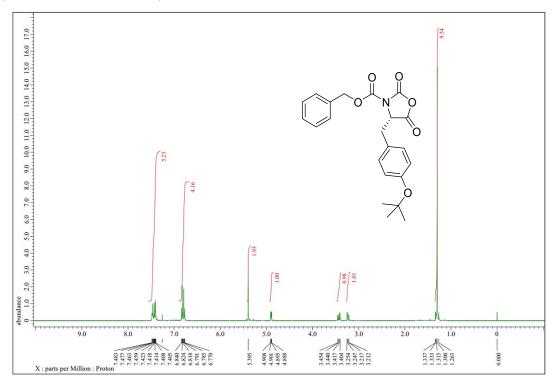

(¹³C NMR, 100 MHz, CDCl₃)

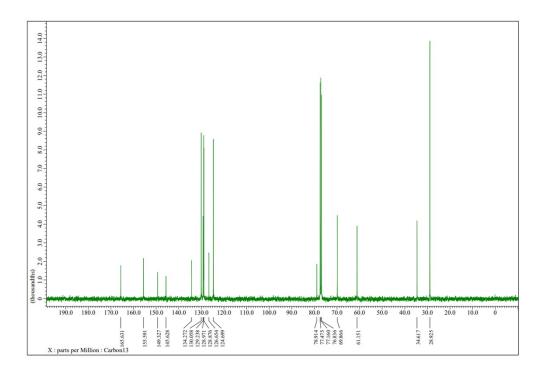

Cbz-S-benzyl-L-cysteine-NCA (3e)

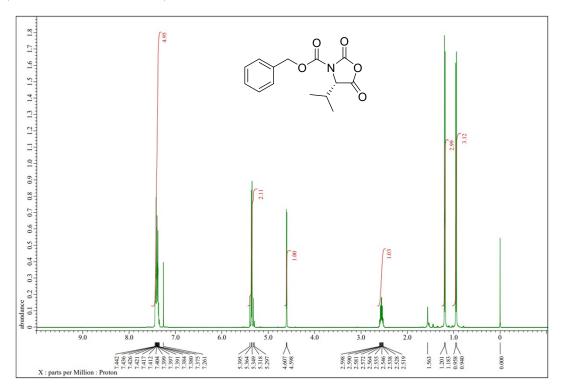

(¹³C NMR, 100 MHz, CDCl₃)

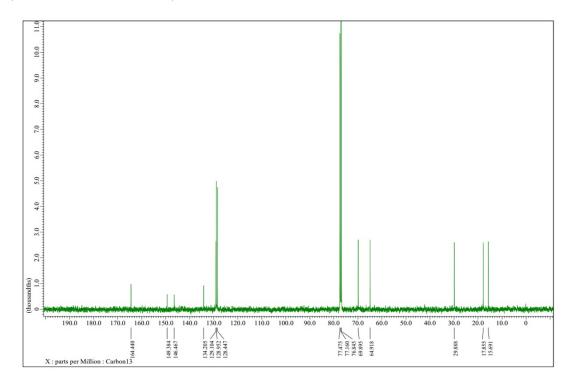

Cbz-5-t-butyl-L-glutamate-NCA(3f)

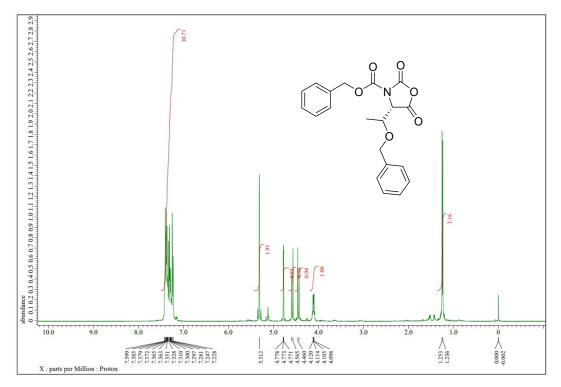

(¹³C NMR, 100 MHz, CDCl₃)

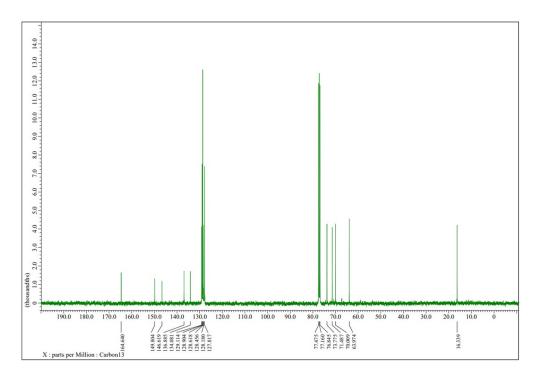

Cbz-L-methionine-NCA (3g) (¹H NMR, 400 MHz, CDCl₃)

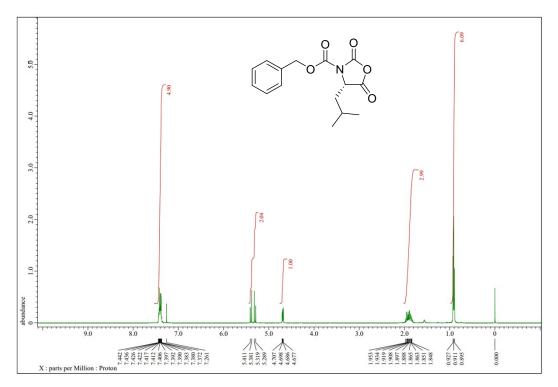

(¹³C NMR, 100 MHz, CDCl₃)

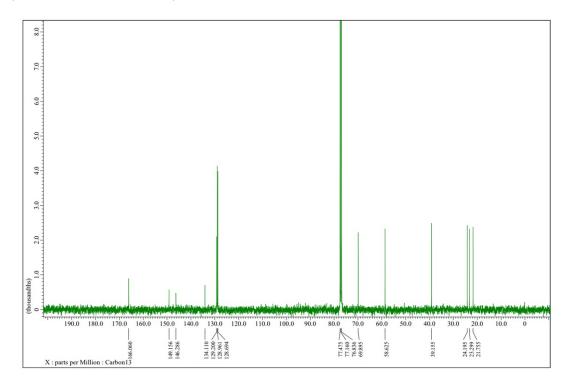

Cbz-O-t-butyl-L-tyrosine-NCA(3h)

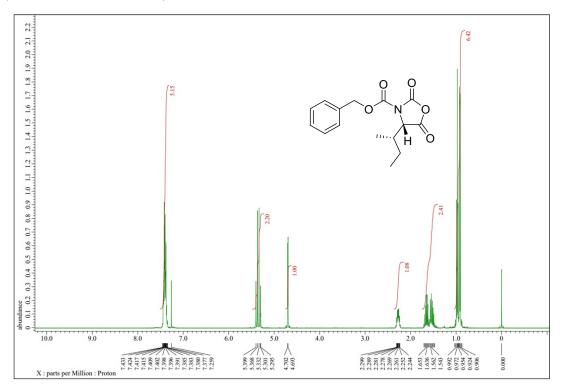

(¹³C NMR, 100 MHz, CDCl₃)

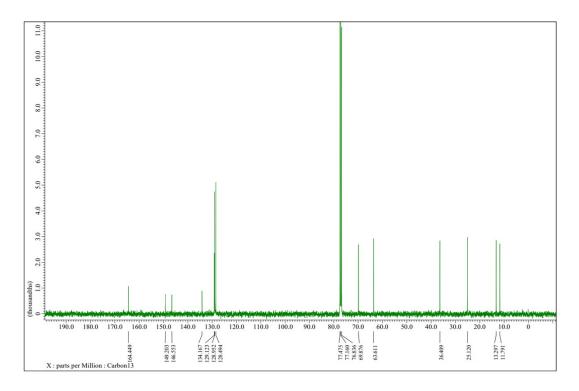

Cbz-L-varine-NCA (3i) (¹H NMR, 400 MHz, CDCl₃)

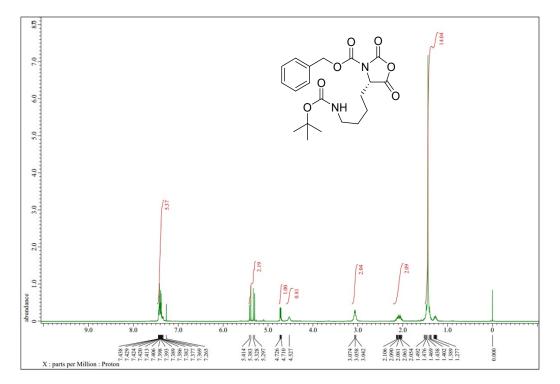

(¹³C NMR, 100 MHz, CDCl₃)

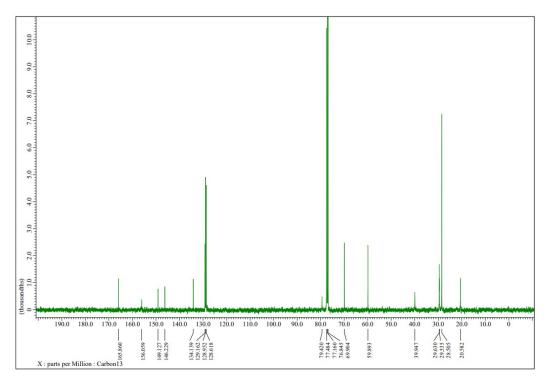

Cbz-O-benzyl-L-threonine-NCA (3j)


(¹³C NMR, 100 MHz, CDCl₃)

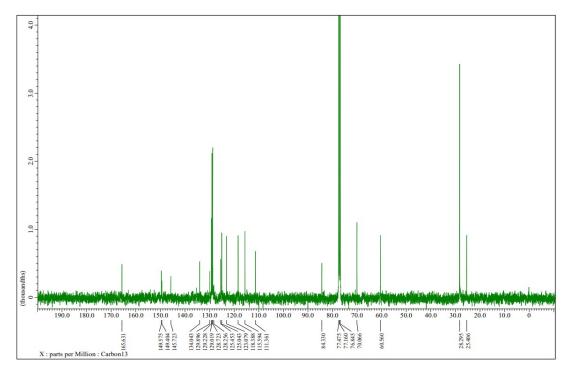

Cbz-L-leucine-NCA (3k) (¹H NMR, 400 MHz, CDCl₃)


(¹³C NMR, 100 MHz, CDCl₃)

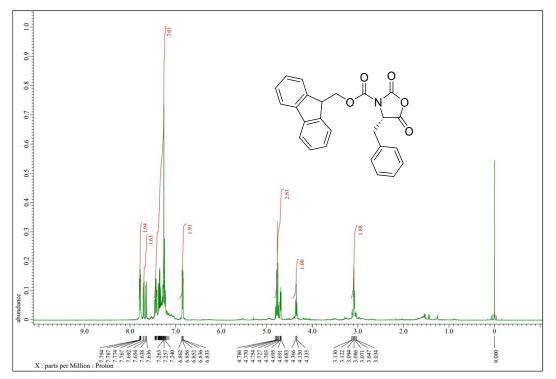

Cbz-L-isoleucine-NCA (3l) (¹H NMR, 400 MHz, CDCl₃)


(¹³C NMR, 100 MHz, CDCl₃)

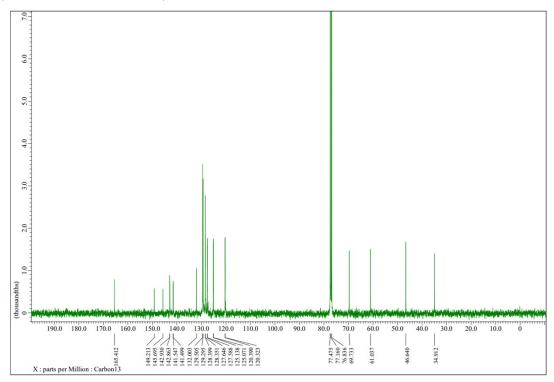
Cbz-N_ε-(*t*-butoxycarbonyl)-L-lysine-NCA (3m)


(¹³C NMR, 100 MHz, CDCl₃)

Cbz-1-t-butoxycarbonyl-L-tryptophan-NCA(3n)

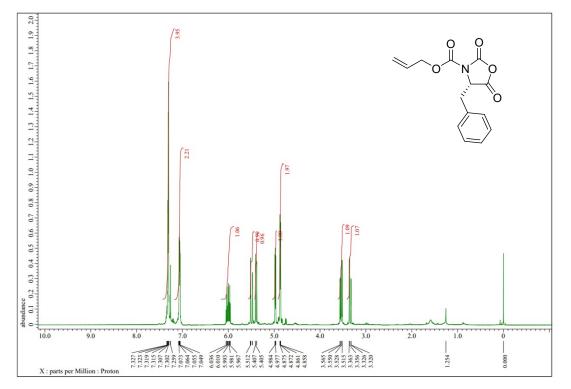


(¹³C NMR, 100 MHz, CDCl₃)

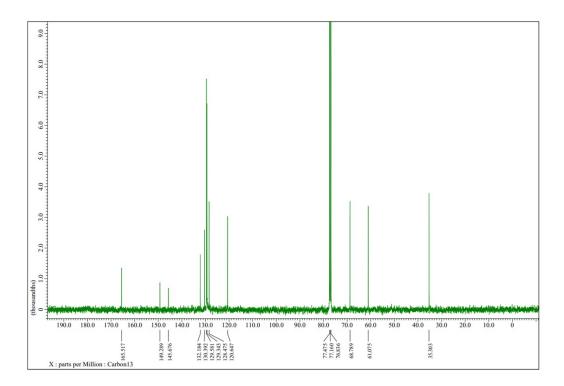


Fmoc-L-phenylalanine-NCA (3p)

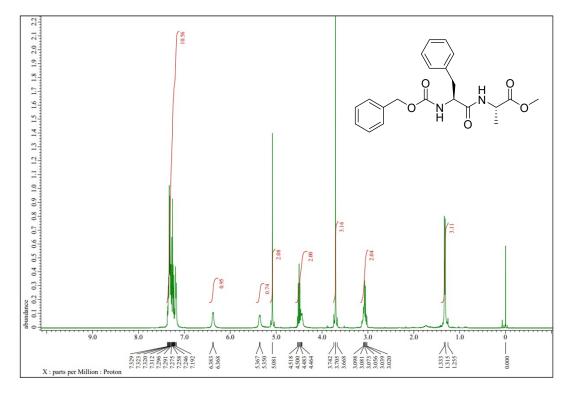
(¹H NMR, 400 MHz, CDCl₃)

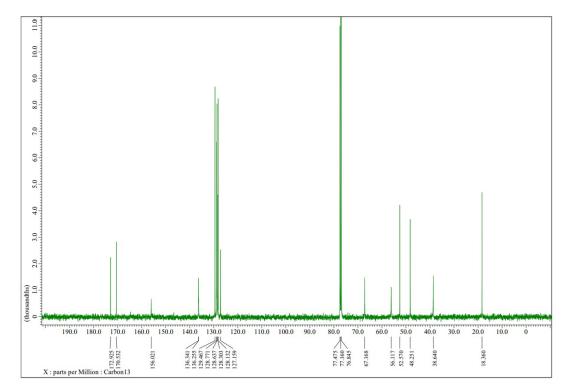


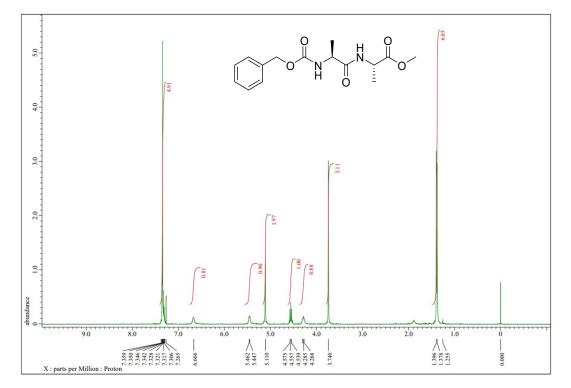
(¹³C NMR, 100 MHz, CDCl₃)

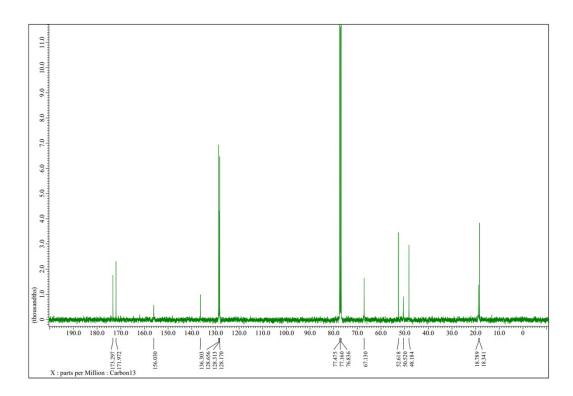


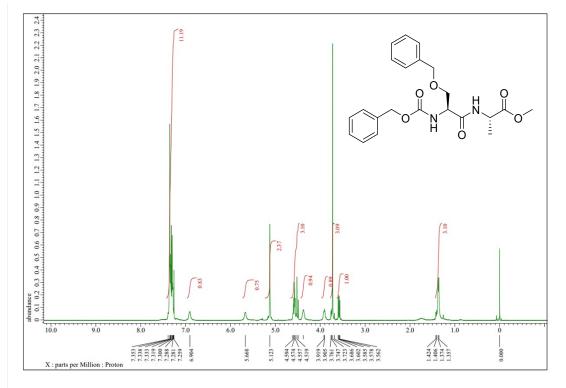
Alloc-L-phenylalanine-NCA (3q)

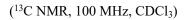

(¹H NMR, 400 MHz, CDCl₃)

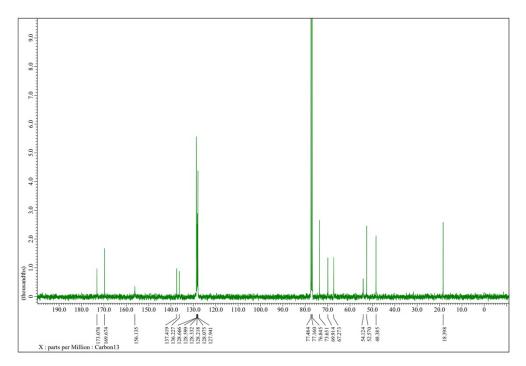

(¹³C NMR, 100 MHz, CDCl₃)

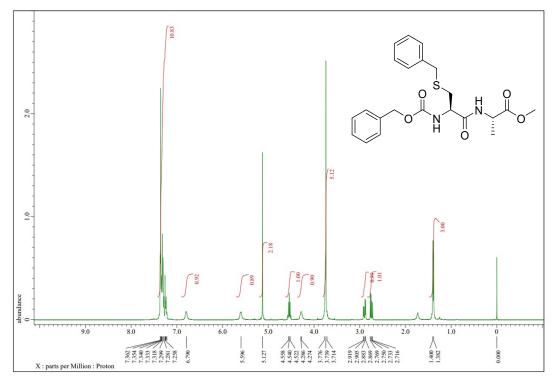

Cbz-L-Phe-L-Ala methyl ester (7a)

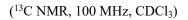

(¹³C NMR, 100 MHz, CDCl₃)

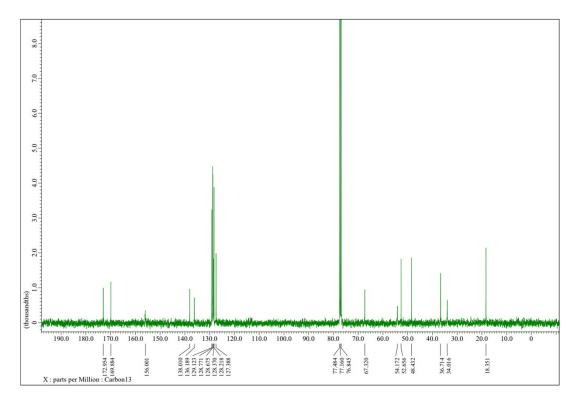

Cbz-L-Ala-L-Ala methyl ester (7c)

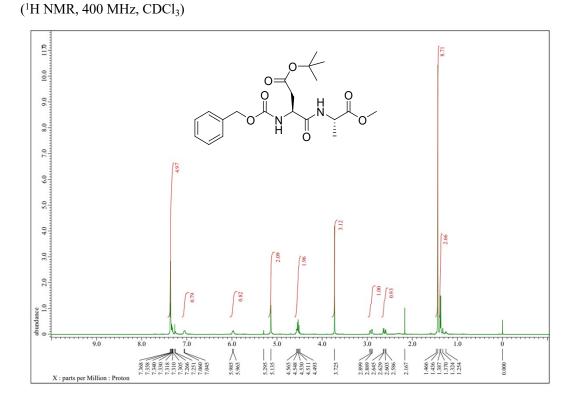


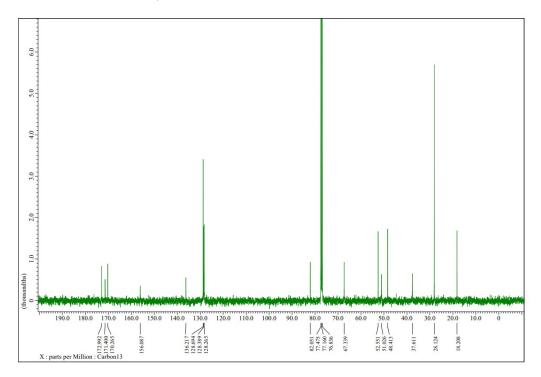

(¹³C NMR, 100 MHz, CDCl₃)


Cbz-L-Ser(Bn)-L-Ala methyl ester (7d)

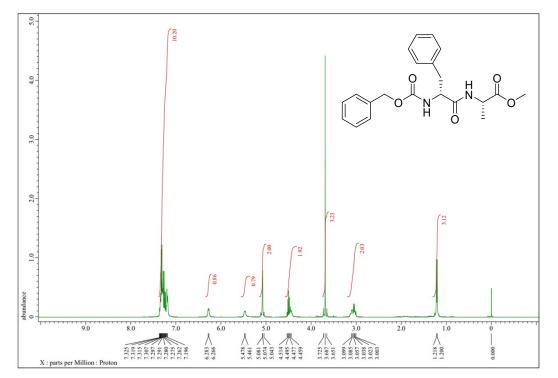




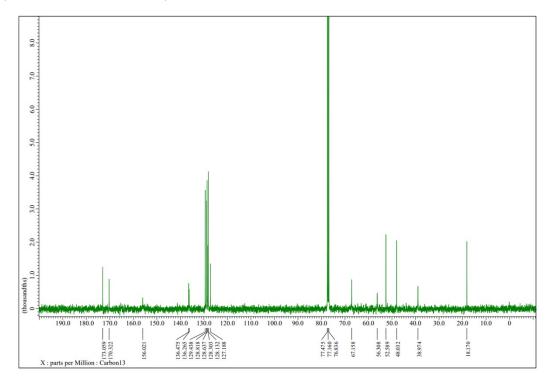

Cbz-L-Cys(Bn)-L-Ala methyl ester (7e) (¹H NMR, 400 MHz, CDCl₃)



Cbz-L-Asp(Ot-Bu)-L-Ala methyl ester (7f)

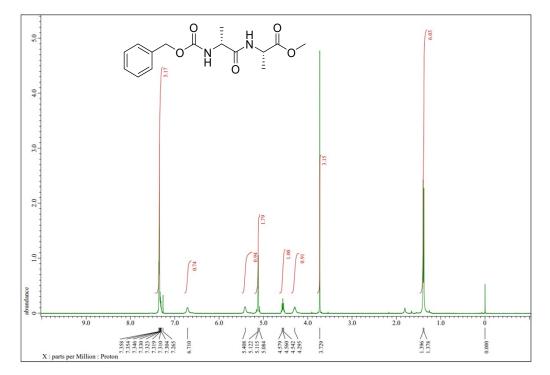


(¹³C NMR, 100 MHz, CDCl₃)

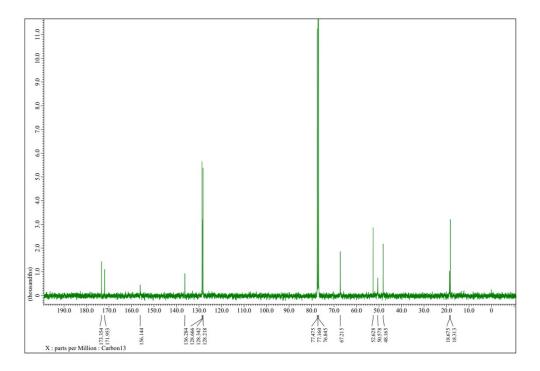


Cbz-D-Phe-L-Ala methyl ester (epi-7a)

(¹H NMR, 400 MHz, CDCl₃)

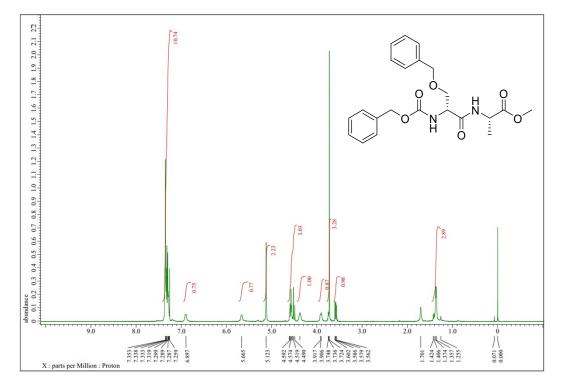


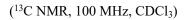
(¹³C NMR, 100 MHz, CDCl₃)

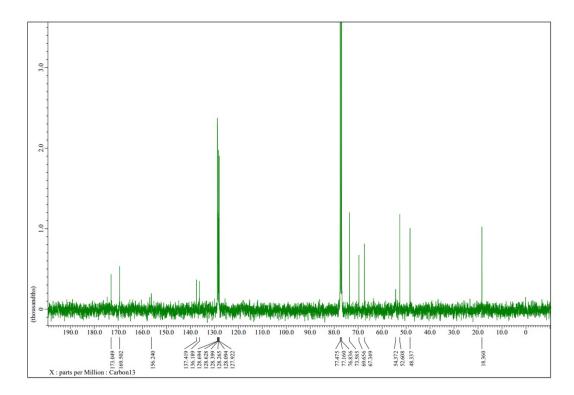


Cbz-D-Ala-L-Ala methyl ester (epi-7c)

(¹H NMR, 400 MHz, CDCl₃)

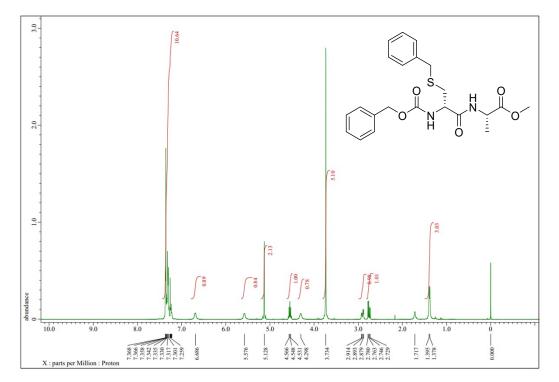


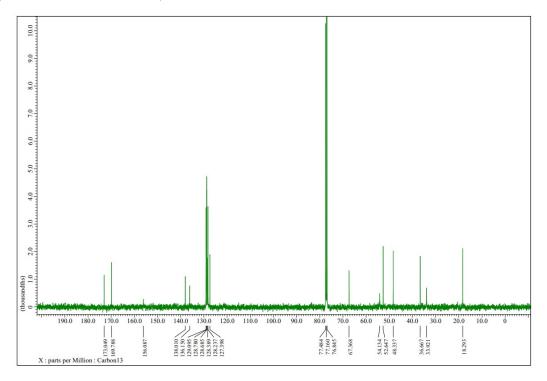

(¹³C NMR, 100 MHz, CDCl₃)



Cbz-D-Ser(Bn)-L-Ala methyl ester (epi-7d)

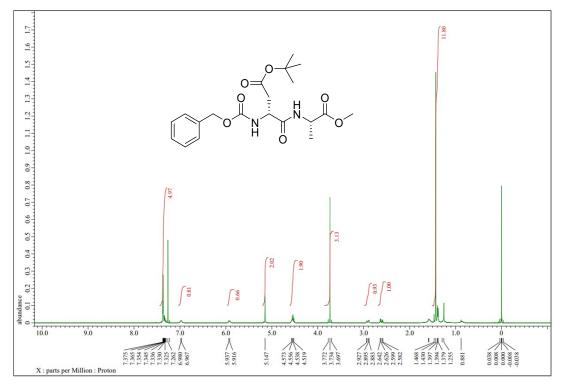
(¹H NMR, 400 MHz, CDCl₃)



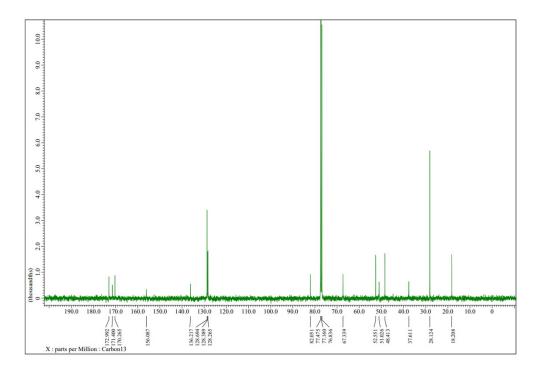


Cbz-D-Cys(Bn)-L-Ala methyl ester (epi-7e)

(¹H NMR, 400 MHz, CDCl₃)

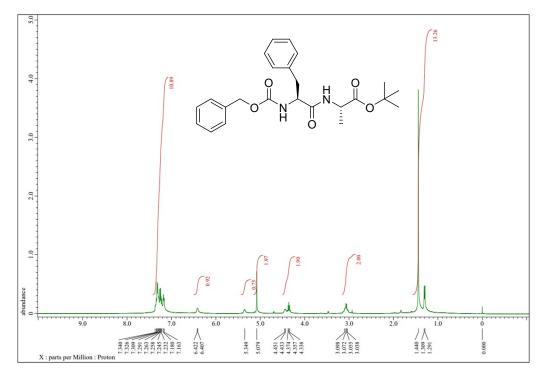


(¹³C NMR, 100 MHz, CDCl₃)



Cbz-D-Asp(Ot-Bu)-L-Ala methyl ester (epi-7f)

(¹H NMR, 400 MHz, CDCl₃)

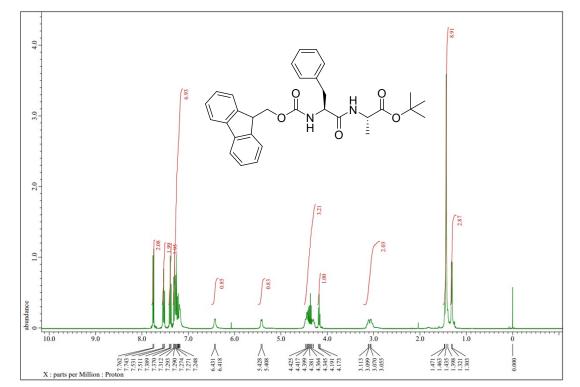


(¹³C NMR, 100 MHz, CDCl₃)

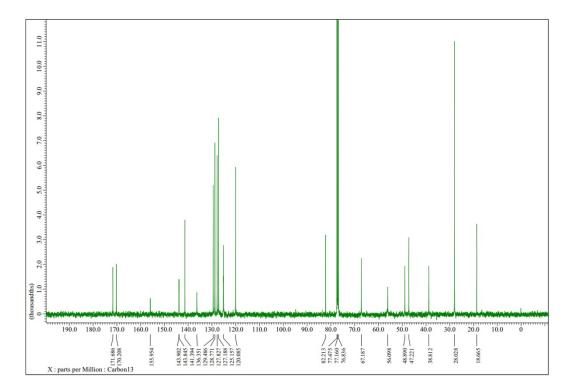


Cbz-L-Phe-L-Ala t-butyl ester (6a)

(¹H NMR, 400 MHz, CDCl₃)



(¹³C NMR, 100 MHz, CDCl₃)



Fmoc-L-Phe-L-Ala methyl ester (6b)

^{(&}lt;sup>1</sup>H NMR, 400 MHz, CDCl₃)

(¹³C NMR, 100 MHz, CDCl₃)

