Cyclopenta-fused polyaromatic hydrocarbons: Synthesis and characterisation of a stable, carbon-centred helical radical

Stefan Herzog,^a Alexander Hinz,*^b Frank Breher*^b and Joachim Podlech*^a

- ^a Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT) 76131 Karlsruhe, Fritz-Haber-Weg 6, Germany
- ^b Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT) 76131 Karlsruhe, Engesserstraße 15, Germany alexander.hinz@kit.edu; frank.breher@kit.edu; joachim.podlech@kit.edu

Electronic Supporting Information

Content:

- 1. Possible Cyclopentadifluorene Radicals
- 2. Resonance Formulas of 7
- 3. Experimental Procedures
- 4. NMR Spectra of New Compounds, Mass and IR Spectra of 7
- 5. Measured UV/Vis Spectra of 7 and 15 in CH_2CI_2
- 6. Cyclic Voltammograms of 7
- 7. Computational Details
- 8. Archive Entry for a Single Point Calculation on a Minimum Structure of 7 (Doublet)
- 9. Archive Entry for a Single Point Calculation on a Minimum Structure of 7 (Quartet)
- 10. Archive Entry for a Single Point Calculation on a Minimum Structure of 25
- 11. Archive Entry for a Single Point Calculation on a Minimum Structure of 15 (Singlet)
- 12. Archive Entry for a Single Point Calculation on a Minimum Structure of 15 (Triplet)
- 13. Doublet and Quartet Energies of 7; Singlet and Triplet Energies of 15
- 14. Frequency Analyses and Measured IR Spectrum of 7
- 15. Frontier Orbitals of 7
- 16. Enlarged Figure 6. Calculated SOMOs of α and β Electrons, respectively
- 17. Enlarged Figure 5. Calculated Spin Density of 7
- 18. Mulliken Atomic Spin Densities of the Helicene Carbon Atoms in 7
- 19. Triradical Character of 7
- 20. Calculated UV/Vis/NIR Spectra of 7
- 21. Calculated Electronic Circular Dichroism (ECD) Spectrum of 7
- 22. TD Calculation of 7
- 23. Frontier Orbitals of 7 as Obtained from the TD Calculation
- 24. HOMA Values of 7
- 25. Calculated ¹H NMR Shifts of 7 and 25
- 26. Calculated EPR Data of 7
- 27. NICS Values of 7 and 25
- 28. XRD Structural Data Summary

1. Possible Cyclopentadifluorene Radicals

The maximum number of full benzene rings for a monoradical is given; those are marked with bold bonds.

2. Resonance Formulas of 7

Fully intact benzene rings are given with bold bonds. Except for the first two formulas a second mirror image has to be considered for each resonance formula. The only monoradical resonance formula with three intact benzene rings is given in a box.

3. Experimental Procedures

General.

The pinacol boronates used for Suzuki couplings were synthesized according to published procedures.¹ Technical solvents (CH₂Cl₂, hexane, and n-pentane) were distilled prior to use. CHCl₃, MeOH, and MeCN were purchased as HPLC-grade solvents and used without further purification. THF was dried over sodium, CH₂Cl₂ was dried over CaH₂, and both were distilled prior to use. Anhydrous toluene (99.8%) was used as purchased without further purification. Flash column chromatography² was carried out using Merck SiO₂ 60 (230-400 mesh) and thin layer chromatography (TLC) was carried out using commercially available Merck F254 pre-coated sheets. ¹H and ¹³C NMR spectra were recorded with *Bruker* Avance 400 or Avance Neo instruments. NMR spectra at elevated temperatures were measured with a Bruker Avance DRX 500 spectrometer. Chemical shifts are given in ppm and are referenced by using the residual signals of the solvent as internal standard.³ IR spectra were recorded with a Bruker Alpha FT-IR-spectrometer using the ATR technique and mass spectra were recorded with a Finnigan MAT-95 mass spectrometer. Melting points were determined with a Laboratory Devices Mel-Temp II melting point apparatus with a heating rate of 2 K/min. UV/Vis data were recorded with Mettler Toledo UV7 and Perkin Elmer Lambda 750 spectrophotometers; an UV/Vis/NIR spectrum was recorded on an Agilent Cary 5000 spectrophotometer. Cyclic voltammetry measurements were performed with a suitable potentiostat and an electrochemical cell within a glovebox. A freshly polished Pt disk as working electrode, a Pt wire as a counter electrode and an Ag wire as a (pseudo)reference electrode were used in 0.05mM [NBu4][Al{OC(CF₃)₃]₄] as electrolyte). Potentials were calibrated against the Fc/Fc⁺ couple (internal standard). EPR spectra were recorded on a Bruker EMXplus Xband spectrometer (microwave frequency: 9.43 GHz). The spectra were simulated using the MATLAB/easyspin package.⁴ Single crystals were mounted in perfluoropolyalkyl ether oil on a cryo loop and then brought into the cold nitrogen stream of a lowtemperature device (Oxford Cryosystems Cryostream unit) so that the oil solidified. Diffraction data were collected using a Stoe IPDS II diffractometer and graphite-monochromated Mo-Kα (0.71073 Å) radiation. The structures were solved by direct methods with SHELXS⁵ or by intrinsic phasing with SHELXT⁶ followed by full-matrix least-squares refinement using SHELXL-2014/7⁷ and the ShelXle GUI.⁸ All non-hydrogen atoms were refined anisotropically. The contribution of the hydrogen atoms, in their calculated positions, was included in the refinement using a riding model.

Dimethyl 2-Amino-3-bromoterephthalate (9)

Following a published protocol⁹ AcOH (1.45 mL, 1.50 g, 25.0 mmol) and then NBS (4.26 g, 23.9 mmol) were added to a solution of dimethyl-2-aminoterephthalate (**8**, 5.00 g, 23.9 mmol) in toluene (500 mL) and the mixture was stirred for 4 d at rt and washed with a solution of NaHCO₃ (5.00 g) in H₂O (500 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3×150 mL). The combined organic layers were washed with brine (200 mL), dried (Na₂SO₄), concentrated at reduced pressure and purified by column chromatography (silica gel, hexane, EtOAc, 10:1) to yield **9** as a yellow solid (2.06 g, 7.15 mmol, 30%). *R*_f = 0.38 (hexane/EtOAc 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.89 (d, ³*J* = 8.3 Hz, 1 H, ArH), 6.87 (d, ³*J* = 8.3 Hz, 1 H, ArH), 6.58 (br s, 2 H, NH₂), 3.93 (s, 3 H, OCH₃), 3.90 ppm (s, 3 H, OCH₃). The ¹H NMR data are in full agreement with published data.¹⁰

Dimethyl 2-Bromo-3-iodoterephthalate (10)

Following a published protocol¹¹ a solution of NaNO₂ (1.20 g, 17.4 mmol) in H₂O (12 mL) was added dropwise within 25 min to a cooled (0 °C) suspension of terephthalate **9** (2.00 g, 6.94 mmol) in a mixture of concd. HCl and H₂O (1:1, 45 mL) and stirring was continued for 30 min. The mixture was added slowly to a cooled (0 °C) solution of KI (6.91 g, 41.6 mmol) in H₂O (65 mL) and stirred vigorously for 18 h. Solid Na₂S₂O₃ was added to the stirred solution until the colour vanished and EtOAc (100 mL) was added. (If the organic layer turned dark, either more Na₂S₂O₃ was added or it was washed with saturated aqueous NaHSO₃ solution.) The organic layer was separated and the aqueous layer was extracted with EtOAc (2×100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution (150 mL), brine (100 mL), dried (Na₂SO₄), concentrated at reduced pres-

CO₂Me

CO2Me

 NH_2

Br

sure, and purified by columns chromatography (silica gel, hexane/EtOAc, $6:1\rightarrow5:1$) to yield **10** as a slightly yellow solid (1.88 g, 4.71 mmol, 68%). $R_{\rm f}$ = 0.30 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, ³*J* = 7.9 Hz, 1 H, ArH), 7.46 (d, ³*J* = 7.9 Hz, 1 H, ArH), 3.95 (s, 3 H, OCH₃), 3.95 ppm (s, 3 H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 167.6 (C), 166.7 (C), 143.1 (C), 137.2 (C), 130.09 (C), 129.2 (CH), 127.5 (CH), 103.9 (C), 53.3 (OCH₃), 53.2 ppm (OCH₃); IR (ATR): $\tilde{\nu}$ = 2953 (w), 1714 (m), 1579

¹¹ T. Christine, A. Tabey, T. Cornilleau, E. Fouquet, P. Hermange, *Tetrahedron* **2019**, *75*, 130765.

¹ a) D. C. Ebner, J. T. Bagdanoff, E. M. Ferreira, R. M. McFadden, D. D. Caspi, R. M. Trend, B. M. Stoltz, *Chem. Eur. J.* **2009**, *15*, 12978–12992; b) Y.-Y. Jhang, T.-T. Fan-Chiang, J.-M. Huang, J.-C. Hsieh, *Org. Lett.* **2016**, *18*, 1154–1157.

² W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. **1978**, 43, 2923–2925.

³ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, 29, 2176–2179.

⁴ S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.

⁵ SHELXS97 and SHELXL97. Program for Crystal Structure Solution and Refinement, G. M. Sheldrick, University of Göttingen, Göttingen, **1997**.

⁶ G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.

⁷ SHELXTL (Version 2014/7), G. M. Sheldrick, 2013.

⁸ C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.

⁹ H. Shen, K. Vollhardt, *Synlett* **2012**, 208–214.

¹⁰ M. Kim, J. A. Boissonnault, P. V. Dau, S. M. Cohen, Angew. Chem. 2011, 123, 12401–12404; Angew. Chem. Int. Ed. 2011, 50, 12193–12196.

(w), 1448 (w), 1425 (w), 1343 (w), 1278 (m), 1243 (m), 1189 (m), 1152 (m), 1119 (m), 1057 (m), 949 (m), 863 (w), 842 (m), 821 (w), 791 (w), 752 (m), 726 (m), 698 (w), 529 (w), 475 (w) cm⁻¹; MS (FAB): m/z (%): 401.0 (35) [M+1]⁺, 399.9 (14) [M]⁺, 398.9 (35) [M+1]⁺, 397.9 (11) [M]⁺, 368.9 (15) [M-OCH₃]⁺, 366.9 (15) [M-OCH₃]⁺; HRMS (FAB): m/z calcd for C₁₀H₉O₄⁷⁹Brl: 398.8723 [M+1]⁺; found: 398.8725.

Dimethyl 4,4"-Dimethoxy-[1,1':2',1"-terphenyl]-3',6'-dicarboxylate (12)

THF (2 mL) and H₂O (2 mL) were added to a mixture of terephthalate **10** (200 mL, 500 µmol), 2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolan^{1a} (**11**, 260 mg, 1.11 mmol), and Na₂CO₃ (132 mg, 1.25 mmol). The solution was degassed by ultrasonication (15 min) and PdCl₂(PPh₃)₂ (8 mg, 11 µmol) was added. The mixture was heated for 15 h to 80 °C and cooled to rt. Half saturated aqueous NaCl solution (5 mL) and EtOAc (5 mL) were added and the aqueous layer was extracted with EtOAc (2×10 mL). The combined organic layers were dried (Na₂SO₄), concentrated at reduced pressure, and purified by columns chromatography (silica gel, hexane/EtOAc, 5:1) to yield **12** as a colourless, microcrystalline solid (124 mg, 305 µmol, 61%). *R*_f = 0.18 (hexane/EtOAc 4:1); ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (s, 2 H, ArH),

6.86–6.83 (m, 4 H, ArH), 6.70–6.66 (m, 4 H, ArH), 3.74 (s, 6 H, ArOCH₃), 3.57 ppm (s, 6 H, CO₂CH₃); ¹³C NMR (100 MHz, CDCl₃); $\delta = 169.0$ (C), 158.4 (C), 141.6 (C), 135.5 (C), 131.0 (C), 130.9 (CH), 127.5 (CH), 113.0 (CH), 55.2 (ArOCH₃), 52.3 ppm (CO₂CH₃); IR (ATR): $\tilde{\nu} = 2953$ (w), 1725 (m), 1609 (w), 1576 (w), 1511 (m), 1458 (w), 1429 (m), 1288 (m), 1240 (s), 1176 (m), 1142 (s), 1106 (m), 1077 (m), 1053 (m), 1029 (m), 958 (w), 872 (w), 836 (m), 758 (m), 641 (w), 608 (w), 564 (w), 542 (w), 497 (w) cm⁻¹; MS (FAB): *m/z* (%): 407.2 (47) [*M*+1]⁺, 406.2 (100) [*M*]⁺, 375.1 (27) [*M*–OCH₃]⁺, 344.1 (16) [*M*–2 OCH₃]⁺, 343.1 (60); HRMS (FAB): *m/z* calcd for C₂₄H₂₂O₆: 406.1411 [*M*⁺]; found: 406.1410.

3,10-Dimethoxyindeno[2,1-c]fluorene-5,8-dione (13)

Following a published protocol¹² terphenyl **12** (170 mg, 418 µmol) was dissolved under an argon atmosphere in Eaton's reagent (7.7% w/w P₂O₅ in MeSO₃H; 8 mL) and the solution was heated with vigorous stirring for 18 h to 80 °C, cooled to rt, poured on ice water (100 mL), and the precipitate was collected by filtration. It was washed successively with H₂O, saturated aqueous NaHCO₃ solution, H₂O, and acetone, and dried in high vacuum to yield **13** as a brown-red solid (75 mg, 220 µmol, 52%). ¹H NMR (400 MHz, CDCl₃ + 10% TFA): δ = 7.89 (d, ³*J* = 8.4 Hz, 2 H, ArH), 7.53 (s, 2 H, ArH), 7.38 (d, ⁴*J* = 2.6 Hz, 2 H, ArH), 7.21 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.6 Hz, 2 H, ArH), 3.94 ppm (s, 6 H, OCH₃); ¹³C NMR (100 MHz, CDCl₃ + 10% TFA): δ = 195.7 (C), 161.1 (C), 141.6 (C), 138.0 (C), 137.0 (C), 136.5 (C), 125.8 (CH), 125.5 (CH), 122.7 (CH), 110.9 (CH), 56.2 ppm (OCH₃); IR (ATR): $\tilde{\nu}$ = 3078 (w), 2847 (w), 1702 (s), 1601 (m), 1479 (s), 1442 (m), 1402 (m), 1340 (w), 1312 (m), 1289 (s), 1253 (m), 1229 (s), 1211 (m), 1112 (w), 1060 (m), 1024 (m), 959 (m), 899 (m), 814 (m), 796 (m), 759 (m), 725 (m), 607 (w), 571 (m), 484 (w), 435 (vw), 407 (vw) cm⁻¹; MS (EI): *m/z* (%): 343.3 (25) [*M*+1]⁺, 342.3 (100) [*M*]⁺, 327.2 (35) [*M*-CH₃]⁺; HRMS (FAB): *m/z* calcd for C₂₂H₁₄O₄: 342.0887 [*M*⁺]; found: 342.0886.

3,10-Dimethoxy-5,8-bis(2,4,6-trimethylphenyl)indeno[2,1-c]fluorene (15)

Following a published protocol¹³ BuLi (2.5M in hexane; 0.57 mL, 1.43 mmol) was added dropwise within 5 min under an argon atmosphere to a cooled (–78 °C) solution of mesityl bromide (0.24 mL, 312 mg, 1.57 mmol) in anhydrous THF (4 mL) and the mixture was stirred for 20 min. It was transferred via a cannula to a cooled (–78 °C) suspension of diketone **13** (100 mg, 292 µmol) in anhydrous THF (12 mL) and stirred for 15 h at rt. Saturated aqueous NH₄Cl solution (20 mL) was added and stirring was continued for 10 min. The mixture was extracted with Et₂O (3×25 mL) and the combined organic layers were dried (MgSO₄) and concentrated at reduced pressure. High vacuum was applied to the residue (**14**) for 1 h, the vessel was backfilled with argon and anhydrous toluene (20 ml) was added as solvent. SnCl₂ (209 mg, 1.10 mmol) and trifluoroacetic acid (0.05 ml) were added at positive argon pressure and the mixture was heated for 18 h to 50 °C. The mixture was allowed to cool to rt, filtered, concentrated at reduced pressure and purified by column chromatography (silica gel, hexane/CH₂Cl₂, 4:1→1:1) to furnish an oily product, which was digested with CH₂Cl₂ (2 mL) and precipitated with MeOH to yield **15** as a black powder (79 mg, 144 µmol, 49%).

 $\begin{array}{l} R_{\rm f} = 0.38 \ (\text{hexane/CH}_2\text{Cl}_2\ 1:1); \ ^1\text{H}\ \text{NMR}\ (400\ \text{MHz},\ \text{CDCl}_3): \ \delta = 7.92 \ (\text{d},\ ^3J = 8.3\ \text{Hz},\ 2\ \text{H},\ \text{ArH}),\ 6.95 \ (\text{s},\ 4\ \text{H},\ \text{Ar}_{\text{Mes}}\text{H}),\ 6.61 \ (\text{dd},\ ^3J = 8.3\ \text{Hz},\ ^4J = 2.5\ \text{Hz},\ 2\ \text{H},\ \text{ArH}),\ 6.24 \ (\text{d},\ ^4J = 2.5\ \text{Hz},\ 2\ \text{H},\ \text{ArH}),\ 6.02 \ (\text{s},\ 2\ \text{H},\ \text{ArH}),\ 3.76 \ (\text{s},\ 6\ \text{H},\ \text{OCH}_3),\ 2.34 \ (\text{s},\ 6\ \text{H},\ \text{Ar-CH}_3),\ 2.14\ \text{ppm}\ (\text{s},\ 12\ \text{H},\ \text{Ar-CH}_3);\ ^{13}\text{C}\ \text{NMR}\ (100\ \text{MHz},\ \text{CDCl}_3):\ \delta = 161.0 \ (\text{C}),\ 148.3 \ (\text{C}),\ 142.7 \ (\text{C}),\ 137.8 \ (\text{C}),\ 137.5 \ (\text{C}),\ 137.3 \ (\text{C}),\ 137.3$

¹² W. Gao, G. Lin, Y. Li, X. Tao, R. Liu, L. Sun, *Beilstein J. Org. Chem.* **2012**, *8*, 1849–1857.

¹³ A. G. Fix, P. E. Deal, C. L. Vonnegut, B. D. Rose, L. N. Zakharov, M. Haley, Org. Lett. 2013, 15, 1362–1365.

2,2',6,6'-Tetrabromo-1,1'-biphenyl (17)

According to a published procedure¹⁴ BuLi (2.5M in hexane; 16.6 mL, 41.4 mmol) was added dropwise within 20 min under an argon atmosphere to a cooled (-78 °C) solution of iPr₂NH (5.80 mL, 4.19 g, 41.4 mmol) in anhydrous THF (80 mL) and the mixture was stirred for 40 min. 1,3-Dibromobenzene (**16**, 5.00 mL, 9.76 g, 41.4 mmol) was added dropwise within 20 min at -78 °C and stirring was continued for 2 h. A solution of CuCN (1.85 g, 20.7 mmol) and LiCl (877 mg, 20.7 mmol) in anhydrous THF (45 mL), prepared under an argon atmosphere, was slowly added via a cannula and the mixture was stirred for 2 h at -78 °C. 1,4-Benzoquinone (6.71 g, 62.1 mmol) was added portionwise at positive

argon pressure and the mixture was let come to rt over night. H₂O (30 mL) was added, the mixture was stirred for 10 min and extracted with Et₂O (3×200 mL). The combined organic layers were washed with H₂O (2×150 mL), dried (MgSO₄), concentrated at reduced pressure, and purified by column chromatography (silica gel, pentane) and recrystallization from MeCN (75 mL) to yield **17** as colourless, crystalline needles (4.10 g, 8.73 mmol, 42%). $R_f = 0.34$ (pentane); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.67$ (d, ³J = 8.1 Hz, 4 H, ArH), 7.17 ppm (t, ³J = 8.1 Hz, 2 H, ArH). The ¹H NMR data are in full agreement with published data.¹⁵

4,5-Dibromo-9*H*-fluoren-9-one (18)

In slight variation of a published procedure¹⁶ BuLi (2.5M in hexane; 5.60 mL, 14.0 mmol) was added dropwise within 30 min under an argon atmosphere to a cooled (-78 °C) solution of biphenyl **17** (3.00 g, 6.39 mmol) in anhydrous THF (75 mL) and the mixture was stirred for 40 min. CICO₂Et (1.50 mL, 1.83 g, 19.4 mmol) was added in one portion at -78 °C and stirring was continued for 2 h. The mixture was let come to rt, H₂O (50 mL) was added, and stirring was continued for 10 min. The mixture was extracted with CH₂Cl₂ (3×50 mL), dried (MgSO₄), concentrated at reduced pressure, and purified by column chromatography (silica gel, hexane/CH₂Cl₂, 2:1) to yield **18** as a yellow solid (1.67 g, 4.94 mmol, 77%). *R*_f = 0.27 (hexane/CH₂Cl 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 2 H, ArH),

7.72 (dd, ${}^{3}J$ = 7.2, ${}^{4}J$ = 1.2 Hz, 2 H), 7.23 ppm (dd, ${}^{3}J$ = 8.0, ${}^{3}J$ = 7.2 Hz, 2 H). The ¹H NMR data are in full agreement with published data.¹⁶

4,5-Dibromo-9-(2,4,6-trimethylphenyl)-9H-fluoren-9-ol (19)

Following a published protocol¹⁷ MesMgBr (1M in THF; 3.60 mL, 3.60 mmol) was added under an argon atmosphere within 5 min to a cooled (0 °C) solution of fluorenone **18** (800 mg, 2.37 mmol) in anhydrous THF (20 mL). The cooling bath was removed and stirring was continued for 15 h at rt. Saturated aqueous NH₄Cl solution (30 mL) was added and the mixture was stirred for 10 min and extracted with Et₂O (3×30 mL). The combined organic layers were dried (MgSO₄), concentrated at reduced pressure, and purified by column chromatography (silica gel, hexane/CH₂Cl₂, 2:1) and recrystallization from hexane (22 mL) to yield **19** as colourless crystalline needles (940 mg, 2.05 mmol, 86%). *R*_f = 0.15 (hexane/CH₂Cl 2:1); ¹H NMR (400 MHz, CDCl₃): δ = 7.62 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.2 Hz, 2 H, ArH), 7.23 (dd, ³*J* = 7.4 Hz, ⁴*J* = 1.2

Hz, 2 H, ArH), 7.13 (t, ${}^{3}J$ = 7.6 Hz, 2 H, ArH), 6.97 (s, 1 H, ArH), 6.62 (s, 1 H, ArH), 2.90 (s, 3 H, CH₃), 2.24 (s, 3 H, CH₃), 2.08 (s, 1 H, OH), 1.25 ppm (s, 3 H, CH₃); ${}^{13}C$ NMR (100 MHz, CDCl₃): δ = 154.7 (C), 139.0 (C), 138.7 (C), 136.8 (C), 136.2 (C), 136.1 (CH), 134.4 (C), 132.7 (CH), 131.1 (CH), 130.5 (CH), 123.0 (CH), 116.7 (C), 85.9 (C), 25.8 (CH₃), 21.6 (CH₃), 20.7 ppm (CH₃); IR (ATR): $\tilde{\nu}$ = 3555 (w), 2966 (w), 1718 (vw), 1609 (w), 1556 (w), 1479 (w), 1454 (w), 1417 (w), 1400 (m), 1379 (w), 1237 (w), 1210 (w), 1191 (w), 1168 (w), 1103 (m), 1049 (w), 1007 (m), 937 (w), 901 (w), 852 (m), 793 (m), 770 (m), 739 (m), 705 (w), 693 (m), 542 (vw), 440 (vw) cm⁻¹; MS (FAB): *m/z* (%): 458.0 (15) [*M*]+, 457.0 (18), 443.0 (52) [*M*-OH]⁺, 441.0 (100) [*M*-OH]⁺, 439.0 (52) [*M*-OH]⁺, 379.1 (15) [*M*-Br]⁺, 377.1 (15) [*M*-Br]⁺, 361.1 (27), 340.9 (14) [*M*-Mes]⁺, 338.9 (30) [*M*-Mes]⁺, 336.9 (15) [*M*-Mes]⁺, 280.1 (21), 266.1 (16); HRMS (FAB): *m/z* calcd for C₂₂H₁₈O⁷⁹Br⁸¹Br: 457.9698 [*M*]⁺; found: 457.9701.

4,5-Dibromo-9-(2,4,6-trimethylphenyl)-9*H*-fluorene (20)

Following a published protocol¹⁷ BF₃·OEt₂ (500 μ L, 575 mg, 4.05 mmol) was added within 5 min under an argon atmosphere to a cooled (0 °C) solution of fluorenol **19** (930 mg, 2.03 mmol) and Et₃SiH (0.65 mL, 473 mg, 4.06 mmol) in anhydrous CH₂Cl₂ (13 mL) and stirring was continued for 1 h at 0 °C. Saturated aqueous Na₂CO₃ solution (10 mL) and brine (20 mL) were added, stirring was continued for 10 min and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic layers were dried (MgSO₄), concentrated at reduced pressure, and purified by column chromatography (silica gel, hexane) and recrystallization from MeCN (10 mL) to yield **20** as pale pink crystalline needles (504 mg, 1.14 mmol, 56%). *R*_f = 0.18 (hexane); ¹H NMR (400 MHz, CDCl₃): δ = 7.67–7.65 (m, 2 H, ArH), 7.15–7.10 (m, 4 H,

ArH), 7.01 (s, 1 H, ArH), 6.67 (s, 1 H, ArH), 5.51 (s, 1 H, Ar₃CH), 2.62 (s, 3 H, CH₃), 2.28 (s, 3 H, CH₃), 1.09 ppm (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 151.1 (C), 139.7 (C), 137.8 (C), 137.0 (C), 134.2 (CH), 133.3 (C), 130.9 (CH), 129.1 (CH), 129.0 (CH), 122.6 (CH), 116.4 (C), 50.6 (CH), 21.8 (CH₃), 21.0 (CH₃), 18.9 ppm (CH₃), 1 signal is covered; IR (ATR): \tilde{v} = 2961 (w), 2914 (w) 1707 (vw), 1553 (w), 1479 (w), 1454 (w), 1399 (w), 1279 (w), 1161 (w), 1121 (vw), 1102 (m), 1014 (w), 934 (vw), 905 (w), 854 (w), 815 (w), 773 (w), 754 (m), 705 (w), 680 (w), 666 (w), 618 (w), 560 (w), 544 (w), 507 (w), 472 (vw), 444 (w) cm⁻¹; MS (FAB):

Br Br

B

¹⁴ Q. Perron, A. Alexakis, *Adv. Synth. Catal.* **2010**, 352, 2611–2620.

¹⁵ J. Graff, E. Łastawiecka, L. Guénée, F. Leroux, A. Alexakis, Adv. Synth. Catal. 2015, 357, 2833–2839.

¹⁶ H. Oyama, M. Akiyama, K. Nakano, M. Naito, K. Nobusawa, K. Nozaki, Org. Lett. 2016, 18, 3654–3657.

¹⁷ G. C. Vougioukalakis, M. M. Roubelakis, M. Orfanopoulos, J. Org. Chem. 2010, 75, 4124–4130.

m/z (%): 444.0 (6) $[M]^+$, 442.0 (10) $[M]^+$, 440.1 (6) $[M]^+$, 363.1 (10) $[M-Br]^+$, 361.1 (10) $[M-Br]^+$, 324.9 (4) $[M-Mes]^+$, 322.9 (8) $[M-Mes]^+$, 320.9 (4) $[M-Mes]^+$; HRMS (FAB): m/z calcd for C₂₂H₁₈⁷⁹Br⁸¹Br: 441.9749 $[M]^+$; found: 441.9749.

2,2'-[9-(2,4,6-trimethylphenyl)-9H-fluorene-4,5-diyl]dibenzaldehyde (22)

PdCl₂(PPh₃)₂ (18 mg, 26 µmol) was added with positive argon pressure to a degassed (ultrasonication) solution of fluorene **20** (200 mg, 452 µmol), 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde^{1b} (**21**, 262 mg, 1.13 mmol), and Na₂CO₃ (220 mg, 2.06 mmol) in THF/H₂O (5:4, 9 mL), placed in a Schlenk tube. The flask was closed and the mixture was heated to 80 °C for 15 h. The mixture was cooled to rt, half-concentrated brine (5 mL) was added, and the mixture was extracted with EtOAc (3×15 mL). The combined organic layers were dried (Na₂SO₄), concentrated at reduced pressure, and purified by column chromatography (silica gel, hexane/EtOAc, 10:1) to yield **22** as a colourless solid (115 mg, 233 µmol, 52%). The product was obtained as a mixture of atropisomers. *R*_f = 0.38 (hexane/EtOAc 4:1); IR (ATR): $\tilde{\nu}$ =

Mes

^Mes

Mes~

2842 (vw), 2749 (vw), 1689 (m), 1594 (w), 1447 (w), 1392 (w), 1247 (w), 1194 (w), 1159 (vw), 854 (vw), 829 (w), 757 (m), 715 (w), 644 (w), 578 (vw), 449 (vw) cm⁻¹; MS (FAB): *m/z* (%): 493.3 (16) [*M*+1]⁺, 492.3 (15) [*M*]⁺, 475.3 (28), 474.3 (23); HRMS (FAB): *m/z* calcd for C₃₆H₂₈O₂: 492.2084 [*M*⁺]; found: 492.2085.

4,8,11-Tris(2,4,6-trimethylphenyl)-8,11-dihydro-4H-cyclopenta[1,2-c:4,3-c']difluorene (24)

Following a published protocol¹⁸ MesMgBr (1M in THF; 1.15 mL, 1.15 mmol) was added dropwise within 5 min under argon atmosphere to a cooled (0 °C) solution of fluorene **22** (115 mg, 233 µmol) in anhydrous THF (6 mL). The cooling bath was removed and the mixture was stirred for 15 at rt. Saturated aqueous NH₄Cl solution (20 mL) was added, stirring was continued for 10 min, and the mixture was extracted with CH₂Cl₂ (3×25 mL). The combined organic layers were dried (MgSO₄) and concentrated at reduced pressure. The residue (**23**) was dissolved in anhydrous CH₂Cl₂ (25 mL), cooled to 0 °C, and BF₃·OEt₂ (0.15 mL, 173 mg, 1.22 mmol) was added within 5 min. Stirring was continued for 1 h at rt and saturated aqueous NH₄Cl solution (25 mL) was added. The mixture was stirred for 10 min and extracted with CH₂Cl₂ (2×20 mL). The organic layers were dried (MgSO₄), concentrated at reduced pressure, and

The organic layers were dried (MgSO₄), concentrated at reduced pressure, and purified by column chromatography (silica gel, hexane/CH₂Cl₂, 4:1) furnishing an oil, which was digested in CH₂Cl₂ (2 mL) and precipitated with MeOH to yield **24** as a white powder (117 mg, 167 µmol, 63%). The product was obtained as a mixture of isomers; reasonable NMR spectra could thus not be measured. $R_f = 0.17$ (hexane/CH₂Cl₂ 4:1); IR (ATR): $\tilde{\nu} = 2914$ (vw), 1611 (vw), 1447 (w), 1401 (vw), 1377 (vw), 1342 (vw), 1016 (vw), 849 (w), 814 (vw), 774 (w), 732 (m), 709 (w), 661 (vw), 632 (vw), 551 (vw), 439 (vw) cm⁻¹; MS (FAB): *m/z* (%): 698.4 (32) [*M*+2]⁺, 697.4 (85) [*M*+1]⁺, 696.4 (100) [*M*]⁺, 695.4 (34) [*M*–1]⁺, 578.3 (34), 577.3 (75) [*M*–Mes]⁺, 576.3 (30), 458.2 (15) [*M*–2 Mes]⁺; HRMS (FAB): *m/z* calcd for C₅₄H₄₈: 696.3751 [*M*]⁺; found: 696.3752.

5,8,11-Tris(2,4,6-trimethylphenyl)cyclopenta[1,2-c:4,3-c']difluoren-5-yl (7)

Following a published protocol¹⁹ heptacycle **24** (100 mg, 144 µmol) and *t*BuOK (229 mg, 2.04 mmol), placed in a Schlenk tube, were dissolved under an argon atmosphere in anhydrous THF (7 mL) and the mixture was heated to 60 °C for 16 h. The mixture was cooled to rt, chloranil (160 mg, 649 µg) was added, and after a short stirring (4 min) the mixture was concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane/CH₂Cl₂, 4:1) to furnish **7** as a black solid (84 mg, 121 µmol, 84%). It was digested in degassed CHCl₃ (2 mL) and covered with degassed MeOH (3 mL). Slow, undisturbed diffusion yielded black, rod-shaped crystals, suitable for X-ray crystallography. R_f = 0.35 (hexane/CH₂Cl₂ 4:1); m.p. 241 °C (CHCl₃/EtOH); IR (ATR): \tilde{v} = 2962 (w), 2914 (w), 1737 (vw), 1610 (w), 1561 (vw), 1459 (w), 1442 (w), 1376 (w), 1347 (w), 1260 (w), 1189 (w), 1140 (w), 1090 (w), 1014

(w), 941 (w), 911 (vw), 847 (w), 807 (m), 793 (m), 745 (m), 692 (m), 576 (vw), 549 (w), 438 (vw) cm⁻¹; UV/Vis (CH₂Cl₂): λ_{max} (ε) = 262 (54,000), 315 (33,000), 348 (22,000), 449 (27,000), 769 (6,000), 855 nm (12,000 mol⁻¹·dm³·cm⁻¹); MS (FAB): *m/z* (%): 694.4 (20) [*M*+1]⁺, 693.4 (19) [*M*]⁺; HRMS (FAB): *m/z* calcd for C₅₄H₄₅: 693.3516 [*M*]⁺; found: 693.3518.

¹⁸ H. Sharma, P. K. Sharma, S. Das, *Chem. Commun.*, **2020**, *56*, 11319–11322.

⁹ X. Yang, D. Zhang, Y. Liao, D. Zhao, *J. Org. Chem.* **2020**, *85*, 5761–5770.

4. NMR Spectra of New Compounds, Mass and IR Spectra of 7

¹H NMR Spectrum of Dimethyl 2-Amino-3-bromoterephthalate (400 MHz, CDCl₃) (9)

¹H NMR Spectrum of 3,10-Dimethoxyindeno[2,1-c]fluorene-5,8-dione (400 MHz, CDCI₃ + 10% TFA) (13)

¹H NMR Spectrum of 3,10-Dimethoxy-5,8-bis(2,4,6-trimethylphenyl)indeno[2,1-c]fluorene (400 MHz, CDCl₃) (15)

¹H NMR Spectra of 3,10-Dimethoxy-5,8-bis(2,4,6-trimethylphenyl)indeno[2,1-c]fluorene (500 MHz, DMF-d₇) (15) at Elevated Temperatures

Page	SI-14
------	-------

410 K	٨			١		۸ I	
400 K							
390 K							
380 K		~		 			
370 K		~		 	 		
360 K		~			 		
350 K		~		 	 		
340 K		-			 		
330 K		-			 	, ,	
320 K		~			 	1	
310 K		~			 	1	
300 K		~			 ~^		
		~	 ·		 	 	

8.0 7.5 7.0 6.5 6.0 4.0 3.5 3.0 2.5 2.0 1H (ppm)

¹H NMR Spectrum of 2,2',6,6'-Tetrabromo-1,1'-biphenyl (400 MHz, CDCl₃) (17)

¹H NMR Spectrum of 4,5-Dibromo-9-(2,4,6-trimethylphenyl)-9*H*-fluoren-9-ol (400 MHz, CDCl₃) (19)

¹H NMR Spectrum of 4,5-Dibromo-9-(2,4,6-trimethylphenyl)-9*H*-fluorene (400 MHz, CDCl₃) (20)

¹H NMR Spectrum of 2,2'-[9-(2,4,6-trimethylphenyl)-9*H*-fluorene-4,5-diyl]dibenzaldehyde (22)

¹³C NMR Spectrum of 2,2'-[9-(2,4,6-trimethylphenyl)-9*H*-fluorene-4,5-diyl]dibenzaldehyde (22)

Mass Spectrum of 5,8,11-Tris(2,4,6-trimethylphenyl)cyclopenta[1,2-c:4,3-c']difluoren-5-yl (7)

IR Spectrum of 5,8,11-Tris(2,4,6-trimethylphenyl)cyclopenta[1,2-c:4,3-c']difluoren-5-yl (7)

5. Measured UV/Vis Spectra of 7 and 15 in CH₂Cl₂

Compound 7:

Quantitative UV/Vis spectrum of 7:

UV/Vis/NIR Spectrum of 7 with magnified section:

Cyclic Voltammograms of 7 6.

Half-wave potentials, peak potential differences and corresponding *i*pc/*i*pa values of **7** in CH₂Cl₂ and THF vs. Fc/Fc⁺(internal standard); conditions: Pt/[NBu₄][Al{OC(CF₃)₃]₄]/Ag; v(THF) = 200 mV s⁻¹, v(CH₂Cl₂) = 500 mV s⁻¹. Corresponding redox processes in both solvents are highlighted with identical colours.

Redox wave	Solvent	<i>E</i> ⁰ ¹ / ₂ [V]	$\Delta E_{p} [mV]$	i _{pc} /i _{pa}
<i>E</i> ⁰ ½(1)	THF	-2.73	180	~0.5
E ⁰ ½(2)		-2.15	160	~1
E ⁰ ½(3)		-1.36	140	~1
E ⁰ ½(4)		-0.05	130	~1
<i>E</i> ⁰½(1)	CH_2CI_2	-2.14	220	~0.9
E ⁰ ½(2)		-1.37	190	~1
E ⁰ ½(3)		-0.16	190	~1
E ⁰ ½(4)		+1.11	200	~1
<i>E</i> ⁰ ½(5)		+1.55	200	~1

7. Computational Details

Compound **7** (in its doublet and in its quartet state, respectively) and **25** were optimized at the $uM06^{20}/6-311++g(d,p)^{21}$ level by using the Gaussian 09 software package.²² Except for the frequency analyses all calculations were performed using the thus obtained geometries. Frequency analyses²³ at the B3LYP²⁴/6-311g(d,p)//B3LYP/6-311g(d,p) level confirmed the structures to be minima (no imaginary frequencies). An IR spectrum of **7** was visualized with GaussSum²⁵ [full width at half maximum (FWHM) of 10 cm⁻¹] using a scaling factor of 0.9619.²⁶ UV/Vis/NIR and ECD spectra were calculated with a time-dependent DFT calculation (td=nstates=50)²⁷ at the uM06/6-311g(d,p) level using a modelled solvent field of methylene chloride with the cpcm-scrf method.²⁸ These spectra were again visualized with GaussSum. An FWHM of 1500 cm⁻¹ was chosen for the UV/Vis/NIR spectrum and a σ of 0.2 eV was used for the ECD spectrum. NICS_{zz} values²⁹ were determined at the B3LYP/6-311g(d,p) level, *g* values, hyperfine coupling constants (EPR), and NMR shifts were calculated at the uM06/6-311g(d,p) level with the keywords nmr=giao³⁰ and prop=epr.³¹ Frontier orbitals and spin densities were visualized with GaussView.³² The triradical character of **7** was determined at the uhf³³/6-311g(d,p), at the B3LYP/6-311g(d,p), and at the CAM-B3LYP³⁴/6-311g(d,p) level using the pop=no keyword.³⁵

²⁰ Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* **2008**, *120*, 215–241.

 ²¹ a) A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033–1036; b) P. J. Hay, J. Chem. Phys. 1977, 66, 4377–4384; c) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639–5648; d) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654; e) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von R. Schleyer, J. Comput. Chem. 1983, 4, 294–301; f) K. Raghavachari, G. W. Trucks, J. Chem. Phys. 1989, 91, 1062–1065.

²² Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc.: Wallingford CT, **2009**.

 ²³ a) B. G. Johnson, M. J. Frisch, *Chem. Phys. Lett.* **1993**, *216*, 133–140; b) B. G. Johnson, M. J. Fisch, *J. Chem. Phys.* **1994**, *100*, 7429–7442; c) R. E. Stratmann, J. C. Burant, G. E. Scuseria, M. J. Frisch, *J. Chem. Phys.* **1997**, *106*, 10175–10183.

²⁴ a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, 37, 785–789; b) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648–5652; c) W. Koch, M. C. Holthausen, *A Chemist's Guide to Density Functional Theory*, 2. ed., Wiley-VCH, Weinheim, **2002**.

²⁵ N. M. O'Boyle, A. L. Tenderhold, K. M. Langner, *J. Comput. Chem.* **2008**, *29*, 839–845.

²⁶ M. P. Andersson, P. Uvdal, J. Phys. Chem. A 2005, 109, 2937–2941.

a) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218–8224; b) R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454–464; c) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439–4449.

 ²⁸ a) A. Klamt, G. Schüürmann, *J. Chem. Soc. Perkin Trans.* 2 1993, 799–805; b) V. Barone, M. Cossi, *J. Phys. Chem. A* 1998, *102*, 1995–2001; c) M. Cossi, N. Rega, G. Scalmani, V. Barone, *J. Comput. Chem.* 2003, *24*, 669–681.

²⁹ P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318.

 ³⁰ a) F. London, *J. Phys. Radium* 1937, *8*, 397–409; b) R. McWeeny, *Phys. Rev.* 1962, *126*, 1028–1034; c) R. Ditchfield, *Mol. Phys.* 1974, *27*, 789–807; K. Wolinski, J. F. Hinton, P. Pulay, *J. Am. Chem. Soc.* 1990, *112*, 8251–8260; J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, *J. Chem. Phys.* 1996, *104*, 5497–5509.

³¹ a) V. Barone, *Chem. Phys. Lett.* **1996**, *262*, 201–206; b) N. Rega, M. Cossi, V. Barone, *J. Chem. Phys.* **1996**, *105*, 11060–11067; V. Barone, in *Recent Advances in Density Functional Methods, Part I*, (Ed.: D. P. Chong), World Scientific Publ. Co., Singapore, **1996**, pp. 287–334.

³² Gaussview 3.0, Gaussian Inc.: Pittsburgh, **2003**.

 ³³ a) C. C. J. Roothaan, *Rev. Mod. Phys.* 1951, 23, 69–89; b) J. A. Pople, R. K. Nesbet, *J. Chem. Phys.* 1954, 22, 571–572; c) R. McWeeny, G. Diercksen, *J. Chem. Phys.* 1968, 49, 4852–4856.

³⁴ T. Yanai, D. P. Tew, N. C. Handy, *Chem. Phys. Lett.* **2004**, 393, 51–57.

³⁵ P.-O. Löwdin, *Phys. Rev.* **1955**, 97, 1474–1489.

8. Archive Entry for a Single Point Calculation on a Minimum Structure of 7 (Doublet)

uM06/6-311++g(d,p)//uM06/6-311++g(d,p)

1\1\GINC-LINUX-YIW7\SP\UM06\6-311++G(d,p)\C54H45(2)\PODLECH\14-Nov-202 1\0\\# uM06/6-311++g(d,p) geom=connectivity\\Title Card Required\\0,2\ C\C,1,1.39066909\C,2,1.39224527,1,120.64924152\C,3,1.38787589,2,118.58 58913,1,1.21360436,0\C,4,1.41844105,3,120.90199688,2,1.66023607,0\C,5, 1.38302658,4,119.72656831,3,-4.11582877,0\H,2,1.08599169,1,119.5510512 4,6,179.55203582,0\H,3,1.08765116,2,121.18577431,1,-177.46182683,0\C,4 ,1.44622203,3,129.92731578,2,-173.86397541,0\C,9,1.39202354,4,107.8492 605,3,175.07674064,0\C,10,1.41318055,9,129.17082587,4,-173.03934189,0\ C,11,1.37244169,10,119.28869101,9,172.80076325,0\C,12,1.40864333,11,11 9.33483646,10,4.98198208,0\C,13,1.44811726,12,122.02629038,11,3.487748 49,0\C,14,1.36925704,13,117.77600798,12,-13.30272461,0\H,11,1.08755913 $, 10, 119.27422534, 9, -3.43519598, 0 \\ h, 12, 1.08737926, 11, 121.34118394, 10, -1$ 74.49289136,0\C,13,1.40923175,12,128.95094702,11,-171.49174946,0\C,14, 1.46891701,13,106.119696,12,174.54500451,0\C,18,1.40912413,13,108.7145 4988,12,179.24709028,0\C,20,1.40867713,18,128.95642226,13,179.24144293 ,0\C,19,1.36921735,14,135.4433184,13,-158.47425565,0\H,21,1.08736983,2 0,119.31639864,18,8.05120666,0\C,22,1.45636942,19,118.47528543,14,-176 .85641808,0\C,21,1.37242053,20,119.3373121,18,-171.43926822,0\H,25,1.0 875598,21,121.32650409,20,-178.86139346,0\C,22,1.46165446,19,135.10598 359,14,6.21469512,0\C,24,1.39196626,22,109.26930868,19,176.71686328,0\ C,27,1.41841762,22,107.17383653,19,-177.92839536,0\C,27,1.3830302,22,1 32.83326113,19,8.21639902,0\C,29,1.38787176,27,120.90219954,22,-178.92 566306,0\H,31,1.08764953,29,120.21542021,27,-179.65971802,0\H,30,1.084 88697,27,121.02580231,22,-2.96568436,0\C,31,1.39225241,29,118.58610513 ,27,1.65601762,0\C,34,1.39066284,31,120.64885037,29,1.21504548,0\H,35, 1.08566038,34,119.68874965,31,178.27151981,0\H,34,1.08599033,31,119.78 776944,29,179.96634093,0\H,6,1.08489237,5,121.02546754,4,-176.21158034 ,0\H,1,1.08565904,2,119.68824738,3,178.27418589,0\C,9,1.47318209,4,125 .09335786,3,-2.96453118,0\C,18,1.47450528,13,125.62248171,12,-0.803927 87,0\C,28,1.47318799,24,127.03564741,22,-178.03649296,0\C,40,1.4009079 1,9,120.0107285,4,88.08969423,0\C,40,1.40169052,9,119.74236013,4,-91.3 6583404,0\C,41,1.40014858,18,119.87751463,13,93.65557095,0\C,41,1.4022 2162,18,119.81986007,13,-86.06737572,0\C,42,1.40163278,28,119.7474679, 24,91.04724449,0\C,42,1.40096113,28,120.00557102,24,-89.51553864,0\C,4 3,1.39130398,40,118.97101646,9,-179.47134868,0\C,44,1.39032554,40,119. 01319585,9,179.50156722,0\C,45,1.39176245,41,118.95009809,18,-179.8360 6758,0\C,46,1.38956718,41,118.93941854,18,179.67014981,0\C,47,1.390379 14,42,119.01368296,28,179.48112102,0\C,48,1.39126488,42,118.9707175,28 -179.44947133,0\H,50,1.08936548,44,119.00572026,40,179.79587608,0\H,4 9,1.08916394,43,118.96765461,40,-179.79206608,0\H,52,1.08947544,46,118 .97217368,41,-179.91697931,0\H,51,1.08909367,45,118.95490471,41,179.66 496735,0\H,54,1.0891721,48,118.96766906,42,-179.79500584,0\H,53,1.0893 5634,47,119.00359282,42,179.79531543,0\C,54,1.39014998,48,121.75923181 ,42,0.1529477,0\C,51,1.38926079,45,121.76593542,41,0.06897954,0\C,49,1 .39010316,43,121.75894026,40,0.1517609,0\C,45,1.49872209,41,120.527902 46,18,-0.52385967,0\H,64,1.0963225,45,111.26142223,41,-58.59591478,0\H ,64,1.09611941,45,111.57073473,41,60.30218109,0\H,64,1.09310057,45,111 .08420121,41,-179.06564008,0\C,46,1.49866653,41,120.47204206,18,-0.668 33615,0\H,68,1.09630548,46,111.24193353,41,-58.33600933,0\H,68,1.09612 344,46,111.58517586,41,60.55357848,0\H,68,1.09309439,46,111.07806515,4 1,-178.79685948,0\C,62,1.49770099,51,121.17561742,45,-178.93748478,0\H ,72,1.09359792,62,111.52182485,51,-17.58102302,0\H,72,1.09637705,62,11 1.07537231,51,102.27846622,0\H,72,1.09465245,62,111.40146008,51,-138.4 8648897,0\C,47,1.49864655,42,120.32395158,28,-0.7982655,0\H,76,1.09629 137,47,111.31116876,42,-61.23434495,0\H,76,1.09646926,47,111.3448233,4 2,57.5596042,0\H,76,1.09319807,47,111.17455533,42,178.18113163,0\C,48, 1.49869262,42,120.40086757,28,0.86463858,0\H,80,1.0963335,48,111.45012 927,42,-57.96919346,0\H,80,1.09610894,48,111.341473,42,60.86619798,0\H ,80,1.09322045,48,111.14917191,42,-178.58650977,0\C,61,1.49780719,54,1 20.94931179,48,178.41969255,0\H,84,1.0942535,61,111.48623376,54,147.05 24068,0\H,84,1.09657081,61,111.00180602,54,-93.56364302,0\H,84,1.09382 213,61,111.51623691,54,26.03739344,0\C,44,1.49864966,40,120.32274549,9 ,-0.77676254,0\H,88,1.09629667,44,111.3127805,40,-61.25116946,0\H,88,1 .09647063,44,111.34413414,40,57.542734,0\H,88,1.09319895,44,111.173592 74,40,178.16421334,0\C,63,1.49780778,49,120.96078818,43,178.43613906,0 \H,92,1.09428265,63,111.48372021,49,146.52963634,0\H,92,1.09656609,63, 111.00423568,49,-94.09559159,0\H,92,1.09380216,63,111.51538621,49,25.5 1881649,0\C,43,1.49869296,40,120.40227176,9,0.84286462,0\H,96,1.096333 91,43,111.4491443,40,-58.01139469,0\H,96,1.09610716,43,111.34419687,40 ,60.82575599,0\H,96,1.09321888,43,111.14926235,40,-178.62622239,0\\Ver sion=EM64L-G09RevA.02\State=2-A\HF=-2083.7500138\S2=1.020515\S2-1=0.\S 2A=0.782571\RMSD=5.913e-09\Dipole=0.1415293,-0.0444423,-0.0614917\Quad rupole=0.2398114,-6.8166395,6.5768281,-3.1791868,1.4954757,-0.7949135\ PG=C01 [X(C54H45)]\\@

9. Archive Entry for a Single Point Calculation on a Minimum Structure of 7 (Quartet)

uM06/6-311++g(d,p)/ //uM06/6-311++g(d,p)

1\1\GINC-OCH-C3-131\SP\UM06\6-311++G(d,p)\C54H45(4)\PODLECH\08-Dec-202 1\0\\# uM06/6-311++g(d,p) geom=connectivity\\Title Card Required\\0,4\ C\C,1,1.4009172\C,2,1.38174856,1,120.4678624\C,3,1.40170881,2,118.7556 9267,1,1.10012666,0\C,4,1.43011777,3,120.73722467,2,2.39961216,0\C,5,1 .3868267,4,119.25940301,3,-5.03992461,0\H,2,1.08577601,1,119.45837626, 6,179.37288211,0\H,3,1.08778972,2,121.38036563,1,-177.52025128,0\C,4,1 .41453596,3,129.95643237,2,-173.25580507,0\C,9,1.44847262,4,107.015429 65,3,175.32077787,0\C,10,1.39149811,9,128.07386533,4,-170.60973875,0\C ,11,1.39021546,10,118.81722726,9,171.10291618,0\C,12,1.39433676,11,119 $.25259941, 10, 5.01954613, 0 \ (c, 13, 1.43649941, 12, 122.43432454, 11, 2.2903236)$ 3,0\C,14,1.39473577,13,117.10134653,12,-11.51059323,0\H,11,1.08754479, 10,119.90501109,9,-4.99785329,0\H,12,1.08766148,11,121.09003515,10,-17 4.3333695,0\C,13,1.42976569,12,128.36888977,11,-174.32605937,0\C,14,1. 45287997,13,106.86257325,12,174.47107661,0\C,18,1.42972881,13,107.0380 9737,12,-179.79103505,0\C,20,1.39432523,18,128.37394585,13,-179.772302 78,0\C,19,1.39471496,14,135.65298924,13,-162.24361462,0\H,21,1.0876537 3,20,119.64877004,18,5.04795598,0\C,22,1.42703034,19,118.46020252,14,-175.14764971,0\C,21,1.39024043,20,119.2542757,18,-174.32144389,0\H,25, 1.08754573,21,121.15986675,20,-178.92870801,0\C,22,1.45530986,19,134.8 7825684,14,10.88668269,0\C,24,1.44849704,22,109.13407224,19,178.512681 01,0\C,28,1.41454193,24,107.01621074,22,4.21882558,0\C,27,1.38682709,2 $2,132.56594465,19,6.58254182,0 \setminus C,29,1.40171881,28,129.95726013,24,175.$ 31626418,0\H,31,1.08778916,29,119.85026675,28,5.38554123,0\H,30,1.0851 9968,27,120.83769297,22,-3.22878609,0\C,31,1.38174632,29,118.75568171, 28,-173.25606837,0\C,30,1.39146939,27,119.21601809,22,176.79093004,0\H ,35,1.08601385,30,119.25913385,27,179.41801791,0\H,34,1.08577538,31,12 0.0585084,29,179.68273322,0\H,6,1.08519901,5,120.8368928,4,-175.938469 93,0\H,1,1.0860133,6,119.25891365,5,179.41749327,0\C,9,1.47116883,4,12 6.99786864,3,-2.51185856,0\C,18,1.47082339,13,126.46184096,12,0.203327 32,0\C,28,1.47116907,24,125.96016739,22,-177.92127561,0\C,40,1.4004467 8,9,120.07502113,4,86.13252333,0\C,40,1.40247327,9,119.65371173,4,-94. 31193743,0\C,41,1.40082694,18,119.90432476,13,93.70855413,0\C,41,1.402 63782,18,119.87690078,13,-86.00430779,0\C,42,1.40247623,28,119.6541172 9,24,88.26067589,0\C,42,1.40044484,28,120.07475523,24,-91.31890081,0\C ,43,1.39171766,40,118.95022997,9,179.59324923,0\C,44,1.38941462,40,119 .00666817,9,-179.62768734,0\C,45,1.39144402,41,119.00189929,18,-179.82 247629,0\C,46,1.38954796,41,118.99565619,18,179.66607421,0\C,47,1.3894 1264,42,119.00648499,28,-179.65354264,0\C,48,1.39172217,42,118.950381, 28,179.62004992,0\H,50,1.08948558,44,119.0461498,40,179.88628644,0\H,4 9,1.08908785,43,118.96121506,40,-179.72346134,0\H,52,1.08950039,46,118 $.98962403, 41, -179.94062327, 0 \\ h, 51, 1.08917217, 45, 118.97080516, 41, 179.59$ 927194,0\H,54,1.08908851,48,118.96166822,42,-179.72749594,0\H,53,1.089 48803,47,119.04599762,42,179.88966648,0\C,54,1.38953443,48,121.7519126 5,42,0.11456832,0\C,51,1.38958778,45,121.74903433,41,0.04963951,0\C,49 ,1.38953645,43,121.7521691,40,0.11390468,0\C,45,1.49861249,41,120.3206 6159,18,-0.54809594,0\H,64,1.09635555,45,111.23261851,41,-57.64282062, 0\H,64,1.09616152,45,111.51660316,41,61.10751319,0\H,64,1.0931664,45,1 11.16624691,41,-178.2267637,0\C,46,1.49856279,41,120.26921605,18,-0.69 369168,0\H,68,1.09634798,46,111.20851716,41,-57.45830312,0\H,68,1.0961 5475,46,111.53601864,41,61.28757279,0\H,68,1.0931644,46,111.16170302,4 1,-178.0259887,0\C,62,1.49771958,51,121.11846637,45,-178.84809875,0\H, 72,1.09365572,62,111.51548265,51,-19.29404617,0\H,72,1.09644211,62,111 .06671004,51,100.49868326,0\H,72,1.09457246,62,111.43256653,51,-140.22 930106,0\C,47,1.49852947,42,120.17385986,28,0.52289704,0\H,76,1.096472 53,47,111.42534306,42,-59.26294771,0\H,76,1.09650675,47,111.20650526,4 2,59.49472748,0\H,76,1.09319711,47,111.22208836,42,-179.95405833,0\C,4 8,1.49857981,42,120.32003139,28,-0.20698827,0\H,80,1.09620623,48,111.3 4059354,42,-61.61062152,0\H,80,1.09628562,48,111.37515483,42,57.111320 48,0\H,80,1.09316683,48,111.20908588,42,177.78791648,0\C,61,1.49774518 ,54,121.11951763,48,178.79665985,0\H,84,1.09466581,61,111.42582354,54,

 $138.69067659, 0 \setminus H, 84, 1.09635409, 61, 111.05865046, 54, -102.05779742, 0 \setminus H, 84, 1.09356709, 61, 111.51183875, 54, 17.7727265, 0 \setminus C, 44, 1.49853178, 40, 120.174, 06624, 9, 0.54394429, 0 \setminus H, 88, 1.09647503, 44, 111.42564488, 40, -59.26828143, 0 \setminus H, 88, 1.09650476, 44, 111.20704225, 40, 59.49014621, 0 \setminus H, 88, 1.0931972, 44, 111, 1.22181118, 40, -179.95847467, 0 \setminus C, 63, 1.49774541, 49, 121.11807737, 43, 178.8, 0203473, 0 \setminus H, 92, 1.09466373, 63, 111.42587536, 49, 138.73375174, 0 \setminus H, 92, 1.096, 355, 63, 111.05954341, 49, -102.01316829, 0 \setminus H, 92, 1.09356875, 63, 111.51119641, 49, 17.81637031, 0 \setminus C, 43, 1.4985785, 40, 120.31930425, 9, -0.23037242, 0 \setminus H, 96, 1.0962059, 43, 111.33994667, 40, -61.58365314, 0 \setminus H, 96, 1.09628706, 43, 111.375, 10292, 40, 57.13860996, 0 \setminus H, 96, 1.09316644, 43, 111.20931227, 40, 177.81399596, 0 \setminus Version=EM64L-G09RevA.02 \setminus State=4-A \setminus HF=-2083.7182071 \setminus S2=3.804742 \setminus S2$ -1=0. \S2A=3.751494 \RMSD=4.997e-09 \Dipole=0.1946488, -0.0683618, -0.08601 63 \Quadrupole=-0.3902727, -7.4637544, 7.8540271, -3.0547761, 2.525842, -0.7744928 \PG=C01 [X (C54H45)] \\@

10. Archive Entry for a Single Point Calculation on a Minimum Structure of 25

uM06/6-311++g(d,p)//uM06/6-311++g(d,p)

1\1\GINC-SERVER-LAB406\SP\UM06\6-311++G(d,p)\C27H15(2)\PODLECH\08-Dec-2021\0\\# uM06/6-311++g(d,p) geom=connectivity\\Title Card Required\\0 ,2\C\C,1,1.38973797\C,2,1.39214531,1,120.73657436\C,3,1.38816616,2,118 .85144929,1,1.15810463,0\C,4,1.42068205,3,120.43238788,2,1.95620139,0\ C,5,1.382959,4,119.94013237,3,-4.46042613,0\H,2,1.08595007,1,119.57747 189,6,179.55606442,0\H,3,1.08660853,2,120.59928168,1,-177.4257485,0\C, 4,1.43951244,3,130.89461579,2,-173.23701488,0\C,9,1.38299489,4,108.839 34622,3,174.68810384,0\C,10,1.41548311,9,129.96179657,4,-172.72239399, 0\C,11,1.36985167,10,119.5009292,9,173.20775056,0\C,12,1.40979169,11,1 19.48331682,10,4.66159969,0\C,13,1.45197454,12,121.75865849,11,3.65697 414,0\C,14,1.36745774,13,117.88451782,12,-13.5568975,0\H,11,1.08640601 ,10,119.3706746,9,-3.18418178,0\H,12,1.08625862,11,121.05712275,10,-17 4.89941849,0\C,13,1.40088588,12,129.77606657,11,-171.70431912,0\C,14,1 .46897441,13,106.13582194,12,174.433516,0\C,18,1.40084825,13,109.81518 826,12,179.49615857,0\C,20,1.40981451,18,129.77641881,13,179.49586869, 0\C,19,1.3674478,14,135.30397079,13,-158.6664439,0\H,21,1.08625895,20, 119.4572572,18,7.86645258,0\C,22,1.4602884,19,118.5173404,14,-176.5185 0925,0\C,21,1.36983188,20,119.4836724,18,-171.70201356,0\H,25,1.086405 83,21,121.02827125,20,-179.0082561,0\C,22,1.46139739,19,135.13377569,1 4,6.08341152,0\C,24,1.38296987,22,108.77831666,19,176.14124903,0\C,27, 1.4206784,22,107.21901997,19,-177.28673679,0\C,27,1.38295839,22,132.53 15742,19,9.31717755,0\C,29,1.38815923,27,120.43261984,22,-178.84795651 ,0\H,31,1.08660921,29,120.53419569,27,-179.45911813,0\H,30,1.08473712, 27,121.0342917,22,-2.99669118,0\C,31,1.39215,29,118.85131363,27,1.9558 8327,0\C,34,1.38973476,31,120.7365696,29,1.15846052,0\H,35,1.08549212, 34,119.79138928,31,178.06208632,0\H,34,1.08595103,31,119.67114874,29,1 79.7575749,0\H,6,1.08473647,5,121.03416277,4,-175.71398995,0\H,1,1.085 49232,2,119.79134592,3,178.06208609,0\H,28,1.08433329,24,125.75797473, 22,-178.75254191,0\H,18,1.084871,13,125.09189565,12,-0.50397279,0\H,9, 1.08433371,4,125.33118779,3,-2.37065639,0\\Version=AM64L-G09RevA.02\St ate=2-A\HF=-1037.2988147\S2=0.958824\S2-1=0.\S2A=0.771365\RMSD=7.082e-09\Dipole=0.0669467,-0.0266319,-0.0247726\Quadrupole=3.5191433,-10.226 8782,6.7077349,-6.4212449,0.2959492,0.0519131\PG=C01 [X(C27H15)]\\@

11. Archive Entry for a Single Point Calculation on a Minimum Structure of 15 (Singlet)

uM06/6-311++g(d,p)//uM06/6-311++g(d,p)

1\1\GINC-SERVER-LAB406\SP\UM06\6-311++G(d,p)\C40H3602\PODLECH\25-Feb-2
022\0\\# sp uM06/6-311++g(d,p) geom=connectivity\\Title Card Required\
\0,1\C\C,1,1.39131684\C,2,1.40044661,1,120.26972313\C,3,1.37711804,2,1
18.71323321,1,1.19170852,0\C,4,1.41935343,3,121.885765,2,1.08048938,0\
C,5,1.37951138,4,118.31547224,3,-3.0789806,0\H,3,1.08729466,2,119.3947
6507,1,-177.83202101,0\C,4,1.45495726,3,129.05457884,2,-176.16655574,0
\C,5,1.46555179,4,106.97240468,3,-179.49768531,0\C,8,1.36520415,4,108.
08840402,3,177.40105245,0\C,10,1.43338466,8,128.16967534,4,-178.085293
86,0\C,9,1.36028625,5,135.63915838,4,-175.60259845,0\H,11,1.0875058,10
,118.71738024,8,0.90650517,0\C,12,1.46888405,9,118.46844299,5,-175.698
07991,0\C,11,1.35062226,10,119.53036053,8,-179.92287646,0\H,15,1.08752
172,11,121.74892663,10,-178.86973309,0\C,12,1.46556349,9,135.63932236,
5,2.62809667,0\C,14,1.36520671,12,109.95790755,9,175.74978892,0\C,17,1
.41936672,12,106.97145257,9,-175.61978216,0\C,17,1.3795093,12,134.5814

7931,9,8.80454298,0\C,19,1.37711851,17,121.88616825,12,-179.49326287,0 \H,21,1.08727594,19,121.88120072,17,-179.92095896,0\H,20,1.08296317,17 ,121.33236861,12,0.14131044,0\C,21,1.40044066,19,118.71315772,17,1.077 28387,0\C,24,1.39130954,21,120.26992607,19,1.19177828,0\H,25,1.0834470 5,24,120.89246668,21,178.0673753,0\c,8,1.47369433,4,124.68823587,3,-1. 88144006,0\C,18,1.47369449,14,127.21925836,12,-178.76834629,0\C,27,1.4 0058745,8,119.88833051,4,88.94812985,0\C,27,1.40164808,8,119.87959066, 4,-90.30933241,0\C,28,1.40037152,18,119.9030008,14,90.25041965,0\C,28, 1.40183963,18,119.86779197,14,-89.94999232,0\C,29,1.39156578,27,118.99 800695,8,-179.58128799,0\C,30,1.39044751,27,118.99845056,8,179.6010831 2,0\C,31,1.39176707,28,119.0002344,18,-179.97775643,0\C,32,1.39026925, 28,118.99511654,18,-179.99635677,0\H,34,1.08934631,30,118.97333353,27, -179.88181283,0\H,33,1.08918551,29,118.94263619,27,179.86156695,0\H,36 ,1.08942083,32,118.95803727,28,-179.67531335,0\H,35,1.08912936,31,118. 95675058,28,179.63504153,0\C,35,1.38943454,31,121.75947456,28,-0.23477 6,0\C,33,1.38975558,29,121.75748755,27,-0.03586756,0\C,29,1.49864379,2 7,120.43905107,8,0.5259518,0\H,43,1.09628917,29,111.44905683,27,-57.97 705157,0\H,43,1.09614914,29,111.32543017,27,60.87530536,0\H,43,1.09322 796,29,111.11644578,27,-178.57481992,0\C,30,1.4986039,27,120.44004961, 8,-0.47291302,0\H,47,1.09609781,30,111.34663571,27,-60.36958077,0\H,47 ,1.09637345,30,111.44078499,27,58.51973105,0\H,47,1.09326448,30,111.09 28981,27,179.0542705,0\C,42,1.49788235,33,121.05615465,29,-178.6047911 5,0\H,51,1.0938556,42,111.50620509,33,-23.97059024,0\H,51,1.09658017,4 2,111.06708215,33,95.69616561,0\H,51,1.09430405,42,111.45562108,33,-14 4.91517599,0\C,31,1.4986379,28,120.48035413,18,-0.41452955,0\H,55,1.09 610362,31,111.37362695,28,-60.49891239,0\H,55,1.09636612,31,111.418413 61,28,58.39343451,0\H,55,1.09326978,31,111.0961209,28,178.90310637,0\C ,32,1.49862109,28,120.39747353,18,0.48829339,0\H,59,1.09627876,32,111. 42668138,28,-57.80523274,0\H,59,1.09617347,32,111.33925666,28,61.04058 193,0\H,59,1.09322708,32,111.11425877,28,-178.38801116,0\C,41,1.497803 51,35,121.02778059,31,-178.66797238,0\H,63,1.09374022,41,111.47758665, 35,-21.46363485,0\H,63,1.09652837,41,111.07707263,35,98.25233518,0\H,6 3,1.0945429,41,111.47051766,35,-142.40536482,0\H,6,1.08296135,5,121.33 153746,4,-175.0450481,0\H,1,1.08344817,2,120.89263382,3,178.0684636,0\ 0,2,1.3533396,1,124.39217948,6,179.48941761,0\0,24,1.35337118,21,115.3 3309207,19,-179.65726114,0\C,69,1.40532827,2,118.4057123,1,0.14529977, 0\C,70,1.40533449,24,118.40294607,21,-178.95825892,0\H,72,1.09784227,7 0,111.59533278,24,-60.95690377,0\H,72,1.09016036,70,106.4761911,24,-17 9.82794861,0\H,72,1.09780428,70,111.59897473,24,61.32504776,0\H,71,1.0 9015986,69,106.47537673,2,-179.82589837,0\H,71,1.09784478,69,111.59569 92,2,-60.9535656,0\H,71,1.09780555,69,111.60018302,2,61.32895174,0\\Ve rsion=AM64L-G09RevA.02\State=1-A\HF=-1695.529902\S2=0.\S2-1=0.\S2A=0.\ RMSD=3.245e-09\Dipole=-0.7878022,0.1055738,-0.4623549\Quadrupole=10.12 38648,-10.8353015,0.7114367,-1.3567312,7.5426085,-2.6532436\PG=C01 [X(C40H36O2)]\\@

12. Archive Entry for a Single Point Calculation on a Minimum Structure of 15 (Triplet)

uM06/6-311++g(d,p)//uM06/6-311++g(d,p)

1\1\GINC-OCH-C3-131\SP\UM06\6-311++G(d,p)\C40H36O2(3)\PODLECH\23-Feb-2 022\0\\# sp uM06/6-311++g(d,p) geom=connectivity\\Title Card Required\ \0,3\C\C,1,1.39921298\C,2,1.38945124,1,120.07000165\C,3,1.39310969,2,1 18.94359516,1,1.07435249,0\C,4,1.43037941,3,121.60503069,2,1.3685383,0 \C,5,1.38270247,4,117.93527277,3,-3.34816757,0\H,3,1.087313,2,119.6110 0319,1,-177.91480317,0\C,4,1.41857724,3,129.02503597,2,-175.79613966,0 \C,5,1.46099687,4,107.81250191,3,-179.57925088,0\C,9,1.43260611,5,106. 29594139,4,2.96816986,0\C,10,1.38674458,9,122.87311489,5,176.3174216,0 \C,9,1.38961082,5,135.66391128,4,-177.15128934,0\H,11,1.08770246,10,11 9.84874651,9,-179.46664375,0\C,12,1.43260387,9,118.0400747,5,-174.6068 2359,0\C,14,1.38675346,12,122.87289086,9,-3.59676669,0\H,15,1.08771863 ,14,119.84866542,12,-179.46131788,0\C,12,1.46100595,9,135.66385179,5,5 .53337852,0\C,14,1.44357494,12,109.42135154,9,177.14314552,0\C,18,1.41 855517,14,107.05822196,12,1.83276951,0\C,17,1.38270324,12,134.11062637 ,9,7.46741781,0\C,19,1.39310607,18,129.02330883,14,177.52826821,0\H,21 ,1.08729451,19,121.43441223,18,3.16146168,0\H,20,1.08309456,17,121.220 31571,12,0.10909885,0\C,21,1.38943605,19,118.94376099,18,-175.80779583 ,0\C,20,1.39585239,17,120.60495418,12,177.89258929,0\H,25,1.08381695,2 0,118.69957724,17,-179.99667158,0\C,8,1.47059381,4,126.7347224,3,-1.59 841897,0\C,18,1.47060127,14,126.20987381,12,-179.03109038,0\C,27,1.401 07408,8,119.86839576,4,88.62451652,0\C,27,1.4011511,8,119.86646156,4,-

91.05112084,0\C,28,1.40124085,18,119.86683447,14,89.60834997,0\C,28,1. 40098831,18,119.86762731,14,-90.14396465,0\C,29,1.39083902,27,118.9932 9751,8,-179.8379819,0\C,30,1.39075511,27,118.9945904,8,179.83126439,0\ C,31,1.39065826,28,118.99314941,18,-179.71929342,0\C,32,1.39093235,28, 118.99392246,18,179.73303695,0\H,34,1.08926166,30,118.98610962,27,-179 .71822301,0\H,33,1.08927315,29,118.96513187,27,179.74625778,0\H,36,1.0 8925984,32,118.96545047,28,-179.76685764,0\H,35,1.08928554,31,118.9890 0067,28,179.76720339,0\C,36,1.3904545,32,121.7193744,28,0.131926,0\C,3 4,1.39049905,30,121.72287354,27,0.10014766,0\C,29,1.49846381,27,120.17 644053,8,-0.17731927,0\H,43,1.09634049,29,111.27336467,27,-60.09032439 ,0\H,43,1.09640525,29,111.35151337,27,58.59587671,0\H,43,1.09321199,29 ,111.22886129,27,179.2875241,0\C,30,1.49845703,27,120.22011572,8,0.184 2374,0\H,47,1.09637657,30,111.35375922,27,-59.06997284,0\H,47,1.096373 42,30,111.28200571,27,59.67142717,0\H,47,1.09326611,30,111.20578844,27 ,-179.72502385,0\C,42,1.49784088,34,120.78822167,30,178.53738016,0\H,5 1,1.09407574,42,111.51216454,34,151.49192796,0\H,51,1.09659321,42,111. 05575221,34,-88.98541312,0\H,51,1.09401534,42,111.47598138,34,30.51165 338,0\C,31,1.49845094,28,120.22132271,18,0.24961838,0\H,55,1.09637052, 31,111.38543032,28,-59.20598352,0\H,55,1.09637537,31,111.25332369,28,5 9.53631295,0\H,55,1.09326721,31,111.20470677,28,-179.88852378,0\C,32,1 .49846885,28,120.17849927,18,-0.19899467,0\H,59,1.09632721,32,111.2560 4891,28,-59.92653148,0\H,59,1.09642147,32,111.36906684,28,58.75932504, 0\H,59,1.09320967,32,111.22911113,28,179.46972168,0\C,41,1.49784002,36 ,120.92527635,32,178.53528151,0\H,63,1.0940663,41,111.47704624,36,149. 6197499,0\H,63,1.09658059,41,111.03883132,36,-90.91488868,0\H,63,1.094 03536,41,111.52063804,36,28.62365227,0\H,6,1.08309063,5,121.21607059,4 ,-174.89876623,0\H,1,1.08381822,6,118.69964792,5,180.,0\0,2,1.3564429, 1,124.00611199,6,179.46111318,0\0,24,1.35646476,21,115.91641404,19,-17 9.8299992,0\C,69,1.40441516,2,118.46845235,1,0.40325471,0\C,70,1.40443 251,24,118.46725541,21,-178.68363336,0\H,72,1.09812278,70,111.71974113 ,24,-61.34955389,0\H,72,1.0902668,70,106.46287468,24,179.84709562,0\H, 72,1.09807036,70,111.70145666,24,61.06066117,0\H,71,1.09026962,69,106. 4659595,2,179.81745239,0\H,71,1.09812892,69,111.71734265,2,-61.3771673 ,0\H,71,1.09807282,69,111.70165275,2,61.03118743,0\\Version=EM64L-G09R evA.02\State=3-A\HF=-1695.5053871\S2=2.040541\S2-1=0.\S2A=2.001051\RMS D=3.792e-09\Dipole=-0.6618069,0.084141,-0.3793441\Quadrupole=10.662543 3,-10.2802448,-0.3822985,-1.7127127,8.1481981,-2.7921637\PG=C01 [X(C40 H36O2)]\\@

13. Doublet and Quartet Energies of 7; Singlet and Triplet Energies of 15

7, doublet: HF = -2083.7500138 Hartree

7, quartet: HF = -2083.7182071 Hartree

Doublet-quartet gap: 0.0318 Hartree = 83.5 kJ/mol = 0.866 eV

15, singlet: HF = -1695.529902 Hartree

15, triplet: HF = -1695.5053871 Hartree

Singlet-triplet gap: 0.0245 Hartree = 64.4 kJ/mol = 0.668 eV

14. Frequency Analyses and Measured IR Spectrum of 7

Frequency analyses of the doublet and of the quartet state, respectively, of **7** were performed at the B3LYP/6-311g(d,p) level; they show no imaginary frequencies. A frequency analysis for the doublet state showed lowest frequencies at $\tilde{v} = 10.0, 11.2, 15.3, 18.9, 21.7 \text{ cm}^{-1}$, etc. They are due to different twisting and bending modes of the mesityl groups and rotations of the methyl group. The lowest frequency for a twisting of the helicene core is 46.4 cm⁻¹.

Output of the frequency calculation for the doublet state of 7 (excerpt):

Low frequenci	es -		-4.1123	-2.5059	-0.4739	-0.0013	-0.0006	0.0017
Low frequenci	es -		10.0683	11.3989	15.3103			
[]								
Harmonic freq	luenc	cies	(cm**-1),	IR intens	ities (KM/M	Mole), redu	ced masses	(AMU),
force constan	ts ((mDyn	e/A):					
		1			2		3	
		A			A		A	
Frequencies -	-	10.	0248		11.1685		15.2691	
Red. masses -	-	З.	6212		3.4344		4.5037	
Frc consts -	-	Ο.	0002		0.0003		0.0006	
IR Inten –	-	Ο.	0277		0.0016		0.0389	
[]								
		4			5		6	
		A			A		A	
Frequencies -	-	18.	9078		21.6899		22.9467	
Red. masses -	-	З.	6569		4.2693		2.5536	
Frc consts -	-	Ο.	0008		0.0012		0.0008	
IR Inten -	-	Ο.	0015		0.0960		0.0652	
[]								
		7			8		9	
		A			A		A	
Frequencies -	-	27.	7152		29.3041		31.5454	
Red. masses -	-	1.	9956		1.9586		1.1051	
Frc consts -	-	Ο.	0009		0.0010		0.0006	
IR Inten -	-	Ο.	2941		0.0051		0.1199	
[]								
		10			11		12	
		A			A		A	
Frequencies -	-	34.	7528		37.1066		43.0083	
Red. masses -	-	1.	2784		2.3376		3.8520	
Frc consts -	-	Ο.	0009		0.0019		0.0042	
IR Inten -	-	Ο.	1471		0.0427		0.0333	
[]								
		13			14		15	
		A			A		A	
Frequencies -	-	46.	4400		61.6480		67.0717	
Red. masses -	-	5.	3494		5.0338		4.4757	
Frc consts -	-	0.	0068		0.0113		0.0119	
IR Inten –	-	0.	0943		0.0004		0.0735	

A calculated IR spectrum of **7** (doublet state, top) was obtained using a published scaling factor of 0.9619.²⁶ The spectrum was visualized with GaussSum: FWHM 10 cm⁻¹.The measured IR spectrum of **7** (bottom) is additionally given with an aligned frequency scale.

15. Frontier Orbitals of 7

M06/6-311++g(d,p)//M06/6-311++g(d,p) (isovalue: 0.02 electrons ^{1/2} · bohr ^{-3/2})

16. Enlarged Figure 6. Calculated SOMOs of α and β Electrons, respectively

M06/6-311++g(d,p)//M06/6-311++g(d,p) (isovalue: 0.02 electrons ^{1/2} · bohr ^{-3/2})

17. Enlarged Figure 5. Calculated Spin Density of 7

M06/6-311++g(d,p)//M06/6-311++g(d,p); blue and green surfaces represent α and β spin densities, respectively (isovalue: 0.004 electrons · bohr⁻³).

18. Mulliken Atomic Spin Densities of the Helicene Carbon Atoms in 7

Atom number	Internal numbering	Spin density	
1	6 C	-0.033953	Mes
2	1 C	0.098519	
3	2 C	-0.040923	7 7a 人 8a 9
4	3 C	0.098743	
4a	4 C	-0.060766	$6 \left(15d \right) 10$
5	9 C	0.341252	5a
5a	10 C	-0.161717	15e 15b 11
6	11 C	0.216903	Mes $-\frac{15}{15}$ $15a$ \rightarrow Mes
7	12 C	-0.137102	111
7a	13 C	0.195714	
8	18 C	-0.242001	4 21 114 12
8a	20 C	0.195778	3 13
9	21 C	-0.137369	0 10
10	25 C	0.217011	
10a	24 C	-0.161648	
11	28 C	0.340758	
11a	29 C	-0.060842	
12	31 C	0.098652	
13	34 C	-0.040951	
14	35 C	0.098397	
15	30 C	-0.034032	
15a	27 C	0.072678	
15b	22 C	0.107303	
15c	19 C	-0.079740	
15d	14 C	-0.079278	
15e	15 C	0.107216	
15f	5 C	0.072734	

19. Triradical Character of 7

Calculation at the uB3LYP/6-31g(d,p)//uM06/6-311++g(d,p) level:

Input:

```
%chk=Mes Trirad5.chk
%mem=600MW
%nprocs=16
#p sp uhf/sto-3g
Title Card Required
0 2
// Coordinates for the uM06/6-311++g(d,p)-optimized structure
--Linkl--
%nprocs=16
%mem=600MW
%chk=Mes Trirad5.chk
#p uhf/3-21g guess=(read,mix) geom=allcheck
--Linkl--
%nprocs=16
%mem=600MW
%chk=Mes Trirad5.chk
#p uhf/6-31g(d,p) guess=(read,mix) geom=allcheck
--Linkl--
%nprocs=16
%mem=600MW
%chk=Mes_Trirad5.chk
#p uB3LYP/6-31g(d,p) guess=(read,permute) pop=no geom=allcheck
```

Output (excerpt):

	· · · · · · · · · · · · · · · · · · ·							
	Natural Orbital Coefficients:							
		181	182	183	184	185		
	Eigenvalues	1.99826	1.99716	1.99512	1.92910	1.00000		
[.]							
		186	187	188	189	190		
	Eigenvalues	0.07090	0.00488	0.00284	0.00174	0.00173		

The triradical character y was calculated with $n_{HONO} = 1.92910$ and $n_{LUNO} = 0.07090$ using Yamaguchi's scheme:³⁶

$$T = \frac{n_{\text{HONO}} - n_{\text{LUNO}}}{2}$$
$$y = 1 - \frac{2T}{1 + T^2}$$
$$y = 0.0027$$

³⁶ K. Yamaguchi, Chem. Phys. Lett. 1975, 33, 330–335; K. Kamada, K. Ohta, A. Shimizu, T. Kubo, R. Kishi, H. Takahashi, E. Botek, B. Champagne, M. Nakano, J. Phys. Chem. Lett. 2010, 1, 937–940.

Calculation at the uCAM-B3LYP/6-31g(d,p)//uM06/6-311++g(d,p) level:

Input (excerpt):

```
. . .
-Linkl--
%nprocs=16
%mem=600MW
%chk=Mes Trirad.chk
#p uhf/3-21g guess=(read,mix) geom=allcheck
--Linkl--
%nprocs=16
%mem=600MW
%chk=Mes Trirad.chk
#p uhf/6-31g(d,p) guess=(read,mix) geom=allcheck
--Linkl--
%nprocs=16
%mem=600MW
%chk=Mes Trirad.chk
#p uCAM-B3LYP/6-31g(d,p) guess=(read,permute) pop=no geom=allcheck
```

Output (excerpt):

Natural Orbital Coefficients:							
Figerralues	181	182	183	184	185		
[]	1.99579	1.99000	1.90193	1.79275	1.00000		
	186	187	188	189	190		
Eigenvalues	0.20725	0.01805	0.00992	0.00621	0.00607		

y = 0.026

Calculation at the uhf/6-31g(d,p)//uM06/6-311++g(d,p) level:

Input (excerpt):

```
--Link1--
%chk=Mes_Trirad3.chk
%mem=600MW
%nprocs=16
#p sp uhf/6-31g(d,p) guess=(read,permute) pop=no geom=allcheck
```

Output (excerpt):

Natural Orbital Coefficients:							
Eigenvalues	181 1.89078	182 1.88057	183 1.84037	184 1.44988	185 1.00000		
Eigenvalues	186 0.55012	187 0.15963	188 0.11943	189 0.10922	190 0.10044		

y = 0.252

The triradical character was also addressed by EPR spectroscopy. A solid sample of **7** (1% in KCl matrix) was irradiated with high microwave power for prolonged periods. The spectrum was checked for half-field resonances, but none could be detected.

Spin concentration was determined by NMR spectroscopy via the Evans method. The obtained values for sample magnetisation were considerably lower than expected (0.51 Bohr magnetons). Dilution of the sample lead to an increase of magnetic moment, hence, association in solution can be assumed. At higher dilution, spin concentration was determined by EPR spectroscopy by comparison with a TEMPO standard sample under the same measurement conditions. Integration of both signals yielded a normalised (intensity per molecule) difference of only 8% for the respective areas under the curve, giving a strong indication of the monoradical character of the helical species.

20. Calculated UV/Vis/NIR Spectra of 7

td(nstates=50)/M06/6-311g(d,p)/scrf(cpcm,CH₂Cl₂)//M06/6-311++g(d,p); Visualized with GaussSum: FWHM 1500 cm⁻¹

21. Calculated Electronic Circular Dichroism (ECD) Spectrum of 7

td(nstates=50)/M06/6-311g(d,p)/scrf(cpcm,CH₂Cl₂)//M06/6-311++g(d,p); Visualized with GaussSum: sigma 0.2 eV

UV/Vis spectra with identical section and scaling to allow for comparison: measured (top) and calculated (bottom) spectra:

22. TD Calculation of 7

TD(nstates=50)/M06/6-311g(d,p)/scrf(cpcm,CH₂Cl₂)//M06/6-311++g(d,p)

Output (excerpt; only a selection of transitions is given, Annotations after // were added by the authors):

Excited states from <AA,BB:AA,BB> singles matrix: Ground to excited state transition electric dipole moments (Au): state Х Y 7. Dip. S. Osc. -0.2440 -0.0001 0.0898 1 0.0676 0.0019 4.6040 0.0005 0.1722 2 2.1201 -0.3303 0.2647 0.0701 0.0028 3 0.0024 -0.0001-0.1667 -0.0019 0.0060 0.0278 4 0.0014 5 0.1987 0.0099 0.0020 -0.4458 -0.0005 1.3320 1.0021 6 0.0003 -1.1541 -0.0006 0.0733 -0.0011 7 0.0023 -1.0011 0.0629 0.9581 0.0613 -0.9414 -0.0018 0.2681 8 -0.0008 0.2622 9 0.0025 -0.5177 -0.0008 0.2680 0.0180 10 -0.9206 -0.0010 0.9162 0.0622 [...] Excitation energies and oscillator strengths: Excited State 1: 2.011-A 1.1746 eV 1055.53 nm f=0.0019 <S**2>=0.761 0.85152 185A -> 186A // (SOMO -> LUMO) // (HOMO-1 -> SOMO) 184B -> 185B 0.51017 Excited State 2: 2.106-A 1.5262 eV 812.36 nm f=0.1722 <S**2>=0.859 185A -> 186A -0.50330 // (SOMO -> LUMO) 185A -> 187A -0.10539 183B -> 186B -0.19551 // (HOMO-2 -> LUMO) // (HOMO-1 -> SOMO) 184B -> 185B 0.81917 1.6144 eV 767.97 nm f=0.0028 <S**2>=2.243 Excited State 3: 3.158-A 184A -> 186A 0.58905 // (HOMO-1 -> LUMO) 182B -> 185B -0.19119 184B -> 186B // (HOMO-1 -> LUMO) 0.75353 Excited State 4: 3.390-A 2.0162 eV 614.93 nm f=0.0014 <S**2>=2.624 0.14614 175A -> 186A 183A -> 186A 0.69797 // (HOMO-2 -> LUMO) 183A -> 187A 0.12156 174B -> 185B -0.10406 175B -> 185B -0.19623 // (HOMO-2 -> LUMO) 183B -> 186B -0.57864 Excited State 5: 2.395-A 2.0375 eV 608.50 nm f=0.0099 <S**2>=1.184 // (HOMO-1 -> LUMO) 184A -> 186A 0.41733 175B -> 186B 0.20615 183B -> 185B 0.80844 // (HOMO-2 -> SOMO) 184B -> 186B // (HOMO-1 -> LUMO) -0.24901 2.2446 eV 552.36 nm f=0.0733 <S**2>=1.065 Excited State 6: 2.294-A 176A -> 186A -0.10803 177A -> 186A -0.12216 179A -> 186A 0.13133 180A -> 186A -0.11428 182A -> 186A -0.12291 184A -> 186A // (HOMO-1 -> LUMO) 0.63081 175B -> 186B -0.10508 182B -> 185B -0.10996 // (HOMO-2 -> SOMO) 183B -> 185B -0.39911 // (HOMO-1 -> LUMO) 184B -> 186B -0.54980 184B -> 187B -0.129502.5639 eV 483.59 nm f=0.0629 <S**2>=1.137 Excited State 7: 2.356-A 0.19610 // (HOMO-1 -> LUMO) 184A -> 186A 174B -> 186B 0.13078 175B -> 186B 0.13882

Page	SI-41
------	-------

180B -> 185B	0.24678			
182B -> 185B	0.87309			
184B -> 186B	0.10048	11	(HOMO-1 -> LUMO)	
Excited State 8:	2.284-A	2.6135 eV	474.40 nm f=0.0613	<s**2>=1.055</s**2>
183A -> 186A	-0.49643	//	(HOMO-2 -> LUMO)	
184A -> 188A	-0.11927			
185A -> 187A	0.52706			
175B -> 185B	-0.42079			
179B -> 185B	-0.19170			
181B -> 185B	-0.19763			
183B -> 186B	-0.39811	11	(HOMO-2 -> LUMO)	
Excited State 9:	3.237-A	2.7339 eV	453.51 nm f=0.0180	<s**2>=2.369</s**2>
176A -> 186A	0.27013			
177A -> 186A	0.31064			
179A -> 186A	-0.33269			
180A -> 186A	0.34018			
182A -> 186A	0.37869			
175B -> 186B	0.36085			
179B -> 186B	0.14405			
181B -> 186B	0.13641			
183B -> 185B	-0.36104	//	(HOMO-2 -> SOMO)	
184B -> 186B	-0.17508	//	(HOMO-1 -> LUMO)	
184B -> 187B	-0.13669			
Excited State 10:	3.192-A	2.7719 eV	447.28 nm f=0.0622	<s**2>=2.296</s**2>
175A -> 186A	0.42798			
183A -> 186A	-0.30286	//	(HOMO-2 -> LUMO)	
185A -> 187A	-0.14661			
174B -> 185B	0.19525			
175B -> 185B	0.14650			
179B -> 185B	0.16865			
180B -> 186B	0.17478			
183B -> 186B	-0.23955	//	(HOMO-2 -> LUMO)	

23. Frontier Orbitals of 7 as Obtained from the TD Calculation

 $TD(nstates=50)/M06/6-311g(d,p)/scrf(cpcm,CH_2Cl_2)//M06/6-311++g(d,p)\ (Isovalue:\ 0.02\ electrons^{1/2}\cdot bohr^{-3/2}).$

24. HOMA Values of 7

HOMA values were calculated according to the following formula:37

$$HOMA = 1 - \frac{\alpha}{n} \sum_{i=1}^{n} (d_{opt} - d_i)^2$$

257.7 Å⁻²; an empirical constant chosen to give HOMA = 0 for a hypothetical Kekule structure with alternating bonds and to α: result HOMA = 1 for the system with all bonds equal to the optimum value d_{opt} .

number of bonds considered n:

d_{opt}: 1.388 Å (for CC bonds)

the actually measured or calculated bond distance di:

Bond distances were either taken from the crystallographic data (here as the average from the two equivalent positions in the molecules, where two independent molecules in the unit cell were considered) or from the calculation [M06/6-311++g(d,p), gas phase; all the respective equivalent positions were identical within the relevant precision].

HOMA and NICS_{zz}(1.0) values for comparison:

Compound	HOMA values ^a	NICS _{zz} (1.0) ^b
benzene	1.00	-29.4
cyclopentadienyl anion	0.89	-33.5
cyclopentadienyl radical	0.46	42.6
cyclopentadienyl cation	-1.03	216.7
cyclobutadiene	-3.44	58.6

^a M06/6-311++g(d,p), gas phase; ^b B3LYP/6-311g(d,p)//M06/6-311++g(d,p), gas phase

25. Calculated ¹H NMR Shifts of 7 and 25

nmr=gdiis/M06/6-311g(d,p)//M06/6-311++g(d,p)

Proton	Internal numbering	δ [ppm]	Proto	n Internal numbering	δ [ppm]
1-H	38	6.72	1-H	38	6.55
2-H	39	6.74	2-H	39	6.60
3-H	7	7.10	3-H	7	7.04
4-H	8	6.77	4-H	8	7.16
5-H	_	_	5-H	42	6.66
6-H	16	6.33	6-H	16	6.77
7-H	17	6.18	7-H	17	6.62
8-H	_	-	8-H	41	6.43

³⁷ T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385–1420.

26. Calculated EPR Data of 7

nmr=gdiis,prop=epr/M06/6-311g(d,p)//M06/6-311++g(d,p)

 $g \text{ value:} \quad g_{xx} = 2.0023195 + 89.1 \cdot 10^{-6}; \quad g_{yy} = 2.0023195 + 237.8 \cdot 10^{-6}; \quad g_{zz} = 2.0023195 + 661.6 \cdot 10^{-6}$

 $g_{iso} = (g_{xx} + g_{yy} + g_{zz}) / 3 = 2.0026$

Output (excerpt):

		Isotropic	Fermi Conta	ct Couplings	5	
	Atom	a.u.	MegaHertz	Gauss	10(-4) cm-1	IUPAC numbering (selection)
1	C(13)	0.01104	12.41449	4.42980	4.14103	C-2
2	C(13)	-0.00783	-8.80699	-3.14255	-2.93770	C-3
3	C(13)	0.01120	12.59519	4.49428	4.20130	C-4
4	C(13)	-0.01902	-21.38436	-7.63047	-7.13306	C-4a
5	C(13)	0.00681	7.66070	2.73353	2.55533	C-15f
6	C(13)	-0.00626	-7.04076	-2.51232	-2.34855	C-1
7	H(1)	0.00058	2.57683	0.91948	0.85954	3-H
8	H(1)	-0.00207	-9.23908	-3.29673	-3.08183	4-H
9	C(13)	0.04122	46.33592	16.53381	15.45600	C-5
10	C(13)	-0.02951	-33.17879	-11.83902	-11.06725	C-5a
11	C(13)	0.02519	28.31714	10.10426	9.44558	C-6
12	C(13)	-0.02285	-25.68769	-9.16601	-8.56849	C-7
13	C(13)	0.03214	36.13480	12.89380	12.05327	C-7a
14	C(13)	-0.01209	-13.58683	-4.84812	-4.53208	C-15d
15	C(13)	0.01114	12.52365	4.46875	4.17744	C-15e
16	H(1)	-0.00398	-17.81112	-6.35545	-5.94115	6-H
17	H(1)	0.00273	12.21248	4.35772	4.07365	7-H
18	C(13)	-0.03505	-39.40466	-14.06056	-13.14398	C-8
19	C(13)	-0.01208	-13.57725	-4.84470	-4.52888	
20	C(13)	0.03215	36.14752	12.89834	12.05752	
21	C(13)	-0.02285	-25.69003	-9.16684	-8.56927	
22	C(13)	0.01113	12.51141	4.46438	4.17336	
23	H(1)	0.00273	12.219//	4.36032	4.0/608	
24	C(13)	-0.02930	-33.10000	-11.03233	9 44525	
26	H(1)	-0.00398	-17.81013	-6.35510	-5.94082	
27	C(13)	0.00681	7.65212	2.73047	2.55247	
28	C(13)	0.04117	46.28666	16.51623	15.43957	
29	C(13)	-0.01900	-21.36101	-7.62214	-7.12526	
30	C(13)	-0.00625	-7.03095	-2.50882	-2.34527	
31	C(13)	0.01119	12.57893	4.48848	4.19588	
32	H(1)	-0.00206	-9.22686	-3.29237	-3.07775	
33	H(1)	0.00036	1.621/3	0.5/86/	0.54095	
34 35	C(13)	-0.00782	-0.79039	-3.13077	-2.93410	
36	H(1)	-0.00209	-9.34372	-3.33407	-3.11673	
37	H(1)	0.00058	2.57434	0.91859	0.85871	
38	H(1)	0.00036	1.62504	0.57986	0.54206	1-H
39	H(1)	-0.00209	-9.35610	-3.33849	-3.12086	2-H
40	C(13)	-0.01458	-16.38527	-5.84667	-5.46554	C _{Mes} at C-5
41	C(13)	0.00966	10.86226	3.87592	3.62326	C _{Mes} at C-8
42	C(13)	-0.01456	-16.36440	-5.83922	-5.45857	
43	C(13)	0.01388	15.60870	5.56957	5.20650	
44	C(13)	0.01387	15.59347	5.56414	5.20142	
45	C(13)	-0.00945	-10.62754	-3./9217	-3.54497	
46 17	C(13)	-0.00946	-10.02994 15 57257	-3./93U3 5 55669	-3.343// 5 10//5	
4 A	C(13)	0.01387	15.59215	5.56367	5.20098	
49	C(13)	0.00109	1.22342	0.43655	0.40809	
50	C(13)	0.00094	1.06096	0.37858	0.35390	
51	C(13)	-0.00054	-0.60447	-0.21569	-0.20163	
52	C(13)	-0.00054	-0.60296	-0.21515	-0.20113	
53	C(13)	0.00094	1.05830	0.37763	0.35301	
54	C(13)	0.00109	1.22305	0.43641	0.40797	
55 E C	H(⊥)	0.00035	1.56103	U.55/UL	0.52070	
ンり 57	п(⊥) Н(1)	-0 00035	1.30000 -1 09674	U.J0010 -0 39134	U.JZ9ZJ -0 36583	
58	H(1)	-0.00024	-1.08308	-0.38647	-0.36128	

59	H(1)	0.00035	1.58507	0.56559	0.52872
60	H(1)	0.00035	1.55854	0.55612	0.51987
61	C(13)	0.00008	0.09020	0.03219	0.03009
62	C(13)	-0.00022	-0.24350	-0.08689	-0.08122
63	C(13)	0.00008	0.09013	0.03216	0.03006
64	C(13)	-0.00054	-0.60915	-0.21736	-0.20319
65	H(1)	-0.00022	-0.96735	-0.34517	-0.32267
66	H(1)	-0.00023	-1.04692	-0.37357	-0.34922
67	H(1)	-0.00024	-1.05096	-0.37501	-0.35056
68	C(13)	-0.00054	-0.60333	-0.21528	-0.20125
69	H(1)	-0.00022	-0.98458	-0.35132	-0.32842
70	H(1)	-0.00023	-1.02072	-0.36422	-0.34048
71	H(1)	-0.00023	-1.05037	-0.37480	-0.35037
72	C(13)	0.00009	0.10229	0.03650	0.03412
73	H(1)	-0.00001	-0.02645	-0.00944	-0.00882
74	H(1)	-0.00006	-0.25012	-0.08925	-0.08343
75	H(1)	-0.00004	-0.18760	-0.06694	-0.06258
76	C(13)	0.00120	1.34619	0.48035	0.44904
77	H(1)	0.00028	1.25828	0.44899	0.41972
78	H(1)	0.00043	1.93463	0.69032	0.64532
79	H(1)	0.00035	1.54754	0.55220	0.51620
80	C(13)	0.00093	1.04634	0.37336	0.34902
81	H(1)	0.00040	1.76807	0.63089	0.58977
82	H(1)	0.00028	1,27030	0.45327	0.42373
83	H(1)	0.00030	1.35446	0.48330	0.45180
84	C(13)	-0.00007	-0.07581	-0.02705	-0.02529
85	H(1)	0 00001	0 06483	0 02313	0 02163
20 86	н(1)	0 00003	0 13728	0.02010	0 04570
87	н (т) н (1)	0.00003	0.15720	0.04090 0 02201	0 02058
88	C(13)	0.00001	1 34679	0.02201	0.02030
20 20	U(1)	0.00120	1 26125	0.45005	0.44924
09	ц(т) ц(т)	0.00020	1 03/00	0.43003	0.42071
90	r1(⊥) 11(1)	0.00043	1.90499 1.55010	0.09043	0.04044
91	п(1) с(12)	0.00035	1.33010	0.00706	0.02520
92	U(13)	-0.00007	-0.0/583	-0.02/06	-0.02529
93	H(⊥)	0.00001	U.U6616	0.02361	0.02207
94	H(⊥)	0.00003	0.13/12	0.04893	0.045/4
95	H(1)	0.00001	0.06051	0.02159	0.02018
96	C(13)	0.00093	1.04842	0.37410	0.34971
97	H(1)	0.00040	1.76755	0.63071	0.58959
98	H(1)	0.00029	1.27479	0.45488	0.42522
99	H(1)	0.00030	1.35677	0.48413	0.45257

27. NICS Values of 7 and 25

B3LYP/6-311g(d,p)//M06/6-311++g(d,p)

Ring A

Top side	;				Bottom	side			
NICS@	isotropic	XX	УУ	ZZ	NICS@	isotropic	XX	УУ	ZZ
0.0	-4.3368	-6.6258	-/.48/1	1.1026	0.0	-4.31/9	-7.0223	-/.0508	1.1195
0.1	-4.3649	-6.6074	-7.2751	0.7878	0.1	-4.4783	-7.0938	-6.8948	0.5537
0.2	-4.5698	-6.4364	-6.9132	-0.3599	0.2	-4.8108	-7.0105	-6.5875	-0.8345
0.3	-4.9107	-6.1202	-6.4250	-2.1870	0.3	-5.2696	-6.7792	-6.1484	-2.8810
0.4	-5.3288	-5.6750	-5.8419	-4.4694	0.4	-5.7913	-6.4159	-5.6050	-5.3531
0.5	-5.7592	-5.1241	-5.1994	-6.9541	0.5	-6.3083	-5.9440	-4.9893	-7.9917
0.6	-6.1430	-4.4965	-4.5325	-9.3999	0.6	-6.7598	-5.3925	-4.3337	-10.5532
0.7	-6.4349	-3.8230	-3.8721	-11.6095	0.7	-7.1004	-4.7921	-3.6675	-12.8414
0.8	-6.6070	-3.1332	-3.2420	-13.4459	0.8	-7.3034	-4.1720	-3.0144	-14.7239
0.9	-6.6491	-2.4528	-2.6588	-14.8356	0.9	-7.3609	-3.5573	-2.3912	-16.1342
1.0	-6.5652	-1.8024	-2.1319	-15.7612	1.0	-7.2801	-2.9677	-1.8094	-17.0631
1.1	-6.3701	-1.1969	-1.6659	-16.2475	1.1	-7.0787	-2.4175	-1.2753	-17.5434
1.2	-6.0847	-0.6459	-1.2618	-16.3464	1.2	-6.7809	-1.9162	-0.7921	-17.6344
1.3	-5.7324	-0.1548	-0.9186	-16.1239	1.3	-6.4126	-1.4692	-0.3611	-17.4075
1.4	-5.3362	0.2744	-0.6342	-15.6488	1.4	-5.9989	-1.0791	0.0180	-16.9356
1.5	-4.9165	0.6424	-0.4056	-14.9864	1.5	-5.5618	-0.7458	0.3464	-16.2861
1.6	-4.4905	0.9523	-0.2296	-14.1944	1.6	-5.1197	-0.4678	0.6260	-15.5174
1.7	-4.0717	1.2082	-0.1021	-13.3212	1.7	-4.6868	-0.2421	0.8595	-14.6777
1.8	-3.6696	1.4159	-0.0189	-12.4060	1.8	-4.2731	-0.0645	1.0499	-13.8048
1.9	-3.2909	1.5816	0.0250	-11.4792	1.9	-3.8855	0.0699	1.2011	-12.9273
2.0	-2.9391	1.7120	0.0347	-10.5640	2.0	-3.5277	0.1664	1.3171	-12.0665
2.1	-2.6160	1.8139	0.0153	-9.6771	2.1	-3.2013	0.2308	1.4021	-11.2368
2.2	-2.3216	1.8935	-0.0280	-8.8303	2.2	-2.9063	0.2689	1.4605	-10.4482
2.3	-2.0549	1.9568	-0.0902	-8.0313	2.3	-2.6414	0.2860	1.4964	-9.7067
2.4	-1.8144	2.0086	-0.1672	-7.2847	2.4	-2.4047	0.2875	1.5137	-9.0154
2.5	-1.5981	2.0529	-0.2548	-6.5923	2.5	-2.1938	0.2778	1.5160	-8.3753
2.6	-1.4039	2.0928	-0.3499	-5.9545	2.6	-2.0063	0.2609	1.5064	-7.7861
2.7	-1.2298	2.1303	-0.4495	-5.3700	2.7	-1.8396	0.2401	1.4876	-7.2463
2.8	-1.0739	2.1665	-0.5514	-4.8366	2.8	-1.6913	0.2180	1.4618	-6.7537
2.9	-0.9344	2.2020	-0.6536	-4.3517	2.9	-1.5594	0.1966	1.4308	-6.3055
3.0	-0.8099	2.2368	-0.7543	-3.9121	3.0	-1.4418	0.1775	1.3961	-5.8990
3.1	-0.6988	2.2704	-0.8519	-3.5149	3.1	-1.3367	0.1617	1.3590	-5.5309
3.2	-0.6000	2.3021	-0.9446	-3.1573	3.2	-1.2428	0.1497	1.3203	-5.1982
3.3	-0.5122	2.3312	-1.0308	-2.8369	3.3	-1.1584	0.1418	1.2806	-4.8977
3.4	-0.4344	2.3569	-1.1085	-2.5518	3.4	-1.0826	0.1381	1.2407	-4.6265
3.5	-0.3658	2.3787	-1.1758	-2.3003	3.5	-1.0141	0.1385	1.2008	-4.3816
3.6	-0.3053	2.3960	-1.2307	-2.0812	3.6	-0.9522	0.1426	1.1612	-4.1605
3.7	-0.2523	2.4084	-1.2715	-1.8938	3.7	-0.8960	0.1499	1.1223	-3.9604
3.8	-0.2059	2.4157	-1.2965	-1.7370	3.8	-0.8449	0.1602	1.0842	-3.7791
3.9	-0.1656	2.4177	-1.3048	-1.6098	3.9	-0.7982	0.1729	1.0469	-3.6144
4.0	-0.1308	2.4145	-1.2960	-1.5108	4.0	-0.7554	0.1876	1.0107	-3.4644
4.1	-0.1009	2.4060	-1.2701	-1.4384	4.1	-0.7161	0.2037	0.9755	-3.3274
4.2	-0.0755	2.3922	-1.2284	-1.3903	4.2	-0.6798	0.2209	0.9414	-3.2017
4.3	-0.0542	2.3735	-1.1723	-1.3637	4.3	-0.6462	0.2388	0.9084	-3.0859
4.4	-0.0366	2.3498	-1.1041	-1.3556	4.4	-0.6151	0.2571	0.8766	-2.9789
4.5	-0.0225	2.3214	-1.0263	-1.3626	4.5	-0.5861	0.2754	0.8460	-2.8796
4.6	-0.0116	2.2885	-0.9418	-1.3814	4.6	-0.5590	0.2935	0.8165	-2.7870
4.7	-0.0034	2.2515	-0.8531	-1.4086	4.7	-0.5337	0.3111	0.7882	-2.7003
4.8	0.0023	2.2108	-0.7629	-1.4412	4.8	-0.5099	0.3281	0.7610	-2.6189
4.9	0.0057	2.1668	-0.6732	-1.4764	4.9	-0.4876	0.3443	0.7350	-2.5421
5.0	0.0073	2.1200	-0.5859	-1.5122	5.0	-0.4665	0.3597	0.7101	-2.4693

Ring B

Top side	;				Bottom	side			
NTCS@	isotropio	- xx	VV	7.7.	NTCS@	isotropic	xx	VV	7.7
0.0	7,2807	-10,4565	-9.4140	41.7127	0.0	7.2944	-8,5446	-11.2592	41.6869
0.1	7.2195	-10.5410	-9.0532	41.2526	0.1	7.2380	-8.8533	-10.8724	41.4397
0.2	7.0449	-10.3380	-8.6181	40.0910	0.2	7.0589	-9.0383	-10.2375	40.4525
0.3	6.7572	-9.8680	-8.0841	38.2238	0.3	6.7510	-9.0422	-9.3982	38,6933
0.4	6.3580	-9.1738	-7.4218	35.6697	0.4	6.3135	-8.8126	-8.4141	36.1671
0.5	5.8557	-8.3162	-6.6195	32,5028	0.5	5,7560	-8.3269	-7.3553	32,9503
0.6	5.2687	-7.3644	-5.6945	28.8652	0.6	5.1013	-7.6025	-6.2924	29.1987
0.7	4.6256	-6.3853	-4.6896	24.9516	0.7	4.3833	-6.6911	-5.2861	25.1273
0.8	3.9610	-5.4342	-3.6596	20.9769	0.8	3.6430	-5.6629	-4.3800	20.9719
0.9	3.3105	-4.5505	-2.6582	17.1402	0.9	2.9205	-4.5895	-3.5981	16.9492
1.0	2.7044	-3.7570	-1.7277	13.5980	1.0	2.2500	-3.5314	-2.9468	13.2281
1 1	2 1640	-3 0637	-0 8958	10 4515	1 1	1 6545	-2 5325	-2 4210	9 9171
1 2	1 7002	-2 4714	-0.1768	7 7489	1 2	1 1460	-1 6206	-2 0084	7 0670
1 3	1 3147	-1 9757	0 4257	5 4942	1 3	0 7257	-0 8097	-1 6951	4 6819
1 4	1 0022	-1 5698	0 9148	3 6615	1 4	0 3877	-0 1043	-1 4670	2 7343
1 5	0 7531	-1 2456	1 2978	2 2072	1 5	0 1214	0 4974	-1 3115	1 1783
1 6	0 5565	-0 9947	1 5846	1 0798	1 6	-0 0853	1 0009	-1 2175	-0 0392
1 7	0 4016	-0 8083	1 7859	0 2271	1 7	-0 2443	1 4141	-1 1747	-0 9723
1 8	0 2786	-0 6774	1 9134	-0 4003	1 8	-0 3663	1 7458	-1 1736	-1 6711
1 9	0.2700	-0 5925	1 9790	-0.8469	1 9	-0 4600	2 0055	-1 2049	-2 1807
2 0	0 0995	-0 5441	1 9944	-1 1518	2 0	-0 5323	2 2031	-1 2597	-2 5403
2.0	0.0331	-0 5227	1 9710	-1 3489	2.0	-0 5881	2 3482	-1 3291	-2 7834
2 2	-0 0222	-0 5193	1 9194	-1 4668	2.1	-0 6311	2 4499	-1 4049	-2 9384
2.2	-0 0687	-0 5255	1 8491	-1 5297	2.2	-0 6639	2 5167	-1 4794	-3 0291
2.3	-0 1077	-0 5339	1 7683	-1 5574	2.0	-0 6884	2 5558	-1 5462	-3 0750
2.5	-0 1404	-0 5386	1 6836	-1 5661	2.5	-0 7060	2.5550	-1 5998	-3 0919
2.6	-0 1676	-0 5350	1 6002	-1 5679	2.5	-0 7177	2 5756	-1 6364	-3 0923
2.0	-0 1902	-0 5201	1 5216	-1 5720	2.0	-0 7245	2.5750	-1 6535	-3 0855
2.8	-0 2088	-0 4923	1 4503	-1 5843	2.8	-0 7271	2 5466	-1 6500	-3 0778
2.0	-0 2240	-0 4511	1 3874	-1 6083	2.0	-0 7261	2 5212	-1 6261	-3 0735
3 0	-0 2364	-0 3975	1 3333	-1 6452	3 0	-0 7222	2 4908	-1 5830	-3 0745
3.0	-0 2466	-0 3328	1 2875	-1 6944	3.1	-0 7158	2 4567	-1 5227	-3 0813
3 2	-0 2548	-0 2593	1 2493	-1 7543	3.2	-0 7073	2 4195	-1 4479	-3 0935
3.2	-0 2614	-0 1792	1 2175	-1 8224	3.2	-0 6971	2 3796	-1 3615	-3 1094
3 4	-0 2666	-0 0951	1 1911	-1 8959	3 4	-0 6855	2 3375	-1 2665	-3 1274
3.5	-0 2707	-0 0093	1 1689	-1 9717	3.5	-0.6726	2.3373	-1 1658	-3 1455
3.6	-0 2738	0.00000	1 1497	-2 0472	3.6	-0 6588	2 2475	-1 0621	-3 1617
3 7	-0 2760	0 1592	1 1328	-2 1198	37	-0 6441	2 1 9 9 9	-0 9577	-3 1746
3.8	-0 2773	0.1392	1 1173	-2 1877	3.8	-0 6288	2 1510	-0.8545	-3 1828
3.0	-0 2779	0.2300	1 1026	-2 2493	3.0	-0 6129	2.1010	-0 7542	-3 1854
4 0	-0 2777	0.3131	1 0884	-2 3035	4 0	-0 5965	2 0501	-0 6579	-3 1817
4.0	-0 2769	0.3020	1 0743	-2 3498	4 1	-0 5798	1 9985	-0 5665	-3 1715
4 2	-0 2754	0.5015	1 0602	-2 3879	4 2	-0 5629	1 9467	-0.4806	-3 1548
4 3	-0 2734	0 5517	1 0460	-2 4178	4 3	-0 5459	1 8947	-0 4005	-3 1318
4 4	-0 2708	0 5957	1 0316	-2 4397	4 4	-0 5288	1 8430	-0 3263	-3 1030
4 5	-0 2678	0 6338	1 0170	-2 4541	4 5	-0 5117	1 7916	-0 2580	-3 0687
4 6	-0 2643	0 6662	1 0023	-2 4614	4 6	-0 4947	1 7408	-0 1954	-3 0295
4 7	-0 2605	0 6934	0 9875	-2 4624	4 7	-0 4779	1 6907	-0 1383	-2 9862
4 8	-0 2563	0 7157	0 9727	-2 4574	4 8	-0 4614	1 6416	-0 0865	-2 9392
4 9	-0 2519	0 7337	0 9578	-2 4473	4 9	-0 4451	1 5934	-0 0395	-2 8893
5.0	-0 2473	0 7476	0.9370	-2 4326	5 0	-0 4292	1 5464	0.0000	-2 8368
5.0	0.24/5	0.14/0	0.9400	2.7320	5.0	0.4292	1.0404	0.0029	2.0000

Ring C

Top side	;				Bottom	side			
NICS@	isotropic	XX	УУ	ZZ	NICS@	isotropic	XX	УУ	ZZ
0.0	1.9692	-/./305	-8.98/0	22.6252	0.0	1.9516	-9.6280	-/.131/	22.6146
0.1	1.9705	-7.9401	-8.4/68	22.3285	0.1	1.8159	-9.8013	-6.9456	22.1945
0.2	1.8375	-8.0021	-7.8302	21.3447	0.2	1.5543	-9.7817	-6.6372	21.0818
0.3	1.5847	-7.9095	-7.0837	19.7472	0.3	1.1895	-9.5722	-6.2083	19.3489
0.4	1.2373	-7.6622	-6.2756	17.6497	0.4	0.7529	-9.1898	-5.6649	17.1134
0.5	0.8279	-7.2691	-5.4430	15.1957	0.5	0.2811	-8.6637	-5.0205	14.5275
0.6	0.3920	-6.7491	-4.6193	12.5444	0.6	-0.1893	-8.0317	-4.2971	11.7609
0.7	-0.0359	-6.1296	-3.8313	9.8532	0.7	-0.6255	-7.3347	-3.5226	8.9808
0.8	-0.4265	-5.4428	-3.0981	7.2615	0.8	-1.0021	-6.6119	-2.7271	6.3328
0.9	-0.7583	-4.7214	-2.4314	4.8779	0.9	-1.3028	-5.8969	-1.9394	3.9278
1.0	-1.0189	-3.9955	-1.8359	2.7746	1.0	-1.5212	-5.2160	-1.1835	1.8360
1.1	-1.2049	-3.2903	-1.3122	0.9878	1.1	-1.6590	-4.5878	-0.4779	0.0886
1.2	-1.3199	-2.6250	-0.8576	-0.4769	1.2	-1.7246	-4.0236	0.1651	-1.3151
1.3	-1.3727	-2.0133	-0.4686	-1.6362	1.3	-1.7299	-3.5293	0.7382	-2.3986
1.4	-1.3751	-1.4635	-0.1406	-2.5212	1.4	-1.6890	-3.1064	1.2385	-3.1989
1.5	-1.3396	-0.9799	0.1307	-3.1697	1.5	-1.6153	-2.7533	1.6663	-3.7588
1.6	-1.2781	-0.5633	0.3500	-3.6211	1.6	-1.5210	-2.4662	2.0246	-4.1215
1.7	-1.2010	-0.2121	0.5223	-3.9131	1.7	-1.4163	-2.2397	2.3178	-4.3271
1.8	-1.1163	0.0778	0.6525	-4.0792	1.8	-1.3089	-2.0673	2.5516	-4.4109
1.9	-1.0303	0.3113	0.7462	-4.1485	1.9	-1.2041	-1.9418	2.7325	-4.4030
2.0	-0.9472	0.4948	0.8088	-4.1451	2.0	-1.1055	-1.8557	2.8672	-4.3281
2.1	-0.8694	0.6348	0.8458	-4.0889	2.1	-1.0151	-1.8016	2.9624	-4.2062
2.2	-0.7984	0.7380	0.8626	-3.9958	2.2	-0.9337	-1.7720	3.0244	-4.0535
2.3	-0.7346	0.8109	0.8640	-3.8786	2.3	-0.8613	-1.7603	3.0591	-3.8828
2.4	-0.6778	0.8594	0.8543	-3.7472	2.4	-0.7975	-1.7604	3.0718	-3.7039
2.5	-0.6277	0.8888	0.8372	-3.6092	2.5	-0.7415	-1.7668	3.0667	-3.5245
2.6	-0.5836	0.9036	0.8159	-3.4703	2.6	-0.6927	-1.7751	3.0477	-3.3506
2.7	-0.5449	0.9076	0.7926	-3.3347	2.7	-0.6501	-1.7817	3.0178	-3.1864
2.8	-0.5109	0.9037	0.7691	-3.2055	2.8	-0.6130	-1.7837	2.9795	-3.0349
2.9	-0.4811	0.8944	0.7469	-3.0844	2.9	-0.5808	-1.7790	2.9347	-2.8980
3.0	-0.4549	0.8814	0.7267	-2.9728	3.0	-0.5527	-1.7662	2.8849	-2.7770
3.1	-0.4320	0.8662	0.7091	-2.8711	3.1	-0.5283	-1.7444	2.8313	-2.6720
3.2	-0.4118	0.8496	0.6943	-2.7793	3.2	-0.5071	-1.7133	2.7749	-2.5828
3.3	-0.3941	0.8325	0.6823	-2.6972	3.3	-0.4886	-1.6731	2.7162	-2.5087
3.4	-0.3785	0.8154	0.6732	-2.6241	3.4	-0.4723	-1.6242	2.6558	-2.4486
3.5	-0.3648	0.7984	0.6666	-2.5594	3.5	-0.4581	-1.5673	2.5943	-2.4012
3.6	-0.3527	0.7819	0.6623	-2.5023	3.6	-0.4454	-1.5033	2.5319	-2.3648
3.7	-0.3420	0.7660	0.6600	-2.4519	3.7	-0.4341	-1.4332	2.4689	-2.3380
3.8	-0.3324	0.7507	0.6594	-2.4073	3.8	-0.4238	-1.3582	2.4057	-2.3190
3.9	-0.3238	0.7361	0.6602	-2.3676	3.9	-0.4144	-1.2795	2.3424	-2.3062
4.0	-0.3160	0.7221	0.6620	-2.3322	4.0	-0.4057	-1.1980	2.2792	-2.2983
4.1	-0.3090	0.7086	0.6647	-2.3003	4.1	-0.3974	-1.1148	2.2164	-2.2937
4.2	-0.3025	0.6957	0.6679	-2.2711	4.2	-0.3894	-1.0309	2.1540	-2.2914
4.3	-0.2964	0.6834	0.6714	-2.2441	4.3	-0.3817	-0.9472	2.0923	-2.2902
4.4	-0.2908	0.6715	0.6751	-2.2189	4.4	-0.3741	-0.8643	2.0313	-2.2892
4.5	-0.2854	0.6600	0.6787	-2.1948	4.5	-0.3665	-0.7830	1.9713	-2.2878
4.6	-0.2803	0.6488	0.6821	-2.1717	4.6	-0.3589	-0.7037	1.9123	-2.2853
4.7	-0.2753	0.6380	0.6851	-2.1491	4.7	-0.3513	-0.6270	1.8544	-2.2813
4.8	-0.2705	0.6275	0.6878	-2.1267	4.8	-0.3436	-0.5532	1.7977	-2.2755
4.9	-0.2657	0.6173	0.6900	-2.1045	4.9	-0.3359	-0.4824	1.7423	-2.2676
5.0	-0.2611	0.6073	0.6916	-2.0821	5.0	-0.3281	-0.4151	1.6883	-2.2575

Ring D

Top side	9				Bottom	side			
NICS@	isotropi	c xx	yy	ZZ	NICS@	isotropic	XX	yy	ZZ
0.0	9.6416	-10.6739	-9.9549	49.5535	0.0	9.6549	-9.3352	-11.2434	49.5432
0.1	9.6014	-11.1075	-9.3655	49.2771	0.1	9.6150	-9.6089	-10.8079	49.2617
0.2	9.4735	-11.3484	-8.6327	48.4018	0.2	9.4872	-9.7425	-10.1757	48.3797
0.3	9.2392	-11.3739	-7.7542	46.8458	0.3	9.2522	-9.6999	-9.3600	46.8166
0.4	8.8786	-11.1658	-6.7390	44.5405	0.4	8.8898	-9.4462	-8.3894	44.5051
0.5	8.3817	-10.7249	-5.6189	41.4890	0.5	8.3899	-8.9671	-7.3117	41.4486
0.6	7.7565	-10.0775	-4.4466	37.7936	0.6	7.7606	-8.2791	-6.1894	37.7504
0.7	7.0296	-9.2721	-3.2840	33.6449	0.7	7.0290	-7.4267	-5.0871	33.6007
0.8	6.2413	-8.3693	-2.1878	29.2812	0.8	6.2360	-6.4701	-4.0599	29.2379
0.9	5.4371	-7.4296	-1.1993	24.9403	0.9	5.4277	-5.4712	-3.1453	24.8997
1.0	4.6588	-6.5044	-0.3410	20.8218	1.0	4.6464	-4.4833	-2.3625	20.7849
1.1	3.9383	-5.6320	0.3813	17.0657	1.1	3.9242	-3.5458	-1.7152	17.0335
1.2	3.2952	-4.8375	0.9727	13.7503	1.2	3.2806	-2.6842	-1.1970	13.7230
1.3	2.7371	-4.1345	1.4449	10.9009	1.3	2.7232	-1.9126	-0.7965	10.8787
1.4	2.2626	-3.5280	1.8111	8.5047	1.4	2.2502	-1.2362	-0.5004	8.4872
1.5	1.8642	-3.0172	2.0850	6.5248	1.5	1.8539	-0.6548	-0.2952	6.5116
1.6	1.5316	-2.5972	2.2791	4.9128	1.6	1.5236	-0.1643	-0.1682	4.9032
1.7	1.2536	-2.2607	2.4051	3.6165	1.7	1.2481	0.2416	-0.1072	3.6098
1.8	1.0201	-1.9984	2.4737	2.5852	1.8	1.0170	0.5707	-0.1004	2.5807
1.9	0.8224	-1.8000	2.4950	1.7723	1.9	0.8215	0.8316	-0.1364	1.7693
2.0	0.6536	-1.6547	2.4788	1.1366	2.0	0.6546	1.0334	-0.2042	1.1344
2.1	0.5082	-1.5514	2.4340	0.6418	2.1	0.5108	1.1854	-0.2929	0.6400
2.2	0.3823	-1.4793	2.3690	0.2570	2.2	0.3863	1.2963	-0.3924	0.2551
2.3	0.2729	-1.4284	2.2912	-0.0442	2.3	0.2781	1.3744	-0.4938	-0.0464
2.4	0.1777	-1.3900	2.2069	-0.2838	2.4	0.1838	1.4268	-0.5890	-0.2864
2.5	0.0950	-1.3565	2.1212	-0.4/98	2.5	0.101/	1.4597	-0.6/1/	-0.4829
2.6	0.0231	-1.3222	2.0382	-0.6466	2.6	0.0303	1.4/82	-0./3/2	-0.6501
2.1	-0.0391	-1.282/	1.9606	-0.7952	2.7	-0.0317	1.4863	-0.7823	-0./989
2.8	-0.0929	-1.2354	1.8902	-0.9335	2.8	-0.0853	1.4868	-0.8055	-0.93/3
2.9	-0.1393	-1.1/89	1.8270 1.7721	-1.000/	2.9	-0.1317	1.4819	-0.8066	-1.0703
2.0	-0.1792	-1.0394	1 7261	-1 3290	2.0	-0.2050	1.4/30	-0.7491	-1.2010
3.1	-0.2134	-1.0304	1 6057	-1.4572	3.1	-0.2059	1.4011	-0.6930	-1.4503
3.2	-0 2674	-0.8689	1 6509	_1 58/3	3.2	-0.2602	1 /298	-0 6248	_1 5857
3.5	-0 2883	-0 7776	1 6204	-1 7078	3.5	-0.2813	1 4111	-0 5465	-1 7084
3.5	-0 3058	-0 6845	1 5932	-1 8260	3.5	-0 2989	1 3903	-0 4613	-1 8258
3.6	-0.3201	-0 5913	1 5681	-1 9370	3.6	-0 3134	1 3678	-0 3720	-1 9361
37	-0 3316	-0 4997	1 5443	-2 0395	37	-0 3251	1 3435	-0 2811	-2 0379
38	-0 3406	-0 4108	1 5211	-2 1322	3.8	-0 3344	1 3177	-0 1909	-2 1300
3.9	-0.3474	-0.3257	1.4979	-2.2144	3.9	-0.3414	1.2905	-0.1030	-2.2117
4.0	-0.3521	-0.2452	1.4743	-2.2856	4.0	-0.3463	1.2622	-0.0188	-2.2824
4.1	-0.3551	-0.1698	1.4501	-2.3456	4.1	-0.3495	1.2330	0.0607	-2.3421
4.2	-0.3564	-0.0997	1.4251	-2.3947	4.2	-0.3510	1.2030	0.1349	-2.3909
4.3	-0.3563	-0.0350	1.3993	-2.4332	4.3	-0.3511	1.1727	0.2033	-2.4293
4.4	-0.3550	0.0241	1.3727	-2.4618	4.4	-0.3499	1.1421	0.2658	-2.4578
4.5	-0.3525	0.0780	1.3455	-2.4811	4.5	-0.3477	1.1116	0.3224	-2.4771
4.6	-0.3491	0.1268	1.3178	-2.4919	4.6	-0.3445	1.0813	0.3733	-2.4880
4.7	-0.3449	0.1708	1.2896	-2.4951	4.7	-0.3405	1.0513	0.4186	-2.4912
4.8	-0.3400	0.2103	1.2611	-2.4914	4.8	-0.3357	1.0219	0.4586	-2.4877
4.9	-0.3345	0.2455	1.2324	-2.4816	4.9	-0.3305	0.9930	0.4936	-2.4780
5.0	-0.3286	0.2769	1.2038	-2.4666	5.0	-0.3247	0.9649	0.5241	-2.4631

Ring E

Top side	9				Bottom	side			
NTCS@	isotropic	xx	VV	7.7.	NTCS@	isotropic	xx	VV	7.7.
0.0	1.9517	-7.6649	-9.0969	22.6169	0.0	1.9633	-9.6186	-7.1255	22.6339
0.1	1.8169	-7.8105	-8.9354	22.1968	0.1	1.9623	-9.2744	-7.1767	22.3381
0.2	1.5568	-7.8017	-8.6125	21.0845	0.2	1.8268	-8.7707	-7.1030	21.3541
0.3	1.1936	-7.6264	-8.1453	19.3524	0.3	1.5715	-8.1394	-6.9017	19.7556
0.4	0.7587	-7.2819	-7.5599	17.1178	0.4	1.2218	-7.4180	-6.5729	17.6563
0.5	0.2883	-6.7786	-6.8893	14.5329	0.5	0.8104	-6.6457	-6.1230	15.2000
0.6	-0.1809	-6.1405	-6.1695	11.7673	0.6	0.3731	-5.8595	-5.5672	12.5461
0.7	-0.6163	-5.4014	-5.4356	8.9882	0.7	-0.0556	-5.0906	-4.9285	9.8523
0.8	-0.9923	-4.6006	-4.7177	6.3413	0.8	-0.4465	-4.3624	-4.2350	7.2580
0.9	-1.2929	-3.7768	-4.0391	3.9373	0.9	-0.7781	-3.6900	-3.5163	4.8721
1.0	-1.5112	-2.9644	-3.4157	1.8464	1.0	-1.0382	-3.0816	-2.7997	2.7667
1.1	-1.6492	-2.1906	-2.8570	0.0998	1.1	-1.2235	-2.5398	-2.1085	0.9780
1.2	-1.7151	-1.4749	-2.3669	-1.3033	1.2	-1.3376	-2.0640	-1.4605	-0.4884
1.3	-1.7208	-0.8300	-1.9460	-2.3864	1.3	-1.3897	-1.6515	-0.8684	-1.6492
1.4	-1.6803	-0.2622	-1.5920	-3.1865	1.4	-1.3914	-1.2988	-0.3400	-2.5356
1.5	-1.6070	0.2267	-1.3013	-3.7464	1.5	-1.3554	-1.0018	0.1209	-3.1853
1.6	-1.5132	0.6384	-1.0689	-4.1092	1.6	-1.2935	-0.7564	0.5139	-3.6380
1.7	-1.4089	0.9774	-0.8891	-4.3150	1.7	-1.2160	-0.5578	0.8409	-3.9312
1.8	-1.3018	1.2495	-0.7558	-4.3992	1.8	-1.1312	-0.4010	1.1059	-4.0984
1.9	-1.1973	1.4618	-0.6623	-4.3915	1.9	-1.0451	-0.2809	1.3143	-4.1687
2.0	-1.0991	1.6219	-0.6022	-4.3169	2.0	-0.9619	-0.1918	1.4723	-4.1662
2.1	-1.0089	1.7375	-0.5689	-4.1953	2.1	-0.8842	-0.1283	1.5867	-4.1109
2.2	-0.9277	1.8160	-0.5561	-4.0429	2.2	-0.8132	-0.0852	1.6642	-4.0185
2.3	-0.8555	1.8642	-0.5583	-3.8723	2.3	-0.7494	-0.0576	1.7114	-3.9019
2.4	-0.7918	1.8885	-0.5703	-3.6936	2.4	-0.6927	-0.0410	1.7341	-3.7710
2.5	-0.7359	1.8943	-0.5878	-3.5144	2.5	-0.6425	-0.0319	1.7376	-3.6333
2.6	-0.6872	1.8861	-0.6072	-3.3405	2.6	-0.5984	-0.0272	1.7265	-3.4946
2.7	-0.6447	1.8679	-0.6255	-3.1764	2.7	-0.5597	-0.0244	1.7045	-3.3592
2.8	-0.60//	1.8425	-0.6406	-3.0249	2.8	-0.5256	-0.0217	1.6/4/	-3.2299
2.9	-0.5/55	1.8126	-0.6509	-2.8881	2.9	-0.4958	-0.01/8	1.6394	-3.1088
3.0	-0.54/5	1.7799	-0.6552	-2.7671	3.0	-0.4695	-0.0120	1.6004	-2.9970
3.1	-0.5231	1.7458	-0.6529	-2.0022	3.1	-0.4464	-0.0037	1.5593	-2.8949
3.2	-0.5019	1.7113	-0.6439	-2.5/31	3.2	-0.4262	0.0072	1.5170	-2.8027
3.3	-0.4634	1 6/20	-0.6261	-2.4992	3.3	-0.4003	0.0200	1 /210	-2.6466
2.4	-0.4072	1 6115	-0.5782	-2.4393	2.4	-0.3920	0.0570	1 2000	-2.5913
3.5	-0.4329	1 5803	-0.5782	-2.3920	3.5	-0.3767	0.0555	1 3/90	-2.5015
3.0	-0 1289	1 5503	-0 5078	-2.3333	3.0	-0.3554	0.0730	1 3090	-2 4725
3.0	-0 4187	1 5213	-0.4668	-2 3105	3.7	-0.3456	0.0974	1 2701	-2 4273
3.0	-0 4092	1 4933	-0 4230	-2 2980	3.0	-0.3368	0.1204	1 2325	-2 3870
4 0	-0 4005	1 4662	-0 3772	-2 2904	4 0	-0.3288	0.1442	1 1962	-2 3509
4.0 4 1	-0 3922	1 4398	-0 3301	-2 2861	4 1	-0.3215	0.1927	1 1612	-2 3183
4 2	-0 3842	1 4139	-0 2824	-2 2841	4 2	-0 3147	0 2168	1 1275	-2 2885
4.3	-0.3764	1.3885	-0.2346	-2.2832	4.3	-0.3085	0.2405	1.0950	-2.2609
4.4	-0.3688	1.3635	-0.1873	-2.2825	4.4	-0.3025	0.2635	1.0639	-2.2350
4.5	-0.3612	1.3388	-0.1410	-2.2814	4.5	-0.2969	0.2857	1.0339	-2.2104
4.6	-0.3536	1.3143	-0.0959	-2.2792	4.6	-0.2916	0.3069	1.0051	-2.1866
4.7	-0.3460	1.2900	-0.0524	-2.2754	4.7	-0.2863	0.3270	0.9774	-2.1634
4.8	-0.3383	1.2658	-0.0108	-2.2698	4.8	-0.2813	0.3458	0.9509	-2.1406
4.9	-0.3305	1.2418	0.0288	-2.2621	4.9	-0.2763	0.3635	0.9254	-2.1178
5.0	-0.3227	1.2180	0.0663	-2.2522	5.0	-0.2714	0.3798	0.9009	-2.0949

Ring F

Top side	;				Bottom	side			
NTCCO					NTCCO				
NICSU 0 0	7 2882	_10 /238	_9 /137	22 41 7020	NICS@	7 3104	-8 1662	_11 3225	22 11 7100
0.0	7 2323	-10 5717	-9 1859	41.7020	0.0	7.2481	-8 2720	-11 2387	41.7199
0.1	7 0532	-10 5884	-8 7183	40 4664	0.1	7.2401	-7 8809	-10 9920	40 0855
0.2	6 7451	-10 4261	-8 0440	38 7055	0.2	6 7790	-7 2973	-10 5743	38 2087
0.3	6 3075	-10 0433	-7 2115	36 1773	0.0	6 3744	-6 5367	-9 9845	35 6443
0.5	5.7502	-9.4266	-6.2807	32,9580	0.5	5.8658	-5.6306	-9.2397	32.4677
0.6	5.0961	-8.6001	-5.3155	29.2040	0.6	5.2723	-4.6265	-8.3785	28.8218
0.7	4.3794	-7.6184	-4.3739	25.1305	0.7	4.6229	-3.5791	-7.4541	24.9019
0.8	3.6406	-6.5520	-3.4999	20.9736	0.8	3.9531	-2.5411	-6.5230	20.9234
0.9	2.9199	-5.4700	-2.7202	16.9500	0.9	3.2986	-1.5549	-5.6347	17.0853
1.0	2.2511	-4.4295	-2.0456	13.2285	1.0	2.6899	-0.6487	-4.8253	13.5438
1.1	1.6573	-3.4706	-1.4752	9.9176	1.1	2.1483	0.1621	-4.1170	10.3998
1.2	1.1500	-2.6167	-1.0011	7.0678	1.2	1.6845	0.8726	-3.5198	7.7009
1.3	0.7307	-1.8783	-0.6130	4.6834	1.3	1.2999	1.4840	-3.0350	5.4508
1.4	0.3933	-1.2561	-0.3002	2.7364	1.4	0.9889	2.0014	-2.6579	3.6231
1.5	0.1275	-0.7453	-0.0533	1.1811	1.5	0.7417	2.4318	-2.3805	2.1738
1.6	-0.0790	-0.3373	0.1361	-0.0359	1.6	0.5471	2.7825	-2.1925	1.0513
1.7	-0.2381	-0.0214	0.2757	-0.9685	1.7	0.3940	3.0614	-2.0824	0.2031
1.8	-0.3602	0.2139	0.3723	-1.6670	1.8	0.2729	3.2766	-2.0378	-0.4202
1.9	-0.4542	0.3808	0.4328	-2.1763	1.9	0.1757	3.4362	-2.0458	-0.8632
2.0	-0.5268	0.4916	0.4638	-2.5358	2.0	0.0967	3.5483	-2.0932	-1.1651
2.1	-0.5829	0.5582	0.4719	-2.7789	2.1	0.0314	3.6208	-2.1670	-1.3596
2.2	-0.6263	0.5918	0.4632	-2.9339	2.2	-0.0231	3.6611	-2.2551	-1.4754
2.3	-0.6595	0.6026	0.4436	-3.0247	2.3	-0.0689	3.6760	-2.3463	-1.5365
2.4	-0.6843	0.5997	0.4181	-3.0707	2.4	-0.1075	3.6714	-2.4310	-1.5628
2.5	-0.7022	0.5904	0.3910	-3.0879	2.5	-0.1398	3.6521	-2.5014	-1.5703
2.6	-0.7142	0.5805	0.3654	-3.0886	2.6	-0.1669	3.6222	-2.5516	-1.5712
2.7	-0.7213	0.5744	0.3438	-3.0820	2.7	-0.1893	3.5845	-2.5779	-1.5745
2.8	-0.7241	0.5748	0.3276	-3.0747	2.8	-0.2078	3.5411	-2.5784	-1.5862
2.9	-0.7234	0.5831	0.3174	-3.0706	2.9	-0.2230	3.4935	-2.5529	-1.6096
3.0	-0.7197	0.5998	0.3132	-3.0719	3.0	-0.2354	3.4425	-2.5027	-1.6460
3.1	-0.7134	0.6243	0.3145	-3.0791	3.1	-0.2455	3.3885	-2.4302	-1.6949
3.2	-0.7051	0.6556	0.3206	-3.0915	3.2	-0.2537	3.3319	-2.3384	-1.7545
3.3	-0.6951	0.6922	0.3303	-3.1078	3.3	-0.2602	3.2725	-2.2309	-1.8223
3.4	-0.6836	0.7326	0.3427	-3.1260	3.4	-0.2654	3.2106	-2.1113	-1.8955
3.5	-0.6708	0.7750	0.3568	-3.1443	3.5	-0.2694	3.1462	-1.9833	-1.9712
3.6	-0.6571	0.8179	0.3715	-3.1608	3.6	-0.2724	3.0794	-1.8502	-2.0465
3.7	-0.6425	0.8601	0.3862	-3.1738	3.7	-0.2745	3.0103	-1.7149	-2.1190
3.8	-0.6272	0.9003	0.4001	-3.1821	3.8	-0.2758	2.9393	-1.5798	-2.1868
3.9	-0.6114	0.9377	0.4130	-3.1848	3.9	-0.2762	2.8667	-1.4471	-2.2483
4.0	-0.5951	0.9/16	0.4244	-3.1812	4.0	-0.2760	2.7928	-1.3182	-2.3025
4.1	-0.5/84	1.0016	0.4343	-3.1/11	4.1	-0.2750	2./181	-1.1944	-2.3488
4.2	-0.5615	1.02/4	0.4425	-3.1345	4.2	-0.2/35	2.6429	-1.0/65	-2.3869
4.3	-0.3445	1.0490	0.4490	-3.1313	4.3	-0.2/14	2.36//	-0.9650	-2.410/
4.4	-0.52/4	1.0000 1.0700	0.4541	-3.1U20	4.4	-0.268/	2.4928	-0.8602	-2.438/
4.0	-0.31U3	1 0000	0.45/6	-3.0004	4.0	-0.2636	∠.4105 0 0/⊑1	-0./622	-2.4031 -2.4604
4.0	-0.4933	1 0050	0.4000	-3.0292	4.0	-0.2021	2.3431	-0.0/09	-2.4004
4./ / 0	-0.4/03	1 0070	0.4011	-2 0200	1 0	-0.2502	2.2129	-0.5001	-2 /565
д Q	-0 1136	1 0970	0.4013	-2 8800	л.0 Д Q	-0 2/06	2.2021 2.1220	-0 /352	-2 4463
50	-0 4277	1 09/3	0.4007	-2 8366	50	-0 24490	2.1320	-0 368/	-2 4316
5.0	0.42//	1.0942	0.4090	2.0300	5.0	0.2449	2.0002	0.0004	2.1010

Ring G

Top side	;				Bottom s	side			
NTCOO	icotropia				NTCCO	icotropia	1717	5757	
0 0	_4 3184	-7 0136	_7 0594	1 1177	0 0	-4 3364	-6 6192	_7 4929	1 1027
0.0	-4 4792	-7 0843	-6 9043	0 5511	0.0	-4 3643	-6 5992	-7 2823	0 7886
0.1	_/ 8119	-7 0004	-6 5977	-0.8377	0.1	-4 5690	-6 4267	-6 9217	-0 3585
0.2	-5 2709	-6 7689	-6 1590	-2 8849	0.2	-4 9098	-6 1093	-6 4347	-2 1853
0.3	-5 7929	-6 4054	-5 6157	-5 3575	0.3	-5 3278	-5 6628	-5 8528	-4 4676
0.5	-6 3100	-5 9336	-4 9998	-7 9965	0.5	-5 7582	-5 1108	-5 2115	-6 9522
0.6	-6 7615	-5 3822	-4 3440	-10 5582	0.6	-6 1420	-4 4820	-4 5458	-9 3982
0 7	-7 1020	-4 7820	-3 6774	-12 8465	0.7	-6 4339	-3 8072	-3 8866	-11 6080
0.8	-7.3049	-4.1621	-3.0237	-14.7288	0.8	-6.6061	-3.1161	-3.2578	-13.4446
0.9	-7.3622	-3.5477	-2.4000	-16.1389	0.9	-6.6482	-2.4344	-2.6758	-14.8345
1.0	-7.2811	-2.9584	-1.8176	-17.0674	1.0	-6.5644	-1.7826	-2.1502	-15.7603
1.1	-7.0796	-2.4085	-1.2829	-17.5473	1.1	-6.3693	-1.1757	-1.6855	-16.2468
1.2	-6.7815	-1.9075	-0.7993	-17.6378	1.2	-6.0840	-0.6234	-1.2826	-16.3459
1.3	-6.4130	-1.4608	-0.3678	-17.4103	1.3	-5.7317	-0.1310	-0.9406	-16.1235
1.4	-5.9990	-1.0709	0.0116	-16.9379	1.4	-5.3354	0.2994	-0.6573	-15.6485
1.5	-5.5618	-0.7378	0.3403	-16.2879	1.5	-4.9157	0.6687	-0.4298	-14.9861
1.6	-5.1195	-0.4600	0.6202	-15.5188	1.6	-4.4898	0.9797	-0.2549	-14.1942
1.7	-4.6864	-0.2343	0.8538	-14.6787	1.7	-4.0709	1.2368	-0.1284	-13.3211
1.8	-4.2726	-0.0568	1.0444	-13.8054	1.8	-3.6689	1.4455	-0.0461	-12.4060
1.9	-3.8848	0.0776	1.1956	-12.9276	1.9	-3.2901	1.6122	-0.0031	-11.4793
2.0	-3.5269	0.1741	1.3116	-12.0665	2.0	-2.9383	1.7434	0.0058	-10.5642
2.1	-3.2005	0.2386	1.3966	-11.2366	2.1	-2.6152	1.8460	-0.0142	-9.6774
2.2	-2.9054	0.2767	1.4549	-10.4478	2.2	-2.3208	1.9263	-0.0580	-8.8307
2.3	-2.6404	0.2940	1.4908	-9.7061	2.3	-2.0542	1.9900	-0.1207	-8.0318
2.4	-2.4037	0.2956	1.5080	-9.0146	2.4	-1.8137	2.0421	-0.1979	-7.2852
2.5	-2.1927	0.2860	1.5103	-8.3744	2.5	-1.5974	2.0866	-0.2857	-6.5930
2.6	-2.0051	0.2692	1.5007	-7.7851	2.6	-1.4032	2.1265	-0.3808	-5.9553
2.7	-1.8383	0.2484	1.4818	-7.2452	2.7	-1.2291	2.1639	-0.4803	-5.3709
2.8	-1.6900	0.2264	1.4560	-6.7525	2.8	-1.0733	2.1999	-0.5820	-4.8377
2.9	-1.5580	0.2051	1.4250	-6.3043	2.9	-0.9339	2.2351	-0.6838	-4.3529
3.0	-1.4404	0.1861	1.3904	-5.8977	3.0	-0.8093	2.2694	-0.7840	-3.9134
3.1	-1.3353	0.1703	1.3533	-5.5296	3.1	-0.6983	2.3024	-0.8809	-3.5164
3.2	-1.2413	0.1583	1.3146	-5.1968	3.2	-0.5995	2.3335	-0.9729	-3.1590
3.3	-1.1569	0.1505	1.2/51	-4.8964	3.3	-0.511/	2.3619	-1.0582	-2.8388
3.4	-1.0811	0.1468	1.2352	-4.6252	3.4	-0.4340	2.3869	-1.1350	-2.5538
3.5	-1.0126	0.14/1	1.1955	-4.3804	3.5	-0.3653	2.40/8	-1.2013	-2.3025
3.6	-0.9507	0.1511	1.1561	-4.1592	3.6	-0.3049	2.4242	-1.2552	-2.0837
3.1	-0.8945	0.1584	1.11/3	-3.9592	3.1	-0.2518	2.4337	-1.2948	-1.8964
2.0	-0.0433	0.1000	1 0423	-3 6133	3.0	-0.2055	2.4421	-1.3100	-1.6125
3.9	-0.7900	0.1012	1.0423	-3 4634	3.9	-0.1831	2.4431	-1.3260	-1.5126
4.0	-0.7558	0.1958	0 9712	-3.4034	4.0	-0.1303	2.4300	-1.3101	-1.0130
4.1	-0 6782	0.2110	0.9712	-3 2007	4.1	-0 0749	2.4292	-1 2464	-1 3928
4.3	-0.6446	0.2468	0.9045	-3.0850	4.3	-0.0536	2.3946	-1.1894	-1.3660
4 4	-0 6134	0 2649	0 8729	-2 9781	4 4	-0 0361	2 3698	-1 1203	-1 3577
4.5	-0.5844	0.2831	0.8425	-2.8788	4.5	-0.0219	2.3403	-1.0417	-1.3644
4.6	-0.5574	0.3010	0.8132	-2.7863	4.6	-0.0109	2.3064	-0.9563	-1.3828
4.7	-0.5320	0.3186	0.7851	-2.6997	4.7	-0.0027	2.2684	-0.8669	-1.4097
4.8	-0.5082	0.3355	0.7581	-2.6183	4.8	0.0029	2.2267	-0.7759	-1.4420
4.9	-0.4859	0.3516	0.7322	-2.5415	4.9	0.0064	2.1817	-0.6855	-1.4770
5.0	-0.4648	0.3668	0.7075	-2.4689	5.0	0.0080	2.1340	-0.5976	-1.5125

Ring A

Top side	;				Bottom	side			
NTCSA	isotropic	vv	1717	77	NTCSA	isotropic	vv	1717	77
0 0	-4 3805	-7 7650	-6 7445	1 3680	0 0	-4 3606	-6 3852	-8 0828	1 3861
0.0	-4 4052	-7 7509	-6 5349	1 0702	0.0	-4 5212	-6 4618	-7 9167	0 8147
0.2	-4 6021	-7 5838	-6 1738	-0 0488	0.1	-4 8496	-6 3842	-7 5989	-0 5655
0.2	-4 9317	-7 2695	-5 6837	-1 8418	0.2	-5 3015	-6 1592	-7 1493	-2 5958
0.3	-5 3368	-6 8225	-5 0954	-4 0926	0.3	-5 8158	-5 8015	-6 5957	-5 0503
0.5	-5 7548	-6 2653	-4 4439	-6 5552	0.5	-6 3269	-5 3336	-5 9703	-7 6769
0.5	-6 1283	-5 6264	-3 7644	-8 9940	0.5	-6 7756	-4 7832	-5 3058	-10 2376
0.0	-6 4133	-4 9374	-3 0885	-11 2140	0.0	-7 1172	-4 1803	-4 6319	-12 5395
0.7	-6 5826	-4 2287	-2 4410	-13 0779	0.7	-7 3255	-3 5534	-3 9723	-14 4507
0.0	-6 6258	-3 5276	-1 8396	-14 5100	0.0	-7 3917	-2 9275	-3 3440	-15 9036
1 0	-6 5466	-2 8556	-1 2948	-15 4894	1 0	-7 3222	-2 3224	-2 7578	-16 8863
1 1	-6 3592	-2 2287	-0 8118	-16 0370	1 1	-7 1339	-1 7526	-2 2199	-17 4291
1 2	-6.0836	-1 6573	-0 3923	-16 2012	1 2	-6 8496	-1 2279	-1 7327	-17 5881
1 3	-5 7424	-1 1470	-0 0356	-16 0445	1 3	-6 4946	-0 7543	-1 2972	-17 4323
1.4	-5.3578	-0.7000	0.2600	-15.6336	1.4	-6.0932	-0.3346	-0.9125	-17.0324
1.5	-4.9499	-0.3154	0.4973	-15.0317	1.5	-5.6671	0.0303	-0.5773	-16.4542
1.6	-4.5353	0.0098	0.6795	-14.2952	1.6	-5.2344	0.3413	-0.2895	-15.7549
1.7	-4.1271	0.2802	0.8104	-13,4719	1.7	-4.8091	0.6009	-0.0467	-14.9815
1.8	-3.7347	0.5017	0.8943	-12.6001	1.8	-4.4015	0.8122	0.1544	-14.1709
1.9	-3.3645	0.6808	0.9361	-11.7103	1.9	-4.0183	0.9793	0.3171	-13.3513
2.0	-3.0200	0.8245	0.9407	-10.8254	2.0	-3.6636	1.1069	0.4453	-12.5430
2.1	-2.7030	0.9398	0.9134	-9.9624	2.1	-3.3390	1.1999	0.5433	-11.7603
2.2	-2.4136	1.0332	0.8593	-9.1332	2.2	-3.0447	1.2633	0.6150	-11.0126
2.3	-2.1507	1.1107	0.7832	-8.3459	2.3	-2.7796	1.3020	0.6647	-10.3055
2.4	-1.9128	1.1773	0.6896	-7.6052	2.4	-2.5418	1.3204	0.6960	-9.6419
2.5	-1.6981	1.2373	0.5823	-6.9138	2.5	-2.3291	1.3226	0.7126	-9.0226
2.6	-1.5046	1.2935	0.4647	-6.2720	2.6	-2.1391	1.3123	0.7175	-8.4473
2.7	-1.3304	1.3481	0.3397	-5.6790	2.7	-1.9694	1.2926	0.7134	-7.9142
2.8	-1.1737	1.4023	0.2096	-5.1331	2.8	-1.8176	1.2659	0.7026	-7.4215
2.9	-1.0330	1.4563	0.0766	-4.6317	2.9	-1.6817	1.2344	0.6870	-6.9666
3.0	-0.9066	1.5100	-0.0576	-4.1723	3.0	-1.5598	1.1996	0.6680	-6.5469
3.1	-0.7934	1.5628	-0.1909	-3.7520	3.1	-1.4501	1.1629	0.6468	-6.1599
3.2	-0.6921	1.6139	-0.3216	-3.3685	3.2	-1.3511	1.1252	0.6243	-5.8029
3.3	-0.6017	1.6622	-0.4475	-3.0199	3.3	-1.2616	1.0872	0.6013	-5.4734
3.4	-0.5212	1.7071	-0.5662	-2.7046	3.4	-1.1805	1.0494	0.5782	-5.1691
3.5	-0.4497	1.7476	-0.6750	-2.4217	3.5	-1.1067	1.0123	0.5554	-4.8878
3.6	-0.3863	1.7833	-0.7714	-2.1709	3.6	-1.0394	0.9761	0.5332	-4.6275
3.7	-0.3303	1.8137	-0.8526	-1.9519	3.7	-0.9779	0.9410	0.5117	-4.3864
3.8	-0.2808	1.8385	-0.9163	-1.7646	3.8	-0.9215	0.9070	0.4910	-4.1627
3.9	-0.2373	1.8576	-0.9606	-1.6089	3.9	-0.8698	0.8743	0.4713	-3.9549
4.0	-0.1991	1.8711	-0.9845	-1.4840	4.0	-0.8221	0.8428	0.4525	-3.7616
4.1	-0.1658	1.8789	-0.9876	-1.3886	4.1	-0.7781	0.8126	0.4347	-3.5816
4.2	-0.1369	1.8811	-0.9709	-1.3208	4.2	-0.7374	0.7837	0.4178	-3.4137
4.3	-0.1120	1.8778	-0.9360	-1.2779	4.3	-0.6997	0.7560	0.4018	-3.2569
4.4	-0.0910	1.8690	-0.8854	-1.256/	4.4	-0.664/	0.7294	0.3866	-3.1102
4.5	-0.0/36	1.8548	-0.8222	-1.2533	4.5	-0.6322	0./040	0.3/23	-2.9/29
4.0	-0.0594	1.0356	-0./49/	-1.2640	4.6	-0.6019	0.6/9/	0.3588	-2.8441
4./	-0.0483	1.8114	-0.6/13	-1.2849	4./	-0.5/36	0.6565	0.3460	-2.1233
4.8	-0.0399	1 7400	-0.5900	-1.3125 1 2425	4.8	-0.54/1	0.6343	0.3339	-2.0090
4.9	-0.0341	1.7499	-0.508/	-1.3435	4.9	-0.5224	0.6130	0.3225	-2.302/
5.0	-0.0305	1./134	-0.4295	-1.3/53	5.0	-0.4992	0.3926	0.3116	-2.4019

Ring B

Top side	9				Bottom	side			
NICS@	isotropi	c xx	VV	ΖZ	NICS@	isotropio	c xx	VV	ZZ
0.0	7.0641	-11.0725	-11.4745	43.7392	0.0	7.0636	-10.9201	-11.6039	43.7148
0.1	6.9956	-11.1760	-11.0866	43.2494	0.1	7.0230	-11.2493	-11.1598	43.4783
0.2	6.8190	-10.9556	-10.6238	42.0365	0.2	6.8644	-11.4645	-10.4189	42.4766
0.3	6.5316	-10.4391	-10.0641	40.0980	0.3	6.5776	-11.5061	-9.4362	40.6751
0.4	6.1311	-9.6797	-9.3802	37.4533	0.4	6.1568	-11.3201	-8.2869	38.0774
0.5	5.6225	-8.7485	-8.5610	34.1770	0.5	5.6073	-10.8818	-7.0564	34.7602
0.6	5.0220	-7.7225	-7.6232	30.4117	0.6	4.9493	-10.2061	-5.8275	30.8813
0.7	4.3579	-6.6728	-6.6070	26.3535	0.7	4.2166	-9.3415	-4.6681	26.6595
0.8	3.6664	-5.6555	-5.5643	22.2189	0.8	3.4520	-8.3547	-3.6238	22.3345
0.9	2.9853	-4.7080	-4.5453	18.2094	0.9	2.6992	-7.3137	-2.7162	18.1274
1.0	2.3481	-3.8501	-3.5896	14.4839	1.0	1.9956	-6.2765	-1.9475	14.2108
1.1	1.7786	-3.0881	-2.7226	11.1466	1.1	1.3682	-5.2851	-1.3071	10.6968
1.2	1.2901	-2.4199	-1.9576	8.2479	1.2	0.8313	-4.3665	-0.7787	7.6389
1.3	0.8856	-1.8393	-1.2982	5.7944	1.3	0.3880	-3.5352	-0.3446	5.0437
1.4	0.5606	-1.3387	-0.7419	3.7623	1.4	0.0332	-2.7968	0.0107	2.8858
1.5	0.3057	-0.9104	-0.2827	2.1101	1.5	-0.2433	-2.1511	0.2999	1.1213
1.6	0.1095	-0.5472	0.0873	0.7885	1.6	-0.4540	-1.5944	0.5333	-0.3008
1.7	-0.0393	-0.2425	0.3769	-0.2525	1.7	-0.6115	-1.1211	0.7188	-1.4321
1.8	-0.1513	0.0102	0.5955	-1.0596	1.8	-0.7272	-0.7242	0.8629	-2.3203
1.9	-0.2351	0.2169	0.7526	-1.6747	1.9	-0.8108	-0.3961	0.9711	-3.0073
2.0	-0.2976	0.3836	0.8575	-2.1338	2.0	-0.8699	-0.1288	1.0484	-3.5293
2.1	-0.3439	0.5164	0.9196	-2.4675	2.1	-0.9104	0.0859	1.0996	-3.9166
2.2	-0.3778	0.6207	0.9473	-2.7014	2.2	-0.9365	0.2557	1.1290	-4.1942
2.3	-0.4021	0.7018	0.9486	-2.8567	2.3	-0.9516	0.3881	1.1406	-4.3834
2.4	-0.4188	0.7643	0.9302	-2.9510	2.4	-0.9578	0.4899	1.1381	-4.5013
2.5	-0.4295	0.8122	0.8980	-2.9986	2.5	-0.9569	0.5669	1.1248	-4.5623
2.6	-0.4352	0.8488	0.8568	-3.0111	2.6	-0.9502	0.6243	1.1033	-4.5783
2.7	-0.4370	0.8768	0.8101	-2.9978	2.7	-0.9389	0.6662	1.0761	-4.5589
2.8	-0.4356	0.8983	0.7608	-2.9659	2.8	-0.9238	0.6960	1.0449	-4.5122
2.9	-0.4319	0.9146	0.7109	-2.9211	2.9	-0.9056	0.7164	1.0112	-4.4445
3.0	-0.4263	0.9270	0.6618	-2.8678	3.0	-0.8851	0.7296	0.9762	-4.3612
3.1	-0.4194	0.9363	0.6145	-2.8091	3.1	-0.8628	0.7370	0.9407	-4.2662
3.2	-0.4117	0.9428	0.5696	-2.7475	3.2	-0.8393	0.7401	0.9052	-4.1631
3.3	-0.4034	0.9471	0.5273	-2.6848	3.3	-0.8148	0.7396	0.8704	-4.0544
3.4	-0.3949	0.9493	0.4880	-2.6220	3.4	-0.7898	0.7363	0.8364	-3.9422
3.5	-0.3863	0.9497	0.4515	-2.5601	3.5	-0.7646	0.7308	0.8035	-3.8281
3.6	-0.3777	0.9484	0.4181	-2.4996	3.6	-0.7394	0.7235	0.7718	-3.7135
3.7	-0.3693	0.9454	0.3875	-2.4409	3.7	-0.7144	0.7148	0.7414	-3.5994
3.8	-0.3612	0.9410	0.3597	-2.3841	3.8	-0.6897	0.7049	0.7123	-3.4864
3.9	-0.3533	0.9351	0.3346	-2.3295	3.9	-0.6656	0.6941	0.6845	-3.3752
4.0	-0.3457	0.9280	0.3121	-2.2770	4.0	-0.6419	0.6825	0.6579	-3.2662
4.1	-0.3383	0.9196	0.2921	-2.2266	4.1	-0.6189	0.6703	0.6326	-3.1597
4.2	-0.3313	0.9101	0.2744	-2.1782	4.2	-0.5966	0.6577	0.6085	-3.0560
4.3	-0.3244	0.8996	0.2589	-2.1319	4.3	-0.5750	0.6447	0.5856	-2.9551
4.4	-0.3179	0.8882	0.2455	-2.0873	4.4	-0.5541	0.6314	0.5637	-2.8573
4.5	-0.3115	0.8760	0.2339	-2.0445	4.5	-0.5339	0.6180	0.5429	-2.7626
4.6	-0.3054	0.8631	0.2241	-2.0034	4.6	-0.5144	0.6045	0.5231	-2.6710
4.7	-0.2994	0.8495	0.2159	-1.9637	4.7	-0.4957	0.5910	0.5043	-2.5824
4.8	-0.2936	0.8353	0.2091	-1.9253	4.8	-0.4777	0.5775	0.4864	-2.4969
4.9	-0.2880	0.8206	0.2036	-1.8882	4.9	-0.4604	0.5640	0.4693	-2.4144
5.0	-0.2825	0.8056	0.1992	-1.8521	5.0	-0.4438	0.5506	0.4530	-2.3349

Ring C

Top side	9				Bottom	side			
NTCSQ	isotropic	xx	VV	7.7.	NTCS@	isotropic	xx	VV	7.7
0.0	2.1323	-9.0627	-8,4551	23.9148	0.0	2,1209	-8.0631	-9.4922	23,9181
0.1	2.1256	-9.2748	-7.9540	23.6055	0.1	2.0006	-8.2167	-9.3236	23.5421
0.2	1.9919	-9.3429	-7.3186	22.6374	0.2	1.7598	-8.1798	-9.0381	22.4972
0.3	1.7449	-9.2567	-6.5831	21.0745	0.3	1.4176	-7.9549	-8.6342	20.8420
0.4	1.4072	-9.0119	-5.7831	19.0167	0.4	1.0018	-7.5580	-8.1140	18.6774
0.5	1.0084	-8.6142	-4.9534	16.5928	0.5	0.5449	-7.0169	-7.4879	16.1394
0.6	0.5811	-8.0807	-4.1258	13.9498	0.6	0.0808	-6.3679	-6.7756	13.3860
0.7	0.1573	-7.4386	-3.3269	11.2375	0.7	-0.3590	-5.6508	-6.0043	10.5782
0.8	-0.2349	-6.7212	-2.5764	8.5929	0.8	-0.7491	-4.9039	-5.2049	7.8615
0.9	-0.5747	-5.9635	-1.8872	6.1265	0.9	-1.0723	-4.1604	-4.4073	5.3507
1.0	-0.8492	-5.1976	-1.2657	3.9155	1.0	-1.3202	-3.4463	-3.6370	3.1228
1.1	-1.0539	-4.4506	-0.7137	2.0024	1.1	-1.4922	-2.7797	-2.9137	1.2168
1.2	-1.1913	-3.7434	-0.2301	0.3996	1.2	-1.5944	-2.1721	-2.2509	-0.3603
1.3	-1.2688	-3.0906	0.1879	-0.9036	1.3	-1.6371	-1.6297	-1.6564	-1.6252
1.4	-1.2968	-2.5013	0.5437	-1.9328	1.4	-1.6325	-1.1544	-1.1337	-2.6095
1.5	-1.2869	-1.9800	0.8411	-2.7218	1.5	-1.5931	-0.7453	-0.6826	-3.3514
1.6	-1.2501	-1.5278	1.0842	-3.3069	1.6	-1.5303	-0.3993	-0.3008	-3.8909
1.7	-1.1962	-1.1427	1.2773	-3.7231	1.7	-1.4539	-0.1123	0.0163	-4.2656
1.8	-1.1328	-0.8211	1.4252	-4.0026	1.8	-1.3712	0.1212	0.2741	-4.5090
1.9	-1.0660	-0.5575	1.5328	-4.1733	1.9	-1.2879	0.3071	0.4790	-4.6497
2.0	-0.9998	-0.3458	1.6053	-4.2590	2.0	-1.2075	0.4514	0.6376	-4.7114
2.1	-0.9368	-0.1791	1.6481	-4.2793	2.1	-1.1322	0.5604	0.7566	-4.7135
2.2	-0.8782	-0.0507	1.6662	-4.2502	2.2	-1.0630	0.6400	0.8425	-4.6714
2.3	-0.8248	0.0459	1.6645	-4.1849	2.3	-1.0002	0.6955	0.9012	-4.5974
2.4	-0.7765	0.1169	1.6473	-4.0937	2.4	-0.9437	0.7319	0.9380	-4.5009
2.5	-0.7331	0.1674	1.6183	-3.9849	2.5	-0.8928	0.7533	0.9577	-4.3894
2.6	-0.6940	0.2022	1.5808	-3.8650	2.6	-0.8470	0.7633	0.9642	-4.2686
2.7	-0.6589	0.2250	1.5373	-3.7389	2.7	-0.8057	0.7648	0.9606	-4.1426
2.8	-0.6272	0.2389	1.4900	-3.6104	2.8	-0.7683	0.7600	0.9498	-4.0147
2.9	-0.5985	0.2464	1.4404	-3.4823	2.9	-0.7343	0.7507	0.9336	-3.8871
3.0	-0.5725	0.2493	1.3899	-3.3566	3.0	-0.7031	0.7383	0.9137	-3.7614
3.1	-0.5488	0.2491	1.3394	-3.2348	3.1	-0.6744	0.7238	0.8915	-3.6386
3.2	-0.5271	0.2469	1.2894	-3.1177	3.2	-0.6479	0.7080	0.8677	-3.5195
3.3	-0.5073	0.2433	1.2405	-3.0058	3.3	-0.6233	0.6913	0.8431	-3.4045
3.4	-0.4891	0.2390	1.1931	-2.8995	3.4	-0.6004	0.6743	0.8183	-3.2937
3.5	-0.4724	0.2343	1.1472	-2.7987	3.5	-0.5789	0.6571	0.7934	-3.1873
3.6	-0.4569	0.2296	1.1030	-2.7033	3.6	-0.5587	0.6399	0.7690	-3.0850
3.7	-0.4426	0.2250	1.0607	-2.6133	3.7	-0.5397	0.6230	0.7450	-2.9870
3.8	-0.4292	0.2206	1.0201	-2.5284	3.8	-0.5216	0.6063	0.7216	-2.8929
3.9	-0.4168	0.2164	0.9813	-2.4481	3.9	-0.5045	0.5900	0.6989	-2.8025
4.0	-0.4052	0.2126	0.9443	-2.3724	4.0	-0.4883	0.5741	0.6770	-2.7158
4.1	-0.3942	0.2091	0.9090	-2.3007	4.1	-0.4727	0.5585	0.6559	-2.6326
4.2	-0.3839	0.2059	0.8753	-2.2330	4.2	-0.4579	0.5434	0.6355	-2.5525
4.3	-0.3742	0.2030	0.8432	-2.1687	4.3	-0.4437	0.5287	0.6158	-2.4755
4.4	-0.3649	0.2004	0.8127	-2.1077	4.4	-0.4300	0.5144	0.5969	-2.4014
4.5	-0.3561	0.1980	0.7835	-2.0497	4.5	-0.4169	0.5006	0.5788	-2.3301
4.6	-0.3476	0.1958	0.7558	-1.9944	4.6	-0.4043	0.4871	0.5613	-2.2614
4.7	-0.3395	0.1938	0.7293	-1.9417	4.7	-0.3922	0.4741	0.5445	-2.1951
4.8	-0.3318	0.1920	0.7041	-1.8913	4.8	-0.3805	0.4614	0.5283	-2.1312
4.9	-0.3242	0.1903	0.6800	-1.8430	4.9	-0.3692	0.4491	0.5128	-2.0694
5.0	-0.3170	0.1887	0.6571	-1.7967	5.0	-0.3583	0.4372	0.4978	-2.0099

Ring D

Top side	;				Bottom	side			
NICS@	isotropi	c xx	VV	ZZ	NICS@	isotropio	c xx	VV	ZZ
0.0	9.2065	-11.9712	-11.4691	51.0598	0.0	9.2024	-11.0513	-12.3803	51.0388
0.1	9.1697	-12.3583	-10.9020	50.7694	0.1	9.1656	-11.3136	-11.9376	50.7479
0.2	9.0511	-12.5253	-10.1798	49.8583	0.2	9.0468	-11.4454	-11.2493	49.8353
0.3	8.8284	-12.4583	-9.3019	48.2456	0.3	8.8238	-11.4131	-10.3359	48.2205
0.4	8.4775	-12.1498	-8.2814	45.8637	0.4	8.4721	-11.1828	-9.2374	45.8366
0.5	7.9848	-11.6092	-7.1538	42.7173	0.5	7.9781	-10.7393	-8.0147	42.6884
0.6	7.3561	-10.8685	-5.9744	38.9111	0.6	7.3478	-10.0961	-6.7414	38.8808
0.7	6.6181	-9.9780	-4.8052	34.6376	0.7	6.6080	-9.2928	-5.4901	34.6068
0.8	5.8131	-8.9970	-3.7013	30.1374	0.8	5.8011	-8.3838	-4.3198	30.1068
0.9	4.9892	-7.9821	-2.7008	25.6503	0.9	4.9755	-7.4255	-3.2686	25.6206
1.0	4.1912	-6.9806	-1.8231	21.3773	1.0	4.1764	-6.4666	-2.3533	21.3492
1.1	3.4538	-6.0268	-1.0717	17.4599	1.1	3.4384	-5.5439	-1.5748	17.4339
1.2	2.7983	-5.1429	-0.4396	13.9775	1.2	2.7828	-4.6819	-0.9237	13.9541
1.3	2.2336	-4.3408	0.0848	10.9569	1.3	2.2185	-3.8945	-0.3861	10.9362
1.4	1.7586	-3.6253	0.5145	8.3864	1.4	1.7442	-3.1886	0.0525	8.3685
1.5	1.3654	-2.9964	0.8616	6.2310	1.5	1.3520	-2.5655	0.4058	6.2158
1.6	1.0433	-2.4510	1.1369	4.4440	1.6	1.0311	-2.0234	0.6854	4.4313
1.7	0.7804	-1.9841	1.3498	2.9756	1.7	0.7694	-1.5584	0.9015	2.9651
1.8	0.5655	-1.5897	1.5086	1.7778	1.8	0.5557	-1.1651	1.0630	1.7692
1.9	0.3892	-1.2608	1.6210	0.8073	1.9	0.3805	-0.8369	1.1779	0.8003
2.0	0.2434	-0.9901	1.6943	0.0261	2.0	0.2358	-0.5667	1.2536	0.0204
2.1	0.1223	-0.7699	1.7350	-0.5983	2.1	0.1156	-0.3471	1.2967	-0.6029
2.2	0.0211	-0.5929	1.7495	-1.0934	2.2	0.0152	-0.1708	1.3137	-1.0973
2.3	-0.0637	-0.4519	1.7434	-1.4824	2.3	-0.0688	-0.0307	1.3100	-1.4856
2.4	-0.1345	-0.3405	1.7215	-1.7845	2.4	-0.1391	0.0796	1.2906	-1.7874
2.5	-0.1936	-0.2529	1.6881	-2.0160	2.5	-0.1976	0.1658	1.2599	-2.0186
2.6	-0.2426	-0.1841	1.6466	-2.1902	2.6	-0.2462	0.2328	1.2212	-2.1927
2.7	-0.2828	-0.1299	1.5998	-2.3184	2.7	-0.2862	0.2848	1.1776	-2.3208
2.8	-0.3156	-0.0871	1.5497	-2.4095	2.8	-0.3187	0.3248	1.1311	-2.4119
2.9	-0.3420	-0.0530	1.4981	-2.4710	2.9	-0.3448	0.3557	1.0834	-2.4735
3.0	-0.3629	-0.0255	1.4460	-2.5091	3.0	-0.3655	0.3793	1.0358	-2.5117
3.1	-0.3791	-0.0031	1.3943	-2.5285	3.1	-0.3816	0.3972	0.9892	-2.5312
3.2	-0.3914	0.0155	1.3436	-2.5332	3.2	-0.3938	0.4106	0.9440	-2.5360
3.3	-0.4004	0.0312	1.2941	-2.5264	3.3	-0.4027	0.4204	0.9008	-2.5293
3.4	-0.4065	0.0446	1.2462	-2.5104	3.4	-0.4088	0.4274	0.8596	-2.5135
3.5	-0.4104	0.0561	1.2001	-2.4874	3.5	-0.4126	0.4320	0.8207	-2.4906
3.6	-0.4123	0.0663	1.1556	-2.4589	3.6	-0.4145	0.4346	0.7840	-2.4622
3.7	-0.4126	0.0753	1.1130	-2.4261	3.7	-0.4148	0.4357	0.7495	-2.4295
3.8	-0.4116	0.0833	1.0721	-2.3901	3.8	-0.4137	0.4354	0.7172	-2.3935
3.9	-0.4094	0.0905	1.0329	-2.3516	3.9	-0.4114	0.4339	0.6868	-2.3551
4.0	-0.4063	0.0971	0.9954	-2.3113	4.0	-0.4083	0.4315	0.6584	-2.3148
4.1	-0.4024	0.1030	0.9595	-2.2697	4.1	-0.4044	0.4283	0.6318	-2.2732
4.2	-0.3978	0.1084	0.9252	-2.2271	4.2	-0.3998	0.4245	0.6068	-2.2306
4.3	-0.3928	0.1134	0.8923	-2.1840	4.3	-0.3947	0.4200	0.5835	-2.1875
4.4	-0.3872	0.1179	0.8609	-2.1405	4.4	-0.3891	0.4151	0.5616	-2.1440
4.5	-0.3814	0.1220	0.8308	-2.0969	4.5	-0.3832	0.4097	0.5410	-2.1004
4.6	-0.3752	0.1257	0.8020	-2.0534	4.6	-0.3770	0.4041	0.5217	-2.0568
4.7	-0.3688	0.1292	0.7744	-2.0100	4.7	-0.3706	0.3981	0.5035	-2.0134
4.8	-0.3623	0.1322	0.7479	-1.9670	4.8	-0.3640	0.3919	0.4865	-1.9704
4.9	-0.3556	0.1350	0.7226	-1.9243	4.9	-0.3573	0.3856	0.4703	-1.9277
5.0	-0.3488	0.1375	0.6983	-1.8821	5.0	-0.3504	0.3790	0.4551	-1.8854

Ring E

Top side	;				Bottom	side			
NICS@	isotropic	xx	vv	7.7.	NICS@	isotropic	xx	vv	7. 7.
0.0	2.1069	-9.2831	-8.2933	23.8971	0.0	2.1182	-8.0602	-9.5008	23.9155
0.1	1.9880	-9.4432	-8.1144	23.5215	0.1	2.1089	-7.7394	-9.5400	23.6062
0.2	1.7485	-9.4535	-7.7778	22.4767	0.2	1.9731	-7.2586	-9.4595	22.6374
0.3	1.4075	-9.2990	-7.3000	20.8216	0.3	1.7243	-6.6466	-9.2538	21.0733
0.4	0.9926	-8.9736	-6.7059	18.6572	0.4	1.3854	-5.9383	-8.9189	19.0135
0.5	0.5362	-8.4848	-6.0265	16.1197	0.5	0.9860	-5.1711	-8.4579	16.5871
0.6	0.0723	-7.8544	-5.2960	13.3673	0.6	0.5588	-4.3812	-7.8838	13.9413
0.7	-0.3677	-7.1162	-4.5478	10.5610	0.7	0.1357	-3.5999	-7.2191	11.2263
0.8	-0.7583	-6.3097	-3.8112	7.8461	0.8	-0.2553	-2.8522	-6.4931	8.5792
0.9	-1.0821	-5.4747	-3.1088	5.3373	0.9	-0.5935	-2.1548	-5.7367	6.1109
1.0	-1.3305	-4.6467	-2.4564	3.1115	1.0	-0.8662	-1.5177	-4.9796	3.8986
1.1	-1.5032	-3.8538	-1.8631	1.2075	1.1	-1.0691	-0.9455	-4.2466	1.9848
1.2	-1.6059	-3.1164	-1.3335	-0.3679	1.2	-1.2046	-0.4388	-3.5568	0.3818
1.3	-1.6490	-2.4474	-0.8683	-1.6314	1.3	-1.2804	0.0037	-2.9239	-0.9211
1.4	-1.6446	-1.8534	-0.4661	-2.6144	1.4	-1.3070	0.3847	-2.3559	-1.9498
1.5	-1.6053	-1.3364	-0.1241	-3.3554	1.5	-1.2959	0.7074	-1.8570	-2.7380
1.6	-1.5425	-0.8948	0.1616	-3.8942	1.6	-1.2581	0.9755	-1.4276	-3.3222
1.7	-1.4658	-0.5247	0.3956	-4.2683	1.7	-1.2034	1.1931	-1.0656	-3.7377
1.8	-1.3828	-0.2202	0.5830	-4.5113	1.8	-1.1395	1.3648	-0.7668	-4.0165
1.9	-1.2991	0.0254	0.7290	-4.6517	1.9	-1.0723	1.4954	-0.5257	-4.1866
2.0	-1.2183	0.2193	0.8391	-4.7132	2.0	-1.0058	1.5901	-0.3358	-4.2717
2.1	-1.1425	0.3690	0.9187	-4.7151	2.1	-0.9426	1.6540	-0.1902	-4.2915
2.2	-1.0728	0.4816	0.9729	-4.6728	2.2	-0.8839	1.6922	-0.0819	-4.2621
2.3	-1.0095	0.5637	1.0063	-4.5986	2.3	-0.8305	1.7094	-0.0042	-4.1965
2.4	-0.9524	0.6214	1.0233	-4.5020	2.4	-0.7821	1.7099	0.0488	-4.1051
2.5	-0.9011	0.6597	1.0274	-4.3903	2.5	-0.7386	1.6975	0.0828	-3.9962
2.6	-0.8548	0.6831	1.0218	-4.2693	2.6	-0.6996	1.6753	0.1021	-3.8761
2.7	-0.8131	0.6951	1.0089	-4.1432	2.7	-0.6644	1.6459	0.1108	-3.7499
2.8	-0.7752	0.6987	0.9907	-4.0151	2.8	-0.6327	1.6114	0.1119	-3.6213
2.9	-0.7408	0.6962	0.9689	-3.8874	2.9	-0.6039	1.5734	0.1079	-3.4931
3.0	-0.7092	0.6892	0.9447	-3.7615	3.0	-0.5779	1.5332	0.1006	-3.3674
3.1	-0.6802	0.6791	0.9189	-3.6386	3.1	-0.5541	1.4917	0.0914	-3.2454
3.2	-0.6534	0.6669	0.8923	-3.5194	3.2	-0.5324	1.4497	0.0813	-3.1282
3.3	-0.6285	0.6534	0.8654	-3.4042	3.3	-0.5125	1.4075	0.0711	-3.0162
3.4	-0.6052	0.6391	0.8386	-3.2933	3.4	-0.4942	1.3657	0.0613	-2.9097
3.5	-0.5835	0.6243	0.8121	-3.1868	3.5	-0.4774	1.3245	0.0521	-2.8087
3.6	-0.5630	0.6093	0.7860	-3.0845	3.6	-0.4618	1.2841	0.0439	-2.7132
3.7	-0.5437	0.5944	0.7606	-2.9863	3.7	-0.4473	1.2445	0.0366	-2.6230
3.8	-0.5255	0.5797	0.7359	-2.8921	3.8	-0.4338	1.2059	0.0304	-2.5379
3.9	-0.5082	0.5652	0.7120	-2.8017	3.9	-0.4213	1.1683	0.0253	-2.4574
4.0	-0.4917	0.5510	0.6888	-2.7149	4.0	-0.4095	1.1318	0.0211	-2.3815
4.1	-0.4760	0.5372	0.6664	-2.6316	4.1	-0.3985	1.0963	0.0179	-2.3096
4.2	-0.4610	0.5238	0.6448	-2.5515	4.2	-0.3880	1.0620	0.0156	-2.2416
4.3	-0.4466	0.5107	0.6240	-2.4745	4.3	-0.3781	1.0286	0.0141	-2.1772
4.4	-0.4328	0.4980	0.6039	-2.4004	4.4	-0.3687	0.9964	0.0134	-2.1159
4.5	-0.4196	0.4857	0.5845	-2.3290	4.5	-0.3598	0.9651	0.0133	-2.0577
4.6	-0.4068	0.4738	0.5659	-2.2603	4.6	-0.3512	0.9349	0.0137	-2.0023
4.7	-0.3946	0.4622	0.5480	-2.1940	4.7	-0.3430	0.9057	0.0147	-1.9493
4.8	-0.3828	0.4510	0.5307	-2.1300	4.8	-0.3351	0.8774	0.0161	-1.8987
4.9	-0.3714	0.4401	0.5141	-2.0683	4.9	-0.3275	0.8501	0.0178	-1.8502
5.0	-0.3604	0.4295	0.4981	-2.0087	5.0	-0.3201	0.8236	0.0199	-1.8037

Ring F

Top side	;				Bottom	side			
NICS@	isotropi	c xx	УУ	ZZ	NICS@	isotropic	XX	УУ	ZZ
0.0	7.0666	-11.9554	-10.5773	43.7324	0.0	7.0706 -1	0.3184	-12.2043	43.7345
0.1	7.0250	-12.1144	-10.3024	43.4918	0.1	6.9994 -1	0.1530	-12.0856	43.2369
0.2	6.8651	-12.1157	-9.7735	42.4846	0.2	6.8193 -	9.7951	-11.7618	42.0149
0.3	6.5769	-11.9148	-9.0306	40.6762	0.3	6.5275 -	9.2506	-11.2333	40.0663
0.4	6.1547	-11.4762	-8.1307	38.0709	0.4	6.1218 -	8.5358	-10.5097	37.4110
0.5	5.6038	-10.7932	-7.1413	34.7460	0.5	5.6077 -	7.6820	-9.6193	34.1244
0.6	4.9447	-9.8955	-6.1306	30.8603	0.6	5.0018 -	6.7346	-8.6099	30.3498
0.7	4.2116	-8.8416	-5.1568	26.6331	0.7	4.3328 -	5.7449	-7.5407	26.2841
0.8	3.4470	-7.7027	-4.2609	22.3047	0.8	3.6375 -	4.7614	-6.4704	22.1444
0.9	2.6947	-6.5474	-3.4645	18.0960	0.9	2.9541 -	3.8221	-5.4481	18.1323
1.0	1.9922	-5.4307	-2.7725	14.1798	1.0	2.3158 -	2.9522	-4.5074	14.4068
1.1	1.3660	-4.3904	-2.1790	10.6676	1.1	1.7466 -	2.1646	-3.6674	11.0716
1.2	0.8305	-3.4484	-1.6726	7.6125	1.2	1.2593 -	1.4636	-2.9352	8.1768
1.3	0.3887	-2.6141	-1.2408	5.0209	1.3	0.8569 -	0.8478	-2.3099	5.7283
1.4	0.0353	-1.8885	-0.8725	2.8668	1.4	0.5343 -	0.3131	-1.7859	3.7019
1.5	-0.2400	-1.2672	-0.5590	1.1061	1.5	0.2822	0.1460	-1.3552	2.0557
1.6	-0.4497	-0.7434	-0.2934	-0.3124	1.6	0.0888	0.5352	-1.0089	0.7400
1.7	-0.6064	-0.3085	-0.0704	-1.4404	1.7	-0.0574	0.8606	-0.7375	-0.2953
1.8	-0.7216	0.0465	0.1144	-2.3257	1.8	-0.1669	1.1281	-0.5317	-1.0973
1.9	-0.8048	0.3310	0.2649	-3.0103	1.9	-0.2485	1.3440	-0.3819	-1.7077
2.0	-0.8637	0.5543	0.3850	-3.5303	2.0	-0.3090	1.5146	-0.2791	-2.1627
2.1	-0.9040	0.7253	0.4785	-3.9159	2.1	-0.3537	1.6459	-0.2143	-2.4927
2.2	-0.9302	0.8525	0.5491	-4.1922	2.2	-0.3862	1.7440	-0.1792	-2.7235
2.3	-0.9453	0.9439	0.6006	-4.3803	2.3	-0.4094	1.8144	-0.1665	-2.8762
2.4	-0.9516	1.0064	0.6362	-4.4975	2.4	-0.4252	1.8621	-0.1694	-2.9683
2.5	-0.9509	1.0461	0.6591	-4.5579	2.5	-0.4350	1.8913	-0.1824	-3.0140
2.6	-0.9445	1.0681	0.6719	-4.5735	2.6	-0.4401	1.9058	-0.2012	-3.0249
2.7	-0.9334	1.0768	0.6770	-4.5540	2.7	-0.4414	1.9084	-0.2224	-3.0102
2.8	-0.9185	1.0754	0.6762	-4.5071	2.8	-0.4397	1.9016	-0.2434	-2.9772
2.9	-0.9006	1.0667	0.6709	-4.4394	2.9	-0.4356	1.8873	-0.2627	-2.9314
3.0	-0.8803	1.0525	0.6625	-4.3560	3.0	-0.4298	1.8671	-0.2791	-2.8773
3.1	-0.8582	1.0346	0.6518	-4.2611	3.1	-0.4227	1.8420	-0.2922	-2.8179
3.2	-0.8349	1.0140	0.6394	-4.1580	3.2	-0.4148	1.8130	-0.3017	-2.7557
3.3	-0.8106	0.9916	0.6260	-4.0494	3.3	-0.4064	1.7810	-0.3077	-2.6924
3.4	-0.7858	0.9681	0.6119	-3.9374	3.4	-0.3977	1.7465	-0.3104	-2.6292
3.5	-0.7608	0.9438	0.5974	-3.8235	3.5	-0.3890	1.7101	-0.3102	-2.5669
3.6	-0.7357	0.9191	0.5827	-3.7090	3.6	-0.3803	1.6722	-0.3072	-2.5060
3.7	-0.7109	0.8944	0.5680	-3.5950	3.7	-0.3719	1.6332	-0.3018	-2.4470
3.8	-0.6864	0.8697	0.5533	-3.4822	3.8	-0.3636	1.5935	-0.2944	-2.3900
3.9	-0.6623	0.8452	0.5388	-3.3711	3.9	-0.3557	1.5533	-0.2852	-2.3351
4.0	-0.6389	0.8211	0.5246	-3.2623	4.0	-0.3480	1.5130	-0.2746	-2.2824
4.1	-0.6160	0.7974	0.5106	-3.1559	4.1	-0.3406	1.4726	-0.2626	-2.2318
4.2	-0.5938	0.7741	0.4969	-3.0523	4.2	-0.3335	1.4324	-0.2496	-2.1833
4.3	-0.5722	0.7514	0.4836	-2.9517	4.3	-0.3266	1.3925	-0.2357	-2.1367
4.4	-0.5514	0.7291	0.4706	-2.8540	4.4	-0.3200	1.3532	-0.2212	-2.0920
4.5	-0.5313	0.7075	0.4579	-2.7594	4.5	-0.3136	1.3143	-0.2061	-2.0491
4.6	-0.5120	0.6864	0.4455	-2.6679	4.6	-0.3074	1.2761	-0.1907	-2.0078
4.7	-0.4933	0.6659	0.4335	-2.5794	4.7	-0.3014	1.2387	-0.1750	-1.9679
4.8	-0.4754	0.6460	0.4218	-2.4940	4.8	-0.2956	1.2020	-0.1593	-1.9295
4.9	-0.4582	0.6266	0.4105	-2.4117	4.9	-0.2899	1.1661	-0.1436	-1.8922
5.0	-0.4416	0.6078	0.3995	-2.3322	5.0	-0.2843	1.1310	-0.1280	-1.8560

Ring G

Top side	•				Bottom :	side			
NICSU	isotropic	XX 7 5000	уу с 9704	ZZ 1 2069	NICS@	isotropic	XX 6 2000	УУ	ZZ 1 2075
0.0	-4.5004	-7 5202	-6.067	1.3900	0.0	-4.3010	-6.1601	-0.0023	1 0000
0.1	-4.5205	-7.5202	-0.000/	0.6201	0.1	-4.3030	-0.1001 5 7004	-0.0001	1.0000 0.0215
0.2	-4.04//	-6.8852	-6./131	-2 5818	0.2	-4.3034	-5 2929	-7 6234	-1.8259
0.5	-5 8120	-6 3705	-6 0309	-5 0344	0.5	-5 3207	-4 6940	-7 1904	-4 0777
0.5	-6 3221	-5 7650	-5 5420	-7 6593	0.5	-5 7405	-4 0217	-6 6587	-6 5412
0.5	-6 7700	-5 1027	-4 9887	-10 2187	0.6	-6 1161	-3 3068	-6.0609	-8 9806
0.7	-7.1113	-4.4154	-4.3986	-12.5198	0.7	-6.4032	-2.5794	-5.4293	-11,2009
0.8	-7.3194	-3.7303	-3.7970	-14.4310	0.8	-6.5745	-1.8652	-4.7933	-13.0648
0.9	-7.3859	-3.0683	-3.2048	-15.8846	0.9	-6.6193	-1.1843	-4.1769	-14.4969
1.0	-7.3170	-2.4441	-2.6381	-16.8687	1.0	-6.5415	-0.5506	-3.5978	-15.4761
1.1	-7.1294	-1.8672	-2.1078	-17.4132	1.1	-6.3550	0.0272	-3.0685	-16.0235
1.2	-6.8461	-1.3430	-1.6208	-17.5745	1.2	-6.0798	0.5444	-2.5963	-16.1875
1.3	-6.4921	-0.8741	-1.1811	-17.4210	1.3	-5.7387	0.9994	-2.1847	-16.0308
1.4	-6.0916	-0.4611	-0.7904	-17.0234	1.4	-5.3540	1.3922	-1.8342	-15.6198
1.5	-5.6665	-0.1033	-0.4487	-16.4475	1.5	-4.9456	1.7244	-1.5431	-15.0180
1.6	-5.2347	0.2014	-0.1551	-15.7503	1.6	-4.5303	1.9986	-1.3079	-14.2817
1.7	-4.8101	0.4557	0.0926	-14.9787	1.7	-4.1213	2.2181	-1.1236	-13.4585
1.8	-4.4031	0.6631	0.2973	-14.1696	1.8	-3.7281	2.3870	-0.9844	-12.5869
1.9	-4.0204	0.8276	0.4625	-13.3513	1.9	-3.3570	2.5099	-0.8836	-11.6974
2.0	-3.6660	0.9538	0.5921	-12.5441	2.0	-3.0118	2.5916	-0.8143	-10.8128
2.1	-3.3418	1.0464	0.6905	-11.7622	2.1	-2.6941	2.6372	-0.7693	-9.9501
2.2	-3.0477	1.1101	0.7621	-11.0151	2.2	-2.4039	2.6516	-0.7421	-9.1212
2.3	-2.7826	1.1495	0.8111	-10.3085	2.3	-2.1403	2.6396	-0.7265	-8.3341
2.4	-2.5449	1.1689	0.8415	-9.6452	2.4	-1.9019	2.6054	-0.7172	-7.5937
2.5	-2.3322	1.1724	0.8571	-9.0261	2.5	-1.6866	2.5527	-0.7101	-6.9025
2.6	-2.1422	1.1633	0.8610	-8.4508	2.6	-1.4927	2.4848	-0./019	-6.2609
2.7	-1.9/24	1.144/	0.8560	-/.91/8	2.7	-1.3181	2.4044	-0.6906	-5.6681
2.8	-1.8206	1.1190	0.8444	-7.4251	2.8	-1.1611	2.3139	-0.6748	-5.1223
2.9	-1.5625	1.0884	0.8280	-6.5504	2.9	-1.0200	2.2152	-0.6341	-4.6211
3.0	-1.3023	1 0185	0.0005	-6.1632	3.0	-0.0934	2.1101	-0.0204	-3.7416
3.2	_1 3537	0 9815	0.7600	-5 8061	3.1	-0 6785	1 8872	-0 5643	-3 3583
3.2	-1 2641	0.9013	0.7033	-5 4764	3.2	-0 5879	1 7727	-0 5267	-3 0098
3 4	-1 1828	0 9073	0.7355	-5 1720	3 4	-0 5074	1 6585	-0 4859	-2 6947
3.5	-1.1089	0.8710	0.6927	-4.8906	3.5	-0.4359	1.5466	-0.4421	-2.4121
3.6	-1.0416	0.8357	0.6697	-4.6301	3.6	-0.3726	1.4389	-0.3950	-2.1615
3.7	-0.9800	0.8016	0.6474	-4.3888	3.7	-0.3166	1.3373	-0.3445	-1.9427
3.8	-0.9235	0.7687	0.6257	-4.1650	3.8	-0.2674	1.2438	-0.2901	-1.7558
3.9	-0.8716	0.7372	0.6049	-3.9570	3.9	-0.2241	1.1597	-0.2317	-1.6003
4.0	-0.8239	0.7071	0.5849	-3.7636	4.0	-0.1863	1.0862	-0.1693	-1.4757
4.1	-0.7798	0.6784	0.5657	-3.5835	4.1	-0.1533	1.0238	-0.1030	-1.3806
4.2	-0.7391	0.6510	0.5473	-3.4155	4.2	-0.1248	0.9723	-0.0336	-1.3131
4.3	-0.7013	0.6249	0.5298	-3.2585	4.3	-0.1004	0.9313	0.0379	-1.2705
4.4	-0.6662	0.6001	0.5130	-3.1118	4.4	-0.0799	0.8995	0.1103	-1.2494
4.5	-0.6336	0.5766	0.4969	-2.9744	4.5	-0.0628	0.8756	0.1821	-1.2462
4.6	-0.6033	0.5542	0.4816	-2.8455	4.6	-0.0491	0.8578	0.2519	-1.2571
4.7	-0.5749	0.5329	0.4669	-2.7245	4.7	-0.0384	0.8445	0.3183	-1.2781
4.8	-0.5484	0.5127	0.4528	-2.6108	4.8	-0.0305	0.8341	0.3800	-1.3057
4.9	-0.5236	0.4935	0.4394	-2.5037	4.9	-0.0251	0.8253	0.4363	-1.3368
5.0	-0.5004	0.4752	0.4265	-2.4029	5.0	-0.0218	0.8169	0.4864	-1.3687

28. XRD Structural Data Summary

bond lengths [Å], molecule 1

bond lengths [Å], molecule 2

angles between the mean planes of the rings

AB 6.4° AC 14.4° AG 39.1° BC 9.2° CE 19.3° CD 10.5° EG 9.3° DE 9.6° EF 6.1° FG 4.4° AB 7.8° AC 18.3° AG 50.1° BC 11.1° CE 19.4° CD 10.6° EG 14.7° DE 9.5° EF 9.1° FG 6.3°