Supplementary Information

Atropselective Synthesis of *N*-Aryl Pyridones *via* Dynamic Kinetic Resolution Enabled by Non-Covalent Interactions

Jamie S. Sweet, Ruichen Wang, Panagiotis Manesiotis, Paul Dingwall and Peter C. Knipe*

School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK

Contents

1	General Experimental			3	
	1.1	Nam	ning and Numbering of Compounds	3	
	1.2	Solv	ents and Reagents	3	
	1.3	Chromatography			
	1.4	Anal	lytical Techniques	3	
2	Exp	erime	ental Procedures and Characterization Data	5	
	2.1	Acet	tamides (1)	5	
	2.2	Benz	zyl lodides	6	
	2.3	2.3 Alkynones (2)		7	
	2.4 2'-Methoxyphenyl-2-pyridones		lethoxyphenyl-2-pyridones	8	
	2.5	 2.5 2'-Hydroxyphenyl-2-pyridones (3) 2.6 O-Benzylated <i>N</i>-(2-phenoxy)pyridones (4) 		11	
	2.6			14	
2.6. 2.6. 2.6. 2.6.		1	Optimisation method using chiral catalyst	14	
		2	Catalyst synthesis	14	
		3	Chiral catalyst library	16	
		4	Optimisation results	18	
	2.6.	5	Enantioselective Synthesis of 4a-4o	19	
	2.7	6-(4-	-Fluorophenyl)-1-(2-((3-methylbut-2-en-1-yl)oxy)phenyl)-4-phenylpyridin-2(1H)-one (4p)	27	
	2.8	Cata	alyst-substrate co-crystal (6)	28	

	2.9	Synthesis of Pyridinium Salt 7	
3	X-R	X-Ray Crystallography	
4 Measurement of Rotational Barriers		37	
5	5 NMR Analysis of CH $\cdots \pi$ Interaction		59
6 Density Functional Theory Calculations		nsity Functional Theory Calculations	60
	6.1	Methods	60
	6.2	Summary of Results	60
	6.3	Cartesian Coordinates	63
7	HPI	LC data	73
	7.1	O-Benzylated N-(2-phenoxy)pyridones (4)	73
	7.2	Pyridinium salt (7)	106
8	NM	NMR data	
9	References		190

1 General Experimental

1.1 Naming and Numbering of Compounds

Systematic compound names are those generated by ChemBioDraw[™] Ultra version 15.1.0.144 (Perkin Elmer) following IUPAC nomenclature.

1.2 Solvents and Reagents

Reactions were carried out under a nitrogen atmosphere in oven-dried glassware unless otherwise stated. Standard inert atmosphere techniques were used in handling all air- and moisture-sensitive reagents. Where necessary toluene and DMF (from commercial sources) were degassed prior to use by sparging with argon or nitrogen (15 min). Anhydrous and oxygen-free THF was obtained by distillation from Na/benzophenone. Other solvents and reagents were used directly as received from commercial suppliers.

1.3 Chromatography

Flash column chromatography was carried out using Fluorochem 60 40-63 micron silica gel. Thin-layer chromatography was carried out using Merck Kieselgel 60 F254 (230-400 mesh) fluorescent treated silica, visualized under UV light (254 nm) or by staining with aqueous potassium permanganate solution, ninhydrin or ceric ammonium molybdate solutions.

1.4 Analytical Techniques

¹H and ¹³C NMR spectra were recorded using a Bruker Ascend 600 or Avance 400 MHz spectrometer running TopSpinTM 3.6.3 software and are quoted in ppm for measurement against tetramethylsilane. Where no tetramethylsilane was present, spectra are referenced relative to the residual non-deuterated solvent peaks. Unless otherwise stated spectra were acquired at 298 K. TopspinTM was used for processing and viewing NMR data. Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (*J*) are given in Hertz (Hz). The ¹H NMR spectra are reported as follows: δ / ppm (number of protons, multiplicity, coupling constant *J* / Hz (where appropriate), assignment). Multiplicity is abbreviated as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet. The numbering scheme used for NMR assignment is arbitrary and does not follow any particular convention. The ¹³C NMR spectra are reported in δ / ppm. Where necessary or appropriate, two-dimensional (COSY, HSQC, HMBC, NOESY or ROESY) NMR experiments were used to assist the assignment of signals in the ¹H and ¹³C NMR spectra. In some cases, complete assignment of spectra was not possible (in particular, aromatic CHs corresponding to multiple phenyl groups overlapped significantly); in these cases only a partial assignment is reported.

High-performance liquid chromatography (HPLC) was conducted using an Agilent 1220 Infinity II instrument using an isocratic acetonitrile/water eluent mixture.

Liquid chromatography-mass spectrometry (LCMS) analysis was conducted using an instrument comprising an Agilent 1260 HPLC (equipped with Infinity II quaternary pump, vial sampler, integrated column compartment and variable wavelength detector) and 6125C MSD single quadrupole mass spectrometer. Samples were analysed using an Agilent Infinitylab poroshell 120 column (2.7 µm, 2.1 x 150 mm) under an acetonitrile/water gradient with 0.1% HCOOH additive.

Infra-red (IR) spectra were recorded on an Agilent Cary 630 spectrometer equipped with an attenuated total refractance (ATR) accessory. Samples were deposited on the ATR as a thin film. Only selected maximum absorbances (v_{max}) of the most intense peaks are reported (cm⁻¹).

High resolution mass spectra (HRMS) were recorded by Analytical Services and Environmental Projects (ASEP) at Queen's University Belfast on a Waters LCT Premier ToF mass spectrometer using the electrospray ionisation (ESI) technique.

Optical rotations were recorded at the sodium D-line (589 nm) using a Perkin Elmer 341 polarimeter at a temperature of 20 °C and are reported in degrees using concentrations (*c*) in g-100 mL⁻¹. Reported values are the average of eight readings.

Melting points were determined for compounds where a preparative recrystallization was carried out. These were acquired on a Stuart SMP10 digital melting point apparatus. Values are given in °C and are uncorrected.

2 Experimental Procedures and Characterization Data

2.1 Acetamides (1)

N-(2-Methoxyphenyl)acetamide (1a)

To a solution of 2-aminoanisole (4.58 g, 40.6 mmol, 1.0 equiv.) in dichloromethane (150 mL) was added Ac₂O (4.6 mL, 48.7 mmol, 1.2 equiv.), flushed with Ar and was stirred for 20 mins at RT. The reaction mixture was quenched with saturated NaHCO₃ aqueous solution (*ca.* 3 x 10 mL/mmol), extracted with dichloromethane (*ca.* 3 x 10 mL/mmol) and dried over anhydrous magnesium sulfate. The solvent was removed *in vacuo* affording **1a** as an off-white fluffy solid (6.51 g, 97%). ¹H NMR (400 MHz, CDCl₃): $\delta_{H} = 8.35$ (1H, dd, J = 8.1, 1.3 Hz, H6), 7.76 (1H, s, NH), 7.03 (1H, td, J = 7.8, 1.5 Hz, H5), 6.95 (1H, td, J = 7.9, 1.3 Hz, H4), 6.87 (1H, dd, J = 7.9, 1.0 Hz, H3), 3.87 (3H, s, H7), 2.20 (3H, s, H9). ¹³C NMR (101 MHz CDCl₃): $\delta_{C} = 168.1$ (C8), 147.6 (C1), 127.7 (C2), 123.6 (C6), 121.1 (C5), 118.8 (C4), 109.9 (C3), 55.7 (C7), 25.0 (C9). IR: v_{max} (thin film): 3246, 2967, 1654, 1595, 1461, 1248, 1113, 1021, 745, 708 cm⁻¹. HRMS (ES+): found 166.0868; C₉H₁₂NO₂, [M+H]⁺ requires 166.0868. The data obtained are consistent with those reported in the literature.¹

N-(2-Methoxyphenyl)butyramide (1b)

To a solution of o-anisidine (3.55 g, 28.9 mmol, 1.0 equiv.) in pyridine (35 mL) was added dropwise a solution of butyryl chloride (3.59 mL, 34.6 mmol, 1.2 equiv.) in THF (175 mL) at 0 °C. The mixture was stirred at 0 °C for 3 hours. The reaction mixture was reduced *in vacuo* and crude residue extracted with EtOAc (100 mL), washed with H₂O (75 mL), followed by 1M HCl aqueous solution (75 mL), saturated NaHCO₃ aqueous solution (75 mL) and saturated NaCl aqueous solution (75 mL). The organic extracts were dried over anhydrous magnesium sulfate and reduced *in vacuo* to an orange residue. The crude product was purified by flash column chromatography (silica gel 50 g, EtOAc/PE 10 \rightarrow 20%) affording **1b** as a yellow oil (5.11 g, 91%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 8.40$ (1H, dd, J = 7.9, 1.3 Hz, H6), 7.76 (1H, s, NH), 7.03 (1H, td, J = 7.6, 1.6 Hz, H5), 6.96 (1H, td, J = 7.8, 1.5 Hz, H4), 6.87 (1H, dd, J = 8.0, 1.5 Hz, H3), 3.88 (3H, s, H7), 2.37 (2H, t, J = 7.3 Hz, H9), 1.77 (2H, sex, J = 7.4 Hz, H10) 1.01 (3H, t, J = 7.4 Hz, H11). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 171.1$ (C8), 147.6 (C1), 127.8 (C2), 123.4 (C6), 121.1 (C5), 119.7(C4), 109.8 (C3), 55.7 (C7), 40.0 (C9), 19.11 (C10), 13.8 (C11). **IR**: v_{max} (thin film): 3317, 2959, 1669, 1599, 1520, 1457, 1248, 1025, 745 cm⁻¹. **HRMS** (ES+): found 194.1185; C₁₁H₁₆NO₂, [M+H]⁺ requires 194.1181. The data obtained are consistent with those reported in the literature.²

A neat mixture of 2-aminoanisole (2.72 g, 22 mmol) and ethyl acetoacetate (5.6 mL, 44 mmol) and potassium *tert*butoxide (240 mg, 2.2 mmol) was heated to 130 °C. After 2 h the reaction mixture was cooled to room temperature and the crude residue was purified by flash column chromatography (silica gel, $0\% \rightarrow 20\%$ EtOAc/dichloromethane) to afford the product **1c** as an off-white solid (1.94 g, 42%). ¹H NMR (400 MHz, CDCl₃): $\delta_{H} = 9.22$ (1H, s, NH), 8.32 (1H, dd, J =7.9, 1.5 Hz, H6), 7.06 (1H, td, J = 8.0, 1.5 Hz, H5), 6.95 (1H, td, J = 8.0, 1.2 Hz, H4), 6.89 (1H, dd, J = 8.1, 1.0 Hz, H3), 3.92 (3H, s, H7), 3.60 (2H, s, H9), 2.33 (3H, s, H11). ¹³C NMR (101 MHz CDCl₃): $\delta_{C} = 204.4$ (C10), 163.2 (C8), 148.3 (C1), 127.4 (C2), 124.1 (C6), 121.0 (C5), 120.1 (C4), 110.1 (C3), 55.8 (C7), 50.9 (C9), 25.0 (C11). IR: v_{max} (thin film): 3295, 2940, 1714, 1669, 1599, 1524, 1461, 1356, 1252, 1118, 1025, 745 cm⁻¹. HRMS (ES+): found 208.0965; C₁₁H₁₄NO₃, [M+H]⁺ requires 208.0974. The data obtained are consistent with those reported in the literature.³

2.2 Benzyl lodides

(lodomethyl)benzene (S1)

Nal (4.50 g, 30.0 mmol, 2.0 equiv.) was dissolved in acetone (20 mL) at 0 °C. To the solution, was added BnBr (1.80 mL, 15.0 mmol, 1.0 equiv.) and the resulting mixture was stirred at 0 °C for 6 h. The reaction mixture was washed with brine (50 mL) and extracted with Et₂O (3 x 50 mL), dried over anhydrous magnesium sulfate and the solvent was removed *in vacuo* giving a pink oil. PE (*ca.* 1 mL) was added and crude product placed on ice as pink crystals formed. Mother liquor was removed via pipette at 0 °C affording **S1** as a pink solid (3.06 g, 94%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 7.39-7.36$ (2H, m, H3), 7.31-7.21 (3H, m, H4, H5), 4.46 (2H, s, H1). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 139.3$ (C2), 128.8 (C3), 128.7 (C4), 127.9 (C5), 5.7 (C1). **IR**: v_{max} (thin film): 3026, 1699, 1453, 1211, 1155, 749, 689 cm⁻¹. **HRMS** (ES+): found 218.9705; C₇H₈I, [M+H]⁺ requires 218.9796. The data obtained are consistent with those reported in the literature.⁴

4-(lodomethyl)benzonitrile (S2)

Nal (3.0 g, 20.0 mmol, 2.0 equiv.) was dissolved in acetone (12 mL) at 0 °C. To the solution, was added 4-cyanobenzyl bromide (1.96 g, 10.0 mmol, 1.0 equiv.) and the resulting mixture was stirred at 0 °C for 4 h. The reaction mixture was washed with brine (30 mL) and extracted with Et_2O (3 x 30 mL), dried over anhydrous magnesium sulfate and the solvent was removed *in vacuo*. The residue was purified by trituration (petroleum ether) to afford **S2** as a pale yellow solid (2.26 g, 93%). ¹H NMR (400 MHz, CDCl₃): $\delta_H = 7.60-7.57$ (2H, m, H4), 7.48-7.45 (2H, m, H3), 4.43 (2H, s, H1). ¹³C NMR (101 MHz CDCl₃): $\delta_C = 144.7$ (C2), 132.6 (2C, C4), 129.7 (2C, C3), 118.5 (C6), 111.6 (C5), 2.8 (C1). IR: v_{max} (thin film): 2221, 1707, 1602, 1505, 1159, 842, 734 cm⁻¹. HRMS (ES+): found 243.9889; C₈H₇IN, [M+H]⁺ requires 243.9798. The data obtained are consistent with those reported in the literature.⁵

Nal (3.0 g, 20.0 mmol, 2.0 equiv.) was dissolved in acetone (12 mL) at 0 °C. To the solution, was added 4-methylbenzyl bromide (1.85 g, 10.0 mmol, 1.0 equiv.) and the resulting mixture was stirred at 0 °C for 4 h. The reaction mixture was washed with brine (30 mL) and extracted with Et₂O (3 x 30 mL), dried over anhydrous magnesium sulfate and the solvent was removed *in vacuo*. The crude residue was purified by recrystallization from hot petroleum ether to afford **S3** (1.41 g, 68%) as a white crystalline solid. **M.p.** = 46-48 °C (petroleum ether), ¹**H NMR** (400 MHz, CDCl₃): δ_{H} = 7.28 (2H, d, *J* = 8.1 Hz, H3), 7.11 (2H, d, *J* = 7.8 Hz, H4), 4.46 (2H, s, H1), 2.32 (3H, s, H6). ¹³**C NMR** (101 MHz CDCl₃): δ_{C} = 137.8 (C2), 136.3 (C5), 129.6 (2C, C4), 128.7 (2C, C3), 21.3 (C6), 6.2 (C1). **IR**: v_{max} (thin film): 2911, 1610, 1513, 1427, 1207, 1148, 812 cm⁻¹. **HRMS** (ES+): found 232.9787; C₈H₁₀I, [M+H]⁺ requires 232.9782. The data obtained are consistent with those reported in the literature.⁵

2.3 Alkynones (2)

General Procedure A (Preparation of Prop-2-yn-1-ones)

A flask was charged with benzoyl chloride, $PdCl_2(PPh_3)_2$, and Et_3N , THF was added, and the resulting solution stirred for 10 min after which CuI was added changing the colour (substrate dependent) upon stirring for an additional 10 min. Arylacetylene was added and the flask was sealed and left to stir at room temperature for 18 h. The reaction mixture was quenched with 0.1 N HCI (*ca.* 2 x 10 mL/mmol), washed with saturated NH₄CI aqueous solution (*ca.* 10 mL/mmol), extracted with dichloromethane (*ca.* 3 x 10 mL/mmol), and dried over anhydrous magnesium sulfate. The solvent was removed *in vacuo* resulting in a crude solid which was purified by column chromatography (silica gel, 2.5% \rightarrow 5% Et_2O/PE) affording the desired alkynone.

1,3-Diphenylprop-2-yn-1-one (2a)

Prepared according to **General Procedure A** using benzoyl chloride (3.18 g, 27.3 mmol, 1.2 equiv.), $PdCl_2(PPh_3)_2$ (319 mg, 460 µmol, 2.0 mol%) and Et₃N (3.63 mL, 27.3 mmol, 1.2 equiv.), THF (40 mL), Cul (174 mg, 0.91 mmol, 4.0 mol%) and phenylacetylene (2.50 g, 22.8 mmol, 1.0 equiv.) **2a** was obtained as a yellow oil (4.21 g, 90%). ¹H **NMR** (400 MHz, CDCl₃): δ_H = 8.23 (2H, dd, *J* = 8.6, 1.4 Hz, PhH), 7.69 (2H, m, PhH), 7.64 (1H, t, *J* = 7.6 Hz, PhH), 7.54-7.47 (3H, m, PhH) 7.45-7.41 (2H, m, PhH). ¹³C **NMR** (101 MHz CDCl₃): δ_C = 178.0, 136.9, 134.1, 133.1 (2C), 130.8, 129.6 (2C), 128.7 (2C), 128.6 (2C), 120.1, 93.1, 86.9. **IR**: ν_{max} (thin film): 3060, 2195, 1636, 1490, 1446, 1312, 1282, 1207, 756, 689 cm⁻¹. **HRMS** (ES+): found 207.0815; $C_{15}H_{11}O$, [M+H]⁺ requires 207.0810. The data obtained are consistent with those reported in the literature.⁶

Prepared according to **General Procedure A** using benzoyl chloride (1.32 mL, 11.4 mmol, 1.5 equiv.), PdCl₂(PPh₃)₂ (105 mg, 150 µmol, 2.0 mol%) and Et₃N (1.30 mL, 9.4 mmol, 1.25 equiv.), THF (16 mL), Cul (29 mg, 0.15 mmol, 2.0 mol%) and 4-methylphenylacetylene (0.96 mL, 7.58 mmol, 1.0 equiv.) **2b** was obtained as a yellow solid (1.39 g, 84%). ¹H NMR (400 MHz, CDCl₃): δ_{H} = 8.24-8.22 (2H, m, PhH), 7.65-7.58 (3H, m, PhH, ArH), 7.52 (2H, t, *J* = 7.8 Hz, ArH), 7.23 (2H, d, *J* = 7.9 Hz, ArH), 2.41 (3H, s, CH₃). ¹³C NMR (101 MHz CDCl₃): δ_{C} = 178.0, 141.5, 137.0, 134.0, 133.1 (2C), 129.6 (2C), 129.5 (2C), 128.6 (2C), 117.1, 93.8, 86.8, 21.8. **IR**: ν_{max} (thin film): 2191, 1632, 1599, 1312, 1170, 1006, 812, 697 cm⁻¹. **HRMS** (ES+): found 221.0966; C₁₆H₁₃O, [M+H]⁺ requires 221.0966. The data obtained are consistent with those reported in the literature.⁷

3-(4-Fluorophenyl)-1-phenylprop-2-yn-1-one (2c)

Prepared according to **General Procedure A** using benzoyl chloride (0.58 mL, 5.0 mmol, 1.5 equiv.), $PdCl_2(PPh_3)_2$ (46 mg, 66 µmol, 2.0 mol%), Et_3N (0.69 mL, 4.9 mmol, 1.5 equiv.), THF (8 mL), Cul (13 mg, 66 µmol, 2.0 mol%) and 4-fluorophenyl acetylene (398 mg, 3.31 mmol, 1.0 equiv.). **2c** was obtained as a line green foam (598 mg, 81%). ¹H **NMR** (400 MHz, CDCl₃): δ_H = 8.21 (2H, dd, *J* = 8.5, 1.5 Hz, PhH), 7.72-7.62 (3H, m, PhH, ArH), 7.52 (2H, t, *J* = 7.8 Hz, ArH), 7.13 (2H, t, *J* = 8.5 Hz, ArH). ¹³C **NMR** (101 MHz CDCl₃): δ_C = 177.9, 164.1 (d, ¹*J*_{CF} = 250.1 Hz), 136.8, 135.4 (2C, d, ³*J*_{CF} = 8.9 Hz), 134.2, 129.6 (2C), 128.7 (2C), 116.3 (d, ⁴*J*_{CF} = 3.4 Hz), 116.3 (2C, d, ²*J*_{CF} = 22.4 Hz), 92.0, 86.8. ¹⁹F **NMR** (376 MHz, CDCl₃): δ_F = -106.0. **IR:** v_{max} (thin film): 2199, 1640, 1595, 1233, 1010, 834, 693 cm⁻¹. **HRMS** (ES+): found 225.0712; $C_{15}H_{10}FO$, [M+K]⁺ requires 225.0716.⁷

2.4 2'-Methoxyphenyl-2-pyridones

General Procedure B (Preparation of 2'-methoxyphenyl-2-pyridones)

This reaction was conducted by analogy to the method reported by Tang and Pen.⁸ An oven-dried microwave tube was charged with prop-2-yn-1-one derivatives (1.0 equiv.), 1,4-dioxane (*ca.* 0.3 M), amide (1.0 equiv.) and KOH (1.0 equiv., freshly ground up *via* pestle and mortar). The tube was sealed and stirred at 80 °C for 24-36 h, then allowed to cool to RT. The reaction mixture was diluted with H₂O (*ca.* 5 mL/mmol) and extracted with EtOAc (*ca.* 3 x 5 mL/mmol) and dried

over anhydrous magnesium sulfate. The solvent was removed *in vacuo* resulting in a crude oil which was purified by column chromatography (silica gel, $2.5\% \rightarrow 5\%$ MeOH/dichloromethane) affording the desired product.

1-(2-Methoxyphenyl)-4,6-diphenylpyridin-2(1H)-one (S4)

Prepared according to **General Procedure B** using alkynone **2a** (1.77 g, 8.60 mmol, 1.2 equiv.), amide **1a** (1.18 g, 7.17 mmol, 1.0 equiv.), KOH (402 mg, 7.17 mmol, 1.0 equiv.) and 1,4-dioxane (28 mL). Crude mixture purified by flash column chromatography (silica gel, 2.5% \rightarrow 5% MeOH/dichloromethane) affording **S4** as a cream foam (1.24 g, 49%). Impure fractions were recrystallized from CHCl₃/PE giving off-white crystals (112 mg, 4%), in total 1.35 g, 53%. M.p. = 147-149 °C, ¹H NMR (400 MHz, CDCl₃): $\delta_{H} = 7.68$ (2H, dd, J = 7.9 Hz, H13), 7.50-7.42 (3H, m, H14, 15), 7.23-7.14 (6H, m, H4, 17, 18, 19), 7.09 (1H, dd, J = 7.7, 1.5 Hz, H6), 6.93 (1H, d, J = 2.0 Hz, H10), 6.87 (1H, td, J = 7.6, 1.0 Hz, H5), 6.80 (1H, d, J = 8.2 Hz, H3), 6.52 (1H, d, J = 1.6 Hz, H8), 3.71 (3H, s, H20). ¹³C NMR (101 MHz CDCl₃): $\delta_{C} = 163.3$ (C7), 154.5 (C9), 151.3 (C2), 150.2 (C11), 137.8 (C16), 135.8 (C12), 130.2 (C19), 129.9 (C15), 129.4 (C4), 129.0 (2C, C18), 128.6 (2C, C17), 128.5 (C5), 127.6 (C1), 127.5 (2C, C14), 126.9 (2C, C13), 120.6 (C3), 116.1 (C6), 111.8 (C8), 107.0 (C10), 55.5 (C20). **IR**: v_{max} (thin film): 1654,1587, 1498, 1364, 1271, 1118, 1025, 861, 760, 700 cm⁻¹. **HRMS** (ES+): found 354.1431; $C_{24}H_{20}NO_2$, [M+H]⁺ requires 354.1494. The data obtained are consistent with those reported in the literature.⁸

3-Acetyl-1-(2-methoxyphenyl)-4,6-diphenylpyridin-2(1*H*)-one (S5)

Prepared according to **General Procedure B** using alkynone **2a** (450 mg, 2.18 mmol, 1.2 equiv.), amide **1c** (377 mg, 1.82 mmol, 1.0 equiv.), KOH (102 mg, 1.82 mmol, 1.0 equiv.) and 1,4-dioxane (7 mL). Crude mixture purified by flash column chromatography (silica gel, $2.5\% \rightarrow 5\%$ MeOH/dichloromethane) affording **S5** as a yellow foam (306 mg, 43%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 7.44-7.39$ (5H, m, H17, 18, 19), 7.24-7.16 (6H, m, H13, 14, 15), 7.12 (1H, dd, J = 7.9, 1.8 Hz, H6), 6.89 (1H, td, J = 7.6, 1.2 Hz, H5), 6.79 (1H, dd, J = 8.5, 1.2 Hz, H3), 6.30 (1H, s, H10), 3.71 (3H, s, H20), 2.49 (3H, s, H22). ¹³**C NMR** (101 MHz CDCl₃): $\delta_{C} = 202.4$ (C21), 160.6 (C7), 154.4 (C2), 150.8 (C11), 150.8 (C16), 150.8 (C9), 138.0 (C8), 135.0 (C9), 130.1 (C19), 130.0 (C15), 129.4 (C12), 129.0 (C4), 128.9 (C5), 128.6 (2C, C17), 128.4 (2C, C18), 128.0 (2C, C14), 127.6 (2C, C13), 126.9 (C1), 120.6 (C3), 111.8 (C6), 109.7 (C10), 55.5 (C20), 31.8 (C22). **IR**: v_{max} (thin film): 3060, 2243, 1699, 1640, 1572, 1528, 1271, 1025, 909, 756, 730 cm⁻¹. **HRMS** (ES+): found 396.1593; $C_{26}H_{22}NO_3$, [M+H]⁺ requires 396.1600.

Prepared according to **General Procedure B** using alkynone **2a** (450 mg, 2.18 mmol, 1.2 equiv.), amide **1b** (352 mg, 1.82 mmol, 1.0 equiv.), KOH (102 mg, 1.82 mmol, 1.0 equiv.) and 1,4-dioxane (7 mL). Crude mixture purified by flash column chromatography (silica gel, $2.5\% \rightarrow 5\%$ MeOH/dichloromethane) affording **S6** as an orange foam (359 mg, 52%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 7.47-7.37$ (5H, m, H17, 18, 19), 7.22-7.09 (7H, m, H6, 13, 14, 15), 6.87 (1H, td, J = 7.6, 1.2 Hz, H5), 6.80 (1H, dd, J = 8.3, 1.1 Hz, H3), 6.17 (1H, s, H10), 3.71 (3H, s, H20), 2.66-2.52 (2H, m, H21), 1.18 (3H, t, J = 7.4 Hz, H22). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 163.0$ (C7), 154.6 (C2), 149.2 (C11), 146.2 (C9), 139.9 (C12), 135.8 (C16), 130.8 (C8), 130.2 (C19), 129.6 (C4), 128.6 (2C, C18), 128.3 (2C, C17), 128.2 (C1), 128.2 (C15), 128.1 (2C, C14), 127.8 (C5), 127.4 (2C, C13), 120.5 (C3), 111.7 (C6), 109.7 (C10), 55.5 (C20), 21.7 (C21), 13.6 (C22). **IR**: v_{max} (thin film): 2929, 2236, 1643, 1498, 1271, 1237, 1025, 909, 726, 700 cm⁻¹. **HRMS** (ES+): found 382.1809; C₂₆H₂₄NO₂, [M+H]⁺ requires 382.1807.

1-(2-Methoxyphenyl)-4-phenyl-6-(p-tolyl)pyridin-2(1H)-one (S7)

Prepared according to **General Procedure B** using alkynone **2b** (600 mg, 2.68 mmol, 1.2 equiv.), amide **1a** (368 mg, 2.23 mmol, 1.0 equiv.), KOH (125 mg, 2.23 mmol, 1.0 equiv.) and 1,4-dioxane (9 mL). Crude mixture purified by flash column chromatography (silica gel, 2.5% \rightarrow 5% MeOH/dichloromethane) affording **S7** as an off-white foam (711 mg, 86 %). ¹H NMR (400 MHz, CDCl₃): δ_{H} = 7.68-7.65 (2H, m, H17), 7.49-7.41 (3H, m, H18, 19), 7.22 (1H, td, *J* = 8.2, 1.6 Hz, H6), 7.09-7.06 (3H, m, H4, 13), 6.96 (2H, d, *J* = 8.1 Hz, H14), 6.90-6.86 (2H, m, H5, 10), 6.81 (1H, dd, *J* = 8.2, 1.1 Hz, H3), 6.49 (1H, d, *J* = 2.1 Hz, H8), 3.72 (3H, s, H20), 2.26 (3H, s, H21). ¹³C NMR (101 MHz CDCl₃): δ_{C} = 163.4 (C7), 154.7 (C9), 151.3 (C2), 150.4 (C11), 138.4 (C16), 137.9 (C15), 133.0 (C12), 130.2 (C19), 129.8 (C4), 129.4 (C5), 128.9 (2C, C13), 128.5 (2C, C14), 128.3 (2C, C17), 127.8 (C1), 126.9 (2C, C18), 120.6 (C3), 115.9 (C6), 111.9 (C8), 109.0 (C10), 55.6 (C20), 21.2 (C21). **IR**: v_{max} (thin film): 2922, 2236, 1654, 1572, 1498, 1364, 1267, 1025, 905, 723 cm⁻¹. **HRMS** (ES+): found 368.1649; $C_{25}H_{23}NO_2$, [M+H]⁺ requires 368.1651.

Prepared according to **General Procedure B** using alkynone **2c** (450 mg, 2.01 mmol, 1.2 equiv.), amide **1a** (276 mg, 1.67 mmol, 1.0 equiv.), KOH (94 mg, 1.67 mmol, 1.0 equiv.) and 1,4-dioxane (7 mL). Crude mixture purified by flash column chromatography (silica gel, $2.5\% \rightarrow 5\%$ MeOH/dichloromethane) affording **S8** as a cream foam (530 mg, 85%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 7.68-7.65$ (2H, m, H17), 7.50-7.42 (3H, m, H18, 19), 7.26-7.15 (3H, m, H4, 13), 7.09 (1H, dd, J = 7.8, 1.7 Hz, H6), 6.92-6.80 (5H, m, H3, 5, 10, 14), 6.48 (1H, d, J = 1.9 Hz, H8), 3.72 (3H, s, H20). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 163.2$ (C7), 162.5 (d, ¹ $_{J_{CF}} = 249.0$ Hz, C15), 154.4 (C2), 151.3 (C9), 149.1 (C11), 137.6 (C16), 131.8 (d, ⁴ $_{J_{CF}} = 3.6$ Hz, C12), 130.5 (d, ³ $_{J_{CF}} = 8.5$ Hz, C13), 130.1 (C19), 130.1 (C4), 129.5 (C5), 129.0 (2C, C17), 127.4 (C1), 126.4 (2C, C18), 120.7 (C3), 116.4 (C6), 114.7 (d, ² $_{J_{CF}} = 21.7$, C14), 111.9 (C8), 107.1 (C10), 55.5 (C20). **IR**: v_{max} (thin film): 2922, 2236, 1654, 1606, 1498, 1364, 1222, 1159, 1025, 723, 697 cm⁻¹. **HRMS** (ES+): found 743.2714; C₂₄H₁₉FNO₂, [2M+H]⁺ requires 743.2710.

2.5 2'-Hydroxyphenyl-2-pyridones (3)

General Procedure C (Preparation of 2'-hydroxyphenyl-2-pyridones)

An oven-dried microwave tube was charged with pyridone derivatives (1.0 equiv.) and flushed with Ar. To this was added dichloromethane (*ca*. M) followed by BBr₃ (5.3 equiv.) and the tube was sealed and stirred at 40 °C for 18 h, then allowed to cool to RT. In some cases, as the tube cooled down the desired 2'-hydroxyphenyl-2-pyridone crashed out of solution. The solid was collected by filtration and washed with cold dichloromethane affording the desired 2'-hydroxyphenyl-2-pyridone derivative. Each mother liquor was reduced *in vacuo* and a further crop of desired enamine was retained either by recrystallization or flash column chromatography. If no crystallisation occurred purification was carried out by flash column chromatography.

Prepared according to **General Procedure C** using pyridone **S4** (1.00 g, 2.83 mmol, 1.0 equiv.), BBr₃ (15.0 mL, 15.0 mmol, 5.3 equiv., 1M in dichloromethane), and dichloromethane (32 mL). **3a** obtained via trituration with dichloromethane as a beige solid (876 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ_H = 8.16 (1H, s, OH), 7.72-7.66 (2H, m, H17), 7.54-7.45 (3H, m, H18, 19), 7.26-7.16 (5H, m, H13, 14, 15), 7.05-6.99 (2H, m, H4, 10), 6.94 (1H, dd, *J* = 8.2, 1.1 Hz, H6), 6.73 (1H, d, *J* = 2.2 Hz, H8), 6.64 (1H, dd, *J* = 7.9, 1.8 Hz, H3), 6.57 (1H, td, *J* = 7.3, 1.5 Hz, H5). ¹³C NMR (101 MHz CDCl₃): δ_C = 164.8 (C7), 153.4 (C9), 152.6 (C2), 150.6 (C11), 137.0 (C16), 135.9 (C3), 130.0 (C4), 129.9 (C19), 129.2 (3C, C1, 17), 128.8 (C15), 128.3 (2C, C14), 128.2 (2C, C18), 126.9 (2C, C13), 120.5 (C5), 119.7 (C6), 115.3 (C8), 110.1 (C10). IR: v_{max} (thin film): 3056, 1654, 1531, 1587, 1498, 1271, 1025, 760, 700 cm⁻¹. HRMS (ES+): found 701.2413; $C_{23}H_{17}NaNO_2$, [2M+Na]⁺ requires 701.2416.

1-(2-Hydroxyphenyl)-4-phenyl-6-(p-tolyl)pyridin-2(1H)-one (3b)

Prepared according to **General Procedure C** using pyridone **S7** (500 mg, 1.36 mmol, 1.0 equiv.), BBr₃ (7.21 mL, 7.21 mmol, 5.3 equiv., 1M in dichloromethane), and dichloromethane (16 mL). Crude mixture purified by flash column chromatography (silica gel, $1\% \rightarrow 5\%$ MeOH/dichloromethane) affording **3b** as a white foam (374 mg, 78%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 8.03$ (1H, s, OH), 7.69-7.66 (2H, m, H17), 7.52-7.45 (3H, m, H18, 19), 7.11-7.05 (3H, m, H4, 13), 7.0-6.97 (4H, m, H6, 10, 14), 6.71 (1H, d, J = 2.0 Hz, H8), 6.64 (1H, dd, J = 7.9, 1.8 Hz, H3), 6.60 (1H, td, J = 7.2, 1.6 Hz, H5), 2.26 (3H, s, H20). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 164.8$ (C7), 153.5 (C2), 152.6 (C9), 150.8 (C11), 138.9 (C15), 137.2 (C16), 133.0 (C12), 129.9 (C3), 129.7 (C4), 129.1 (2C, C17), 129.0 (C19), 128.9 (2C, C18), 128.8 (C1), 128.2 (2C, C13), 126.9 (2C, C14), 120.3 (C5), 119.3 (C6), 115.0 (C10), 109.8 (C8), 21.3 (C20). **IR**: v_{max} (thin film): 3058, 2713, 1640, 1602, 1505, 1457, 1362, 1278, 915, 723, 697 cm⁻¹. **HRMS** (ES+): found 354.1457; C₂₄H₂₀NO₂, [M+H]⁺ requires 354.1494.

6-(4-Fluorophenyl)-1-(2-hydroxyphenyl)-4-phenylpyridin-2(1H)-one (3c)

Prepared according to **General Procedure C** using pyridone **S8** (500 mg, 1.35 mmol, 1.0 equiv.), BBr₃ (7.13 mL, 7.13 mmol, 5.3 equiv., 1M in dichloromethane), and dichloromethane (16 mL). Crude mixture purified by flash column chromatography (silica gel, $1\% \rightarrow 5\%$ MeOH/dichloromethane) affording **3c** as an off-white solid (473 mg, 98%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 8.28$ (1H, s, OH), 7.69-7.65 (2H, m, H17), 7.53-7.46 (3H, m, H18, 19), 7.25-7.21 (2H, m, H13), 7.04-6.99 (2H, m, H4, 10), 6.90-6.85 (3H, m, H6, 14), 6.69 (1H, dd, J = 2.0 Hz, H8), 6.65-6.59 (2H, m, H3, 5). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 164.6$ (C7), 162.7 (d, ¹ $J_{CF} = 249.9$ Hz, C15), 153.5 (C2), 152.6 (C9), 149.7 (C11), 137.1 (C16), 131.8 (d, ⁴ $J_{CF} = 3.5$ Hz, C12), 130.3 (d, ³ $J_{CF} = 8.6$ Hz, C13), 129.9 (C3), 129.9 (C4), 129.1 (2C, C17), 128.8 (C19), 127.8 (C1), 126.9 (2C, C18), 120.2 (C5), 118.9 (C6), 115.6 (C8), 115.3 (d, ² $J_{CF} = 21.6$ Hz, C14), 109.6 (C10). **IR**: v_{max} (thin film): 3060, 1643, 1602, 1558, 1502, 1367, 1230, 909, 831 cm⁻¹. **HRMS** (ES+): found 715.2405; C₂₃H₁₇FNO₂, [2M+H]⁺ requires 715.2408.

3-Ethyl-1-(2-hydroxyphenyl)-4,6-diphenylpyridin-2(1H)-one (3d)

Prepared according to **General Procedure C** using pyridone **S6** (330 mg, 865 µmol, 1.0 equiv.), BBr₃ (4.58 mL, 4.58 mmol, 5.3 equiv., 1M in dichloromethane), and dichloromethane (10 mL). Crude mixture purified by flash column chromatography (silica gel, $1\% \rightarrow 5\%$ MeOH/dichloromethane) affording **3d** as an orange foam (301 mg, 95%). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{H} = 7.85$ (1H, s, OH), 7.50-7.38 (5H, m, H13, 14, 15), 7.21-7.06 (7H, m, H4, 6, 17, 18, 19), 6.63 (1H, dd, J = 8.0, 1.6 Hz, H3), 6.59-6.55 (1H, m, H5), 6.42 (1H, s, H8), 2.75-7.54 (2H, m, H20), 1.20 (3H, t, J = 7.5 Hz, H21). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{C} = 164.7$ (C7), 153.6 (C2), 150.7 (C9), 146.5 (C11), 139.1 (C12), 135.9 (C16), 130.6 (C1), 129.9 (C8), 129.6 (C3), 129.4 (C4), 128.5 (2C, C17), 128.4 (C19), 128.3 (C15), 128.2 (4C, C14, 18), 128.0 (2C, C13), 128.0 (2C, C13), 120.5 (C5), 119.8 (C6), 113.1 (C10), 21.6 (C20), 13.6 (C21). **IR**: v_{max} (thin film): 2963, 1632, 1599, 1565, 1457, 1259, 1025, 905, 726, 697 cm⁻¹. **HRMS** (ES+): found 368.1645; C₂₅H₂₂NO₂, [M+H]⁺ requires 368.1651.

Prepared according to **General Procedure C** using pyridone **S5** (300 mg, 759 µmol, 1.0 equiv.), BBr₃ (4.02 mL, 4.02 mmol, 5.3 equiv., 1M in dichloromethane), and dichloromethane (10 mL). Crude mixture purified by flash column chromatography (silica gel, $1\% \rightarrow 5\%$ MeOH/dichloromethane) affording **3e** as a yellow foam (236 mg, 82%). ¹H **NMR** (400 MHz, CDCl₃): δ_H = 7.52-7.43 (5H, m, H13, 14, 15), 7.40 (1H, s, OH), 7.25-7.17 (5H, m, H17, 18, 19), (5H, m, H13, 14, 15), 7.117.07 (1H, m, H4), 7.00 (1H, dd, *J* = 8.2, 1.3 Hz, H6), 6.65 (1H, dd, *J* = 8.0, 1.8 Hz, H8), 6.61 (1H, td, *J* = 7.1, 1.4 Hz, H3), 6.53 (1H, s, H10), 2.44 (3H, s, H21). ¹³C **NMR** (101 MHz CDCl₃): δ_C = 201.9 (C20), 161.8 (C7), 153.4 (C2), 151.1 (C9), 150.8 (C11), 137.1 (C16), 135.1 (C12), 130.1 (C3), 129.5 (C19), 129.2 (C15), 129.0 (C4), 129.0 (C8), 128.9 (2C, 17), 128.3 (2C, C18), 128.3 (C1), 128.2 (2C, C14), 128.0 (2C, C13), 120.7 (C5), 119.5 (C6), 112.2 (C10), 31.8 (C21). **IR**: v_{max} (thin film): 3183, 1699, 1628, 1565, 1528, 1367, 1103, 909, 756 cm⁻¹. **HRMS** (ES+): found 763.2812; C₂₅H₂₀NO₃, [2M+H]⁺ requires 763.2808.

2.6 O-Benzylated N-(2-phenoxy)pyridones (4)

2.6.1 Optimisation method using chiral catalyst

Sample vials were charged with *N*-(2-phenoxy)pyridone (14 mg, 41.0 μ mol, 1.0 equiv.) and catalyst (10-15 mol%). Solvent (0.5-1.5 mL) was added followed by 50% aqueous base (5.0 equiv.) and R²X (X = Br, I or OTs, 0.6-5.0 equiv.) as the vial was sealed and stirred at the desired temperature for the time stated. At various intervals, the resulting solution was subjected to preparative TLC and enantiomeric excess determined by HPLC (Chiralpak, 60% MeCN/H₂O).

2.6.2 Catalyst synthesis

Various catalysts were synthesised and used during optimisation. *O*-Alkylation was performed as described by Corey *et al.*⁹ and hydrogenation was performed as described by Tang *et al.*¹⁰

A flask was charged with quinidine (200 mg, 616 μ mol, 1.0 equiv.), 9-chloromethyl anthracene (139 mg, 616 μ mol, 1.0 equiv.) and toluene (10 mL). The reaction mixture was stirred at 110 °C for 18 h as a cream precipitate formed from a yellow solution. The crude product was removed from the heat, allowed to cool and then Et₂O (3 x 25 mL) was added and resulting mixture stirred for 10 mins. Product purified by filtration, washing with cold Et₂O (3 x 25 mL), affording QD-1 as a yellow solid (178 mg, 52%). The data obtained are consistent with those reported in the literature.¹¹

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H} = 9.07$ (1H, d, J = 9.0 Hz), 8.50 (1H, d, J = 8.9 Hz), 8.30-8.24 (2H, m), 8.12-8.09 (1H, m), 8.00 (1H, s, OH), 7.95-7.91 (1H, m), 7.65 (1H, d, J = 8.8 Hz), 7.57 (1H, d, J = 8.3 Hz), 7.38-7.26 (3H, m), 7.20-7.12 (2H, m), 7.07-7.05 (1H, m), 6.95 (1H, d, J = 13.2 Hz), 6.56 (1H, d, J = 13.3 Hz), 5.74-5.65 (1H, m), 5.09 (1H, d, J = 10.5 Hz), 4.98-4.94 (1H, m), 4.75-4.70 (1H, m), 4.57-4.51 (1H, m), 4.14 (1H, t, J = 11.4 Hz), 3.84 (3H, s, OMe), 2.81-2.70 (1H, m), 2.35-2.21 (2H, m), 1.87-1.72 (3H, m), 1.63 (1H, s), 1.44-1.38 (1H, m), 1.00-0.88 (1H, m). ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C} = 157.7$, 147.2, 144.5, 143.2, 135.8, 133.1, 132.9, 131.5, 131.0, 130.5, 130.3, 128.7, 128.5, 127.8, 127.6, 127.3, 126.1, 125.0, 124.9, 124.8, 121.4, 120.5, 118.3, 117.4, 104.1, 68.3, 65.5, 56.6, 56.2, 54.5, 54.3, 38.1, 26.3, 24.2, 22.6. **IR**: $v_{\rm max}$ (thin film): 3652, 3052, 2199, 1621, 1505, 1449, 1241, 1028, 905, 723 cm⁻¹. **HRMS** (ES+): found 515.2687; $C_{35}H_{35}N_2O_2$, [M-Cl⁻]⁺ requires 515.2699. [α]²⁹³ +380.2 (c = 0.3, CHCl₃).

CD-1

CD-2

CD-3

CN-1

CD-6

CD-4

∠'n ⊕|

Ό

|| N Θ_{Br}

/

Ń

0=

Ad =

Æ

∠'n ⊕|

″⁄Ad

 $_{\Theta}$ CI

<mark>QN-1</mark> (C3) <mark>QD-1</mark> (C4)

<mark>CD-7</mark> (C2)

CD-8

QN-2

CD-9

CN-3

Quinolinium-1

Cat-1

Cat-2

Cat-3

Maruoka-1

Cat-4

2.6.4 Optimisation results

Table S1. Optimisation of dynamic kinetic resolution of pyridones. For reaction conditions see section 2.6.1 above. In each case, base was always 50% aqueous solution. Enantiomeric excesses were determined after 18 h by HPLC on a chiral stationary phase.

Entry	Solvent	Base	Bn-X (eq.)	TLC	Catalyst	Temp/ °C	ee
				Conversion			
1	PhH	K ₂ PO4	BnBr (1 2 eq.)	(%)	CD-1	rt	16%
2	PhH	K₃PO₄ K₂PO₄	BnBr (1.2 eq.)	<25	CD-2	rt	10%
-	PhH	K₃PO₄ K₃PO₄	BnBr (1.2 eq.)	<25	CD-3	rt	16%
4	PhH	K₃PO₄	BnBr (1.2 eq.)	<25	CD-4	rt	1%
5	PhH	K ₃ PO ₄	BnBr (1.2 eq.)	<25	CD-5	rt	-12%
6	PhH	K ₃ PO ₄	BnBr (1.2 eq.)	<25	CD-6	rt	9%
7	PhH	K ₃ PO ₄	BnBr (0.6 eq.)	<25	CN-1	rt	-3%
8	PhH	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Maruoka-1	rt	24%
9	PhH	K ₃ PO ₄	BnBr (5.0 eq.)	<25	Maruoka-1	rt	23%
10	CHCl₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Cat-1	rt	0%
11	CHCl₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Cat-2	rt	6%
12	CHCl ₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Cat-3	rt	18%
13	CHCI ₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Cat-4	rt	28%
14	CHCl₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Quinolinium-1	rt	-7%
15	CHCl₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	Maruoka-1	rt	29%
17	CHCI ₃	K ₃ PO ₄	BnBr (0.6 eq.)	25-50	CD-8	rt	-2%
18	CHCl₃	K ₃ PO ₄	BnBr (0.6 eq.)	<25	CD-5	rt	-58%
19	CHCl₃	КОН	BnBr (0.6 eq.)	<25	CD-5	rt	-8%
20	CHCl₃	Cs ₂ CO ₃	BnBr (0.6 eq.)	<25	CD-5	rt	-66%
21	CHCl₃	K ₂ CO ₃	BnBr (0.6 eq.)	<25	CD-5	rt	-66%
22	DCE	K ₂ CO ₃	BnBr (0.6 eq.)	<25	CD-5	rt	-40%
23	Et ₂ O	K_2CO_3	BnBr (0.6 eq.)	<25	CD-5	rt	-2%
24	<i>m</i> -xylene	K ₂ CO ₃	BnBr (0.6 eq.)	<25	CD-5	rt	-30%
25	THF	K ₂ CO ₃	BnBr (0.6 eq.)	<25	CD-5	rt	-8%
26	PhMe	K ₂ CO ₃	BnBr (0.6 eq.)	<25	CD-5	rt	-22%
27	CHCl₃	K ₂ CO ₃	BnBr (0.6 eq.)	<25	CN-2	rt	68%
28	CHCl₃	K_2CO_3	BnOTs (0.6 eq.)	25-50	CD-5	rt	-51%
29	CHCl₃	K_2CO_3	BnI (0.6 eq.)	<25	CD-5	rt	-73%
30	CHCl₃	K ₂ CO ₃	BnI (0.6 eq.)	<25	CD-7	rt	-33%
31	CHCl ₃	K ₂ CO ₃	BnI (0.6 eq.)	50-75	CD-5	50	-45%
32	CHCl ₃	K ₂ CO ₃	BnI (0.6 eq.)	<25	CD-5	0	-54%
33	CHCl ₃	K ₂ CO ₃	BnI (5.0 eq.)	<25	QN-1	rt	-76%
34	CHCl₃	K ₂ CO ₃	Bnl (5.0 eq.)	<25	QD-1	rt	85%
35	CHCl₃	K ₂ CO ₃	BnI (5.0 eq.)	<25	QD-2	rt	57%
36	CHCl ₃	K ₂ CO ₃	BnI (5.0 eq.)	50-75	QD-1	35	80%

2.6.5 Enantioselective Synthesis of 4a-4o

General Procedure D (Preparation of 2-arylpyridones)

A round-bottomed flask was charged with 2'-hydroxyphenyl-2-pyridone (1.0 equiv.) and QD-1 (10 mol%). CHCl₃ (*ca.* 0.3 M) was added followed by 50% aqueous K₂CO₃ (5.0 equiv.) and R²I (5.0 equiv.) as the flask was sealed and stirred at 35 °C for 42 h. The reaction mixture was subjected to preparative TLC and enantiomeric excess analysis determined by HPLC (CHIRALPAK, 60% MeCN/H₂O,) after 18 h, at which time an additional portion of QD-1 (5 mol%) was added. Piperidine (4.0 equiv.) was added and reaction mixture was stirred for 30 mins before addition of 3M HCl (*ca.* 1 mL). Crude product was extracted with EtOAc (3 x10 mL/mmol), dried over anhydrous magnesium sulfate and the solvent removed *in vacuo* resulting in a crude solid. Purification by column chromatography (silica gel, $1\% \rightarrow 2.5\%$ MeOH/dichloromethane) afforded the desired product.

1-(2-(Benzyloxy)phenyl)-4,6-diphenylpyridin-2(1H)-one (4a)

General Procedure D: Pyridone **3a** (100 mg, 295 μmol, 1.0 equiv.), QD-1 (24.4 mg, 44.3 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (205 μL, 1.48 mmol, 5.0 equiv.) and R²I-**S1** (184 μL, 1.48 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4a** as a yellow foam (98 mg, 77%, 75% ee). ¹H NMR (400 MHz, CDCl₃): $\delta_{H} = 7.69-7.66$ (2H, m, H17), 7.50-7.44 (3H, m, H18, 19), 7.33-7.24 (5H, m, H13, 14, 15), 7.21-7.11 (7H, m, H4, 6, 22, 23, 24), 6.94 (1H, d, *J* = 2.0 Hz, H10), 6.9. (1H, td, *J* = 7.6, 1.2 Hz, H5), 6.84 (1H, dd, *J* = 8.4, 1.1 Hz, H3), 6.49 (1H, d, *J* = 2.1 Hz, H8), 5.09-4.93 (2H, m, H20). ¹³C NMR (101 MHz CDCl₃): $\delta_{C} = 163.4$ (C7), 153.8 (C9), 151.4 (C2), 150.3 (C11), 137.8 (C16), 136.8 (C21), 135.7 (C12), 130.4 (C19), 129.9 (C4), 129.4 (C15), 129.0 (2C, C17), 128.8 (2C, C23), 128.5 (C24), 128.5 (2C, C18), 128.1 (C1), 127.7 (C6), 127.6 (2C, C14), 126.8 (2C, C13), 126.7 (2C, C22), 120.9 (C5), 116.1 (C10), 113.4 (C3), 107.0 (C8), 70.2 (C20). HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t_R* (major) = 36.4 min, *t_R* (minor) = 15.5 min. IR: v_{max} (thin film): 3060, 2236, 1654, 1572, 1531, 1490, 1364, 1267, 1230, 909, 730, 697 cm⁻¹. HRMS (ES+): found 430.1810; C₃₀H₂₄NO₂, [M+H]⁺ requires 430.1807. [*α*]₂^{P3} +33.3 (*c* = 0.6, CHCl₃).

4-((2-(2-Oxo-4,6-diphenylpyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4b)

General Procedure D: Pyridone **3a** (50.0 mg, 141 μmol, 1.0 equiv.), QD-1 (11.7 mg, 21.2 μmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (98.0 μL, 707 μmol, 5.0 equiv.) and R²I-**S2** (89 mg, 707 μmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4b** as a yellow solid (40 mg, 80%, 67% ee). ¹H **NMR** (400 MHz, CDCl₃): δ_{H} = 7.69-7.66 (2H, m, H17), 7.60 (2H, d, *J* = 8.4 Hz, H23), 7.52-7.46 (3H, m, H18, 19), 7.42 (2H, d, *J* = 8.6 Hz, H22), 7.24-7.13 (7H, m, H4, 6, 13, 14, 15), 6.94-6.91 (2H, m, H5, 10), 6.78 (1H, dd, *J* = 8.3, 1.0 Hz, H3), 6.53 (1H, d, *J* = 2.0 Hz, H8), 5.16-5.05 (2H, m, H20). ¹³**C NMR** (101 MHz CDCl₃): δ_{C} = 163.3 (C7), 153.3 (C9), 151.6 (C2), 150.2 (C11), 142.2 (C21), 137.6 (C16), 135.6 (C12), 132.4 (2C, C23), 130.6 (C4), 130.0 (C19), 129.7 (C15), 129.1 (2C, C17), 128.7 (C5), 128.6 (2C, C14), 128.3 (C1), 127.8 (2C, C17), 127.1 (2C, C13), 126.8 (2C, C22), 121.6 (C6), 118.7 (C25), 115.9 (C10), 113.3 (C3), 111.6 (C24), 107.2 (C8), 69.3 (C20). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 33.4 min, *t*_R (minor) = 13.7 min. **IR**: v_{max} (thin film): 3056, 2228, 1651, 1490, 1449, 1271, 909, 820, 726, 697 cm⁻¹. **HRMS** (ES+): found 455.1785; $C_{31}H_{23}N_2O_2$, [M+H]⁺ requires 455.1760. [*α*]₂^{P33} +43.6 (*c* = 0.5, CHCl₃).

1-(2-((4-Methylbenzyl)oxy)phenyl)-4,6-diphenylpyridin-2(1H)-one (4c)

General Procedure D: 2-hydroxypyridone **3a** (60 mg, 177 µmol, 1.0 equiv.), QD-1 (14.6 mg, 26.6 µmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (122 µL, 884 µmol, 5.0 equiv.) and R²I-**S3** (205 mg, 884 µmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4c** as an off-white solid (60 mg, 76%, 70% ee). ¹H **NMR** (400 MHz, CDCl₃): $\delta_{\rm H} =$ 7.69-7.65 (2H, m, H17), 7.50-7.45 (3H, m, H18, 19), 7.22-7.11 (11H, m, H4, 6, 13, 14, 15, 22, 23), 6.94 (1H, d, *J* = 2.0 Hz, H10), 6.89 (1H, td, *J* = 7.5, 1.1 Hz, H5), 6.84 (1H, dd, *J* = 8.4, 1.0 Hz, H3), 6.48 (1H, d, *J* = 2.0 Hz, H8), 5.05-4.88 (2H, m, H20), 2.33 (3H, s, H25). ¹³C **NMR** (101 MHz CDCl₃): $\delta_{\rm C} = 163.4$ (C7), 153.9 (C9), 151.3 (C2), 150.3 (C11), 137.8 (C16), 137.4 (C24), 135.7 (C12), 133.8 (C21), 130.4 (C4), 129.8 (C19), 129.4 (C15), 129.1 (2C, C23), 129.0 (2C, C17), 128.8 (2C, C18), 128.5 (C5), 128.1 (C1), 127.6 (2C, C14), 126.9 (2C, C13), 126.9 (2C, C22), 120.8 (C6), 116.1 (C8), 113.5 (C3), 107.0 (C10), 70.2 (C20), 21.2 (C25). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, $\lambda =$ 250 nm, t_R (major) = 53.5 min, t_R (minor) = 19.9 min. **IR**: v_{max} (thin film): 3056, 2922, 2236, 1654, 1572, 1531, 1490, 1364, 1267, 998, 801, 697, 723 cm⁻¹. **HRMS** (ES+): found 444.1976; C₃₁H₂₆NO₂, [M+H]⁺ requires 444.1964. [α]²⁹³ +27.4 (c = 0.4, CHCl₃).

1-(2-(Benzyloxy)phenyl)-4-phenyl-6-(p-tolyl)pyridin-2(1H)-one (4d)

General Procedure D: Pyridone **3d** (100 mg, 262 μmol, 1.0 equiv.), QD-1 (21.6 mg, 39.3 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (182 μL, 1.31 mmol, 5.0 equiv.) and R²I-**S1** (163 μL, 1.31 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4d** as a yellow foam (82 mg, 70%, 77% ee). ¹**H NMR** (400 MHz, CDCl₃): δ_{H} = 7.68-7.65 (2H, m, H17), 7.50-7.44 (3H, m, H18, 19), 7.33-7.24 (5H, m, H23, 24, 25), 7.22-7.14 (2H, m, H4, 6), 7.06-7.04 (2H, m, H13), 6.95-6.89 (4H, m, H5, 10, 14), 6.85 (1H, dd, *J* = 8.4, 1.2 Hz, H3), 6.48 (1H, d, *J* = 2.0 Hz, H8), 5.10-4.94 (2H, m, H21), 2.26 (3H, s, H20). ¹³**C NMR** (101 MHz CDCl₃): δ_{C} = 163.5 (C7), 153.8 (C9), 151.4 (C2), 150.4 (C11), 138.4 (C16), 137.9 (C12), 136.9 (C21), 132.9 (C15), 130.4 (C19), 129.8 (C4), 129.4 (C25), 129.0 (2C, C13), 128.7 (2C, C17), 128.4 (2C, C24), 128.3 (2C, C14), 128.3 (C1), 127.7, 126.9 (2C, C18), 126.7 (2C, C23), 120.9 (C5), 115.9 (C10), 113.5 (C3), 107.1 (C8), 70.2 (C20), 21.2 (C20). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) =40.2 min, *t*_R (minor) = 18.2 min. **IR**: ν_{max} (thin film): 3030, 2236, 1654, 1572, 1498, 1364, 1267, 905, 723 cm⁻¹. **HRMS** (ES+): found 444.1956; C₃₁H₂₈NO₂, [M+H]⁺ requires 444.1964. [*α*]₂²⁹³ +43.8 (*c* = 0.6, CHCl₃).

4-((2-(2-Oxo-4-phenyl-6-(p-tolyl)pyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4e)

General Procedure D: Pyridone **3d** (100 mg, 283 μmol, 1.0 equiv.), QD-1 (23.4 mg, 42.5 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (196 μL, 1.42 mmol, 5.0 equiv.) and R²I-**S2** (344 mg, 1.42 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4e** as a white foam (114 mg, 86%, 63% *ee*). ¹**H NMR** (400 MHz, CDCl₃): δ_H = 7.68-7.65 (2H, m, H17), 7.60 (2H, d, *J* = 8.1 Hz, H24), 7.52-7.46 (3H, m, H18, 19), 7.42 (2H, d, *J* = 8.2 Hz, H23), 7.21 (1H, td, *J* = 8.3, 1.7 Hz, H4), 7.14 (1H, dd, *J* = 7.8, 1.7 Hz, H6), 7.04 (2H, d, *J* = 8.2 Hz, H13), 6.98-6.92 (4H, m, H5, 10, 14), 6.79 (1H, dd, *J* = 8.3, 1.0 Hz, H3), 6.51 (1H, d, *J* = 2.0 Hz, H8), 5.15-5.02 (2H, m, H21), 2.26 (3H, s, H20). ¹³**C NMR** (101 MHz CDCl₃): δ_C = 163.4 (C7), 153.3 (C9), 151.6 (C2), 150.3 (C11), 142.2 (C22), 138.6 (C16), 137.7 (C15), 132.7 (C12), 132.3 (2C, C24), 130.6 (C3), 129.8 (C4), 129.6 (C19), 129.1 (2C, C13), 128.5 (2C, C17), 128.4 (3C, C1, 14), 127.1 (2C, C18), 126.8 (2C, C23), 121.6 (C5), 118.7 (C26), 115.7 (C8), 113.4 (C3), 111.6 (C25), 107.1 (C10), 69.4 (C21), 21.2 (C20). ¹⁹**F NMR** (376 MHz, CDCl₃): δ_F = -111.7. **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t_R* (major) = 39.6 min, *t_R* (minor) = 16.6 min. **IR**: v_{max} (thin film): 3056, 2922, 2228, 1654, 1572, 1498, 1453, 1364, 1267, 998, 909, 816 723 cm⁻¹. **HRMS** (ES+): found 469.1940; C₃₂H₂₅N₂O₂, [M+H]⁺ requires 469.1916. [*α*]_D²⁹³ +53.1 (*c* = 0.4, CHCl₃).

General Procedure D: Pyridone **3d** (100 mg, 283 µmol, 1.0 equiv.), QD-1 (23.4 mg, 42.5 µmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (196 µL, 1.42 mmol, 5.0 equiv.) and R²I-**S3** (328 mg, 1.42 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4f** as a yellow foam (86 mg, 66%, 58% ee). ¹**H NMR** (400 MHz, CDCl₃): δ_{H} = 7.68-7.65 (2H, m, H17), 7.50-7.44 (3H, m, H18, 19), 7.21-7.10 (6H, m, H4, 6, 13, 14), 7.07-7.04 (2H, m, H23), 6.95-6.85 (5H, m, H3, 5, 11, 24), 6.47 (1H, d, *J* = 2.0 Hz, H8), 5.05-4.89 (2H, m, H21), 2.33 (3H, s, H20), 2.26 (3H, s, H26). ¹³**C NMR** (101 MHz CDCl₃): δ_{C} = 162.4 (C7), 152.9 (C9), 150.3 (C2), 149.4 (C11), 137.4 (C16), 136.9 (C15), 136.3 (C25), 132.8 (C22), 131.8 (C12), 129.3 (C4), 128.7 (C19), 128.3 (C5), 128.1 (2C, C24), 127.9 (2C, C13), 127.6 (2C, C17), 127.3 (2C, C14), 127.2 (C1), 125.8 (2C, C18), 125.8 (2C, C23), 119.8 (C6), 114.8 (C8), 112.5 (C3), 105.6 (C10), 69.2 (C21), 20.2 (C20), 20.1 (C26). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 62.8 min, t_R (minor) = 23.8 min. **IR**: v_{max} (thin film): 3026, 2922, 2236, 1654, 1498, 1453, 1364, 1263, 998, 801, 723, 697 cm⁻¹. **HRMS** (ES+): found 458.2122; $C_{32}H_{28}NO_2$, [M+H]⁺ requires 458.2120. [α]²⁹³ +39.2 (c = 0.5, CHCl₃).

1-(2-(Benzyloxy)phenyl)-6-(4-fluorophenyl)-4-phenylpyridin-2(1H)-one (4g)

General Procedure D: Pyridone **3e** (50.0 mg, 141 μmol, 1.0 equiv.), QD-1 (11.7 mg, 21.2 μmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (98.0 μL, 707 μmol, 5.0 equiv.) and R²I-**S1** (89 μL, 707 μmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4g** as a yellow solid (40 mg, 64%, 65% ee). ¹H NMR (400 MHz, CDCl₃): δ_H = 7.68-7.65 (2H, m, H17), 7.51-7.45 (3H, m, H18, 19), 7.35-7.27 (5H, m, H23, 24, 25), 7.24-7.19 (1H, m, H4), 7.16-7.11 (3H, m, H6, 13), 6.95-6.90 (2H, m, H5, 10), 6.88-6.80 (3H, m, H3, H14), 6.46 (1H, d, *J* = 1.9 Hz, H8), 509-4.92 (2H, m, H21). ¹³C NMR (101 MHz CDCl₃): δ_C = 163.5 (C7), 162.5 (d, ¹*J*_{CF} = 249.0 Hz, C15), 153.6 (C9), 151.4 (C2), 149.2 (C11), 137.7 (C16), 136.7 (C21), 131.8 (d, ⁴*J*_{CF} = 3.6 Hz, C12), 130.7 (d, ³*J*_{CF} = 8.4 Hz, C13), 130.4 (C19), 130.0 (C4), 129.5 (C24), 129.0 (2C, C17), 128.5 (2C, C23), 128.0 (C1), 127.8 (C6), 126.8 (2C, C18), 126.8 (2C, C23), 121.1 (C5), 116.3 (C10), 114.7 (d, ²*J*_{CF} = 21.7 Hz, C14), 113.6 (C3), 107.1 (C8), 70.2 (C20). ¹⁹F NMR (376 MHz, CDCl₃): δ_F = -112.1 HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t_R* (major) =41.8 min, *t_R* (minor) = 16.8 min. IR: v_{max} (thin film): 3060, 2922, 2236, 1654, 1605, 1498, 1271, 1222, 1159, 998, 730, 697 cm⁻¹. HRMS (ES+): found 448.1711; C₃₀H₂₃FNO₂, [M+H]⁺ requires 448.1713. [*α*]²⁹³ +29.6 (*c* = 0.5, CHCl₃).

4-((2-(6-(4-Fluorophenyl)-2-oxo-4-phenylpyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4h)

General Procedure D: Pyridone **3e** (100 mg, 280 μmol, 1.0 equiv.), QD-1 (23.3 mg, 42.0 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (193 μL, 1.40 mmol, 5.0 equiv.) and R²I-**S2** (340 mg, 1.40 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4h** as a yellow solid (114 mg, 86%, 57% ee). ¹**H NMR** (400 MHz, CDCl₃): δ_H = 7.68-7.65 (2H, m, H17), 7.62-7.59 (2H, m, H23), 7.52-7.46 (3H, m, H18, 19), 7.43 (2H, d, *J* = 8.6 Hz, H22), 7.22 (1H, td, *J* = 8.0, 1.8 Hz, H4), 7.16-7.11 (3H, m, H6, 13), 6.97-6.93 (2H, m, H5, 10), 6.87-6.80 (3H, m, H3,14), 6.50 (1H, d, *J* = 2.0 Hz, H8), 5.14-5.02 (2H, m, H20). ¹³**C NMR** (101 MHz CDCl₃): δ_C = 163.9 (C7), 162.6 (d, ¹*J*_{CF} = 249.0 Hz, C15), 153.2 (C9), 151.6 (C2), 149.1 (C11), 142.0 (C21), 137.4 (C16), 132.3 (2C, C23), 131.6 (d, ⁴*J*_{CF} = 3.5 Hz, C12), 130.6 (C6), 130.6 (d, ³*J*_{CF} = 8.1 Hz, C13), 130.1 (C4), 129.7 (C19), 129.1 (2C, C17), 128.2 (C1), 127.1 (2C, C18), 126.8 (2C, C22), 121.8 (C5), 118.7 (C25), 116.2 (C8), 114.9 (d, ²*J*_{CF} = 21.7 Hz, C14), 113.5 (C3), 111.7 (C25), 107.2 (C10), 69.4 (C20) . ¹⁹**F NMR** (376 MHz, CDCl₃): δ_F = -111.7. **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 38.7 min, *t*_R (minor) = 14.5 min. **IR**: v_{max} (thin film): 3060, 2922, 2228, 1654, 1606, 1498, 1364, 1222, 909, 820, 726, 697 cm⁻¹. **HRMS** (ES+): found 473.1670; C₃₁H₂₂FN₂O₂, [M+H]⁺ requires 473.1665. [*α*]₂^{P39} +42.9 (*c* = 0.6, CHCl₃).

6-(4-Fluorophenyl)-1-(2-((4-methylbenzyl)oxy)phenyl)-4-phenylpyridin-2(1H)-one (4i)

General Procedure D: Pyridone **3e** (100 mg, 280 μmol, 1.0 equiv.), QD-1 (23.3 mg, 42.0 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (193 μL, 1.40 mmol, 5.0 equiv.) and R²I-**S3** (324 mg, 1.40 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4i** as an off-white foam (81 mg, 63%, 51% *ee*). ¹**H NMR** (400 MHz, CDCl₃): δ_H = 7.68-7.65 (2H, m, H17), 7.51-7.44 (3H, m, H18, 19), 7.23-7.19 (3H, m, H4, 22), 7.15-7.11 (5H, m, H6, 13, 23), 6.94-6.80 (5H, m, H3, 5, 10, 14), 6.45 (1H, d, *J* = 2.0 Hz, H8), 5.05-4.88 (2H, m, H20), 2.33 (3H, s, H25). ¹³**C NMR** (101 MHz CDCl₃): δ_C = 163.8 (C7), 162.5 (d, ¹*J*_{CF} = 248.7 Hz, C15), 153.8 (C9), 151.3 (C2), 149.2 (C11), 137.7 (C16), 137.6 (C24), 133.7 (C22), 131.8 (d, ⁴*J*_{CF} = 3.6 Hz, C12), 130.7 (d, ³*J*_{CF} = 8.5 Hz, C13), 130.3 (C4), 130.0 (C19), 129.5 (C5), 129.2 (2C, C23), 129.0 (2C, C17), 128.0 (C1), 126.9 (2C, C18), 126.8 (2C, C22), 121.0 (C6), 116.3 (C8), 114.7 (d, ²*J*_{CF} = 21.6 Hz, C14), 112.5 (C3), 107.1 (C10), 70.3 (C20), 21.2 (C25). ¹⁹**F NMR** (376 MHz, CDCl₃): δ_F = -112.2 HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 61.4 min, *t*_R (minor) = 21.6 min. **IR**: ν_{max} (thin film): 3056, 2922, 2236, 1654, 1608, 1498 1364, 1222, 909, 726, 697 cm⁻¹. **HRMS** (ES+): found 462.1872; C₃₁H₂₅FNO₂, [M+H]⁺ requires 462.1869. [*α*]_D²⁹³ +24.7 (*c* = 0.6, CHCl₃).

General Procedure D: Pyridone **3c** (100 mg, 272 μmol, 1.0 equiv.), QD-1 (22.5 mg, 40.8 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (188 μL, 1.36 mmol, 5.0 equiv.) and R²I-**S1** (169 μL, 1.36 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4j** as a yellow foam (66 mg, 53%, 40% ee). ¹**H NMR** (400 MHz, CDCl₃): δ_H = 7.48-7.37 (5H, m, H17, 18, 19), 7.36-7.27 (5H, m, H13, 14, 15), 7.21-7.09 (7H, m, H4, 6, 24, 25, 26), 6.92-6.85 (2H, m, H3, 5), 6.14 (1H, s, H10), 5.11-4.92 (2H, m, H22), 2.64-2.55 (2H, m, H20), 2.45 (3H, t, *J* = 7.3 Hz, H21). ¹³**C NMR** (101 MHz CDCl₃): δ_C = 163.1 (C7), 153.9 (C2), 149.2 (C16), 146.3 (C11), 140.0 (C16), 137.0 (C23), 135.7 (C12), 130.8 (C8), 130.5 (C4), 129.5 (C26), 129.0 (C1), 128.8 (2C, C17), 128.4 (2C, C18), 128.3 (2C, C25), 128.2 (C19), 128.0 (2C, C14), 127.8 (C15), 127.6 (C6), 127.5 (2C, C13), 126.7 (2C, C24), 120.9 (C5), 113.4 (C3), 109.8 (C10), 70.2 (C22), 21.7 (C20), 13.6 (C21). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 69.9 min, *t*_R (minor) = 30.2 min. **IR**: v_{max} (thin film): 2929, 2240, 1643, 1602, 1494, 1449, 1375, 1271, 1226, 1025, 723, 697 cm⁻¹. **HRMS** (ES+): found 458.2115; C₃₂H₂₈NO₂, [M+H]⁺ requires 458.2120. [*α*]²⁹³ +6.0 (*c* = 0.5, CHCl₃).

4-((2-(3-Ethyl-2-oxo-4,6-diphenylpyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4k)

General Procedure D: Pyridone **3c** (50.0 mg, 136 μmol, 1.0 equiv.), QD-1 (11.3 mg, 20.4 μmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (94.0 μL, 680 μmol, 5.0 equiv.) and R²I-**S2** (165 mg, 680 μmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4k** as a yellow foam (46 mg, 70%, 28% ee). ¹H NMR (400 MHz, CDCl₃): δ_{H} = 7.64-7.61 (2H, m, H17), 7.50-7.38 (7H, m, H18, 19, 24, 25), 7.22-7.09 (7H, m, H4, 6, 13, 14, 15), 6.93 (1H, td, *J* = 7.6, 1.2 Hz, H5), 6.81 (1H, dd, *J* = 8.4, 1.1 Hz, H3), 6.19 (1H, s, H10), 5.17-5.02 (2H, m, H22), 2.66-2.53 (2H, m, H20), 1.16 (1H, t, *J* = 7.5 Hz, H21). ¹³C NMR (101 MHz CDCl₃): δ_{C} = 163.0 (C7), 153.4 (C2), 149.4 (C9), 146.2 (C11), 142.4 (C23), 139.7 (C12), 135.6 (C16), 132.3 (2C, C25), 130.8 (C8), 130.6 (C19), 129.6 (C4), 129.0 (C1), 128.7 (2C, C18), 128.5 (2C, C14), 128.3 (C15), 128.0 (C5), 127.9 (2C, C24), 127.6 (2C, C13), 127.0 (2C, C17), 121.5 (C6), 118.7 (C27), 113.2 (C3), 111.5 (C26), 110.0 (C10), 69.2 (C22), 21.7 (C20), 13.6 (C21). HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 22.3 min, *t*_R (minor) = 17.4 min. IR: v_{max} (thin film): 3056, 2929, 2228, 1640, 1605, 1539, 1494, 1446, 1274, 1021, 909, 726 cm⁻¹. HRMS (ES+): found 483.2078; C₃₃H₂₇N₂O₂, [M+H]⁺ requires 483.2073. [*α*]²⁹³ +12.0 (*c* = 0.4, CHCl₃).

General Procedure D: Pyridone **3c** (50 mg, 136 μmol, 1.0 equiv.), QD-1 (11.3 mg, 20.4 μmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (95.0 μL, 680 μmol, 5.0 equiv.) and R²I-**S3** (158 mg, 680 μmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% \rightarrow 2.5% MeOH/dichloromethane) affording **4I** as a yellow foam (21 mg, 33%, 41% *ee*). ¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ = 7.48-7.37 (5H, m, H17, 18, 19), 7.23-7.07 (11H, m, H4, 6, 13, 14, 15, 22, 23), 6.90-6.86 (2H, m, H3, 5), 6.14 (1H, s, H10), 5.07-4.88 (2H, m, H22), 2.65-2.56 (2H, m, H20), 2.36 (3H, s, H27), 1.89 (3H, t, *J* = 7.3 Hz, H21). ¹³**C NMR** (101 MHz CDCl₃): $\delta_{\rm C}$ = 163.1 (C7), 154.0 (C2), 149.2 (C9), 146.3 (C11), 140.0 (C26), 137.3 (C12), 135.8 (C23), 134.0 (C16), 130.8 (C8), 130.5 (C4) 129.5 (C19), 129.0 (2C, C25), 129.0 (C1), 128.8 (2C, C17), 128.3 (2C, C14), 128.1 (C5), 128.1 (2C, C18), 127.8 (C15), 127.5 (2C, C13), 126.9 (2C, C24), 120.8 (C6), 113.4 (C3), 109.8 (C10), 70.2 (C22), 21.7 (C20), 21.2 (C27), 13.6 (C21). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t_R* (major) = 26.9 min, *t_R* (minor) = 25.0 min. **IR**: v_{max} (thin film): 3026, 2922, 2240, 1643, 1606, 1539, 1474, 1271, 1226, 909, 726, 697 cm⁻¹. **HRMS** (ES+): found 472.2289; C₃₃H₃₀NO₂, [M+H]⁺ requires 472.2277. [*α*]²⁹³ +8.54 (*c* = 0.4, CHCl₃).

3-Acetyl-1-(2-(benzyloxy)phenyl)-4,6-diphenylpyridin-2(1H)-one (4m)

General Procedure D: Pyridone **3b** (100 mg, 262 μmol, 1.0 equiv.), QD-1 (21.6 mg, 39.3 μmol, 15 mol%). CHCl₃ (11 mL) was added followed by 50% aqueous K₂CO₃ (182 μL, 1.31 mmol, 5.0 equiv.) and R²I-**S1** (163 μL, 1.31 mmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4m** as a yellow foam (82 mg, 66%, 6% ee). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 7.44-7.40 (5H, m, H17, 18, 19), 7.37-7.31 (5H, m, H13, 14, 15), 7.23-7.18 (2H, m, H4, 26), 7.16-7.13 (5H, m, H6, 24, 25), 6.90-6.86 (2H, m, H3, 5), 6.27 (1H, s, H10), 5.11-4.95 (2H, m, H22), 2.45 (3H, s, H21). ¹³C NMR (101 MHz CDCl₃): $\delta_{\rm C}$ = 202.2 (C2), 160.6 (C7), 153.8 (C9), 150.8 (C2), 150.7 (C11), 137.9 (C16), 136.7 (C21), 135.0 (C12), 130.3 (C19), 130.1 (C4), 129.3 (C8), 129.0 (C15), 128.9 (C26), 128.6 (2C, C17), 128.6 (2C, C18), 128.5 (2C, C24), 128.0 (2C, C14), 127.8 (C6), 127.7 (2C, C13), 127.5 (C1), 126.9 (2C, C24), 121.0 (C5), 113.4 (C3), 109.7 (C8), 70.4 (C22), 31.7 (C21). HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 11.3 min, *t*_R (minor) = 9.4 min. IR: v_{max} (thin film): 3060, 2243, 1699, 1640, 1528, 1490, 1367, 1271, 909, 752, 730, 697 cm⁻¹. HRMS (ES+): found 472.1904; C₃₂H₂₆NO₃, [M+H]⁺ requires 472.1913. [*α*]²⁹³ +1.3 (*c* = 0.5, CHCl₃).

General Procedure D: Pyridone **3b** (50.0 mg, 131 μmol, 1.0 equiv.), QD-1 (10.8 mg, 19.7 μmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (91.0 μL, 655 μmol, 5.0 equiv.) and R²I-**S2** (159 mg, 655 μmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4n** as a yellow foam (45 mg, 69%, 3% ee). ¹H NMR (400 MHz, CDCl₃): δ_{H} = 7.67-7.64 (2H, m, H17), 7.46-7.40 (7H, m, H18, 19, 24, 25), 7.24-7.12 (7H, m, H4, 6, 13, 14, 15), 6.93 (1H, td, *J* = 7.6, 1.2 Hz, H5), 6.81 (1H, dd, *J* = 8.4, 1.2 Hz, H3), 6.31 (1H, s, H10), 5.16-5.05 (2H, m, H22). ¹³C NMR (101 MHz CDCl₃): δ_{C} = 202.13 (C20), 160.5 (C7), 153.4 (C2), 150.6 (C11), 150.5 (C9), 142.0 (C23), 137.6 (C16), 134.9 (C12), 132.5 (2C, C25), 130.4 (C4), 130.2 (C19), 129.5 (C8), 129.2 (C15), 129.0 (C5), 128.8 (2C, C18), 128.5 (2C, C14), 127.9 (2C, C24), 127.9 (2C, C13), 127.6 (C1), 127.3 (2C, C17), 121.6 (C6), 118.7 (C27), 113.3 (C3), 111.8 (C26), 109.8 (C10), 69.5 (C22), 31.7 (C21). HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 13.7 min, *t*_R (minor) = 10.9 min. IR: v_{max} (thin film): 3060, 2922, 2228, 1699, 1640, 1602, 1528, 1271, 909, 756, 726 cm⁻¹. HRMS (ES+): found 497.1862; C₃₃H₂₅N₂O₃, [M+H]⁺ requires 497.1865. [*α*]²⁹³ +0.8 (*c* = 0.5, CHCl₃).

3-Acetyl-1-(2-((4-methylbenzyl)oxy)phenyl)-4,6-diphenylpyridin-2(1H)-one (40)

General Procedure D: Pyridone **3b** (50.0 mg, 131 μmol, 1.0 equiv.), QD-1 (10.8 mg, 19.7 μmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% aqueous K₂CO₃ (91.0 μL, 655 μmol, 5.0 equiv.) and R²I-**S3** (152 mg, 655 μmol, 5.0 equiv.). Crude mixture purified by flash column chromatography (silica gel, 1% → 2.5% MeOH/dichloromethane) affording **4o** as an off-white foam (32 mg, 54%, 5% ee). ¹H NMR (400 MHz, CDCl₃): δ_H = 7.42-7.39 (5H, m, H17, 18, 19), 7.24-7.11 (111H, m, H4, 6, 13, 14, 15, 22, 23), 6.90-6.87 (2H, m, H3, 5), 6.26 (1H, s, H10), 5.06-4.91 (2H, m, H22), 2.47 (3H, s, H21), 2.36 (3H, s, H27). ¹³C NMR (101 MHz CDCl₃): δ_C = 202.2 (C20), 160.6 (C7), 153.9 (C2), 150.8 (C11), 150.7 (C16), 138.0 (C9), 137.6 (C26), 135.0 (C12), 133.7 (C23), 130.2 (C4), 130.0 (C5) 129.3 (C8), 129.2 (2C, C17), 129.0 (C19), 128.9 (C15), 128.6 (2C, C25), 128.6 (2C, C18), 128.0 (2C, C14), 127.7 (2C, C13), 127.5 (C1), 127.0 (2C, C24), 120.9 (C6), 113.4 (C3), 109.7 (C10), 70.4 (C22), 31.7 (C21), 21.2 (C27). HPLC: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, *λ* = 250 nm, *t*_R (major) = 17.5 min, *t*_R (minor) = 15.6 min. IR: v_{max} (thin film): 3056, 2922, 1699, 1643, 1602, 1531, 1494, 1267, 1028, 801, 760 cm⁻¹. HRMS (ES+): found 486.2066; C₃₃H₂₈NO₃, [M+H]⁺ requires 486.2069. [*α*]²⁹³ +0.9 (*c* = 0.6, CHCl₃).

2.7 6-(4-Fluorophenyl)-1-(2-((3-methylbut-2-en-1-yl)oxy)phenyl)-4-phenylpyridin-2(1H)-one (4p)

A round-bottomed flask was charged with 2'-hydroxyphenyl-2-pyridone 3e (50 mg, 140 µmol, 1.0 equiv.), C4 (7.7 mg, 14.0 µmol, 15 mol%). CHCl₃ (6 mL) was added followed by 50% agueous K₂CO₃ (97.0 µL, 700 µmol, 5.0 equiv.) and 3,3-dimethylallyl bromide (81 µL, 700 µmol, 5.0 equiv.) as the flask was sealed and stirred at 35 °C for 18 h. Piperidine (4.0 equiv.) was added and reaction mixture was stirred for 30 mins before addition of 3M HCI (ca. 1 mL). Crude product was extracted with EtOAc (3 x10 mL/mmol), dried over anhydrous magnesium sulfate and the solvent removed in vacuo resulting in a crude solid. Crude mixture purified by flash column chromatography (silica gel, $1\% \rightarrow 2.5\%$ MeOH/dichloromethane) affording 4p as a yellow foam (47 mg, 59%, 47% ee). ¹H NMR (400 MHz, CDCl₃): $\delta_{H} = 7.69$ -7.66 (2H, m, H17), 7.50-7.42 (3H, m, H18, 19), 7.22-7.16 (3H, m, H4, 22), 7.10 (1H, dd, J = 7.7, 1.7 Hz, H6), 6.91-6.78 (5H, m, H3, 5, 10, 14), 6.47 (1H, d, J = 2.0 Hz, H8), 5.31-5.27 (1H, m, H21), 4.51-4.35 (2H, m, H20), 1.74 (3H, s, H24), 1.68 (3H, s, H23). ¹³**C NMR** (101 MHz CDCl₃): δ_{C} = 163.8 (C7), 162.5 (d, ¹ J_{CF} = 248.7 Hz, C15), 153.7 (C9), 151.1 (C2), 149.2 (C11), 137.7 (C16), 137.0 (C22), 131.9 (d, ⁴*J*_{CF} = 3.6 Hz, C12), 130.7 (d, ³*J*_{CF} = 8.4 Hz, C13), 130.3 (C4), 129.9 (C19), 129.5 (C5), 129.0 (2C, C17), 127.7 (C1), 126.8 (2C, C18), 120.5 (C5), 119.8 (C21), 116.3 (C8), 114.6 (d, ²J_{CF} = 21.8 Hz, C14), 113.2 (C3), 106.9 (C10), 65.5 (C20), 25.7 (C24), 18.3 (C23). ¹⁹F NMR (376 MHz, CDCl₃): $\delta_F = -112.3$. **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 29.5 min, t_R (minor) = 13.7 min. **IR**: v_{max} (thin film): 3060, 2922, 1658, 1605, 1498, 1364, 1267, 1222, 998, 842, 749, 697 cm⁻¹. HRMS (ES+): found 426.1867; $C_{28}H_{25}NO_{2}$, $[M+H]^+$ requires 426.1869. $[\alpha]_D^{293}$ +19.5 (c = 0.4, CHCl₃).

2.8 Catalyst-substrate co-crystal (6)

A flask was charged with pyridone **3c** (25 mg, 70.0 µmol, 1.0 equiv.) and evacuated/backfilled with Ar under vacuum. THF (3mL) was added followed by NaH (2.0 mg, 70.0 µmol, 1.0 equiv.) as the flask was sealed and stirred at room temperature for 10 minutes. Under Ar, QD-1 was added and reaction mixture left to stir for a further 10 minutes. The reaction mixture was washed through a celite pad with EtOAc (25 mL) and reduced in vacuo affording a yellow residue. Recrystallization from hot EtOAc was attempted but with no success, the solution was reduced to dryness and CHCl₃ was added. A small portion (ca. 0.2 mL) was removed and subjected to vapour diffusion, using n-hexane (ca. 1 mL) as the anti-solvent, affording yellow crystals.

Triethyloxonium tetrafluoroborate (13 mg, 0.068 mmol) was added in one portion to a stirred solution of pyridone **4i** (15 mg, 0.032 mmol) in anhydrous dichloromethane (1 mL). After 1 h the reaction mixture was diluted with dichloromethane (5 mL) and washed with sodium bicarbonate (sat. aq., 5 mL). The aqueous phase was extracted with dichloromethane (3 x 5 mL). The organic extracts were combined, dried over anhydrous magnesium sulfate, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (SiO₂, 2% MeOH in dichloromethane) to afford the product **7** salt as a beige solid (17 mg, 91%). δ_{H} (CDCl₃, 600 MHz): 7.93-7.89 (2H, m, ArC), 7.65 (1H, s, H2), 7.60-7.54 (4H, m, ArH), 7.50 (1H, s, H4), 7.33 (1H, t, *J* 7.9, ArH), 7.29-7.27 (2H, m, ArH), 7.14 (2H, d, *J* 7.8, H15), 7.07 (2H, d, *J* 7.8, H14) 6.99 (1H, t, *J* 7.7, ArH), 6.94-6.89 (3H, m, ArH), 5.02 (1H, dd, *J* 12.0, H12), 4.96 (1H, dd, *J* 12.0, H12'), 4.75-4.69 (1H, m, H25), 4.57-4.50 (1H, m, H25'), 2.34 (3H, s, H27), 1.30 (3H, t, *J* 7.0, H26); δ_C (CDCl₃, 151 Hz) 163.6 (d, *J* 252.6), 160.9, 160.4, 153.2, 152.2 (C11), 138.5, 135.0, 132.5, 132.03, 132.01, 131.4 (d, *J* 8.8, C18), 129.73, 129.68, 129.5 (C15), 128.4, 128.3, 127.0 (C14), 125.0, 121.7, 118.4 (C4), 115.5 (d, *J* 22.1, C19), 113.0, 107.3 (C2), 70.5 (C12), 69.9 (C25), 21.9 (C27), 13.9 (C26); δF (CDCl₃, 564 MHz): -108.7 (1F, s, Ar-F), 153.4 (4F, s, BF4'); **HRMS (ES*)** found 490.2165 (C₃₃H₂₉NO₂F⁺, [M-BF4]⁺ requires 490.2182), **HRMS (ES*)** found 86.9950 ([BF4]⁻ requires 87.0029); 664.2233 (C₃₃H₂₉B₂NO₂F⁹, [M+BF4]⁻ requires 664.2241). **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, $\lambda = 250$ nm, t_R (major) = 54.9 min, t_R (minor) = 20.9 min, 49% ee; [α]²⁹³ +49.6 (c = 0.4, CHCl₃).

3 X-Ray Crystallography

Low temperature¹² and room temperature single crystal X-ray diffraction studies for **4a**, **4b**, **4j**, **4m** were carried out using CuK_{α} radiation on an Agilent Supernova diffractometer equipped with an area detector and graphite monochromator. Raw frame data were reduced using CrysAlisPRO¹³ and solved using SHELXT 2015.¹⁴ Full-matrix least-squares refinement of the structures were carried out using CRYSTALS.¹⁵ The absolute stereochemistry of **4b** was found using the method of Flack.¹⁶

X-ray diffraction studies for **3a** were conducted using CuK_a on a Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector, at the National Crystallography Service in the University of Southampton. Raw frame data were reduced using CrysAlisPRO^[2] and solved using SHELXT.¹⁴ Full-matrix leastsquared refinement of the structure was carried out using SHELXL¹⁷ and visualised using Olex 1.3.¹⁸ A void containing disordered solvent molecules necessitated the use of a solvent mask. A mask was calculated, and 1559 electrons were found in a volume of 5917 Å³ in 1 void per unit cell. This is consistent with the presence of 3[CHCl₃] per asymmetric unit. One of the pyridone phenol moieties is disordered, so was refined over two positions (occupancies 0.63 and 0.37).

Full refinement details are given in the supplementary material (CIF). CCDC 2124211 (**4a**), 2124210 (**4b**), 2124208 (**4j**), 2124209 (**4m**) and 2124143 (**6**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre and copies can be obtained free of charge *via* www.ccdc.cam.ac.uk/data request/cif.

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å⁻³)

 $C_{30}H_{23}NO_2 \\$ 429.52 Monoclinic, I2/a 100 18.54, 10.37, 24.28 103.312 (3) 4542.64 (6) 8 Cu Ka 0.62 $0.20 \times 0.16 \times 0.16$ Oxford Diffraction SuperNova Multi-scan CrysAlis PRO (Rigaku Oxford Diffraction, 2017) 0.78, 0.91 22074, 4384, 3995 0.019 0.615 0.048, 0.125, 1.00 4384 299 H-atom parameters constrained

1.05, -0.17

(+)-4b (CCDC 2124210)

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å³) Ζ Radiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[l > 2.0\sigma(l)]$ reflections **R**int $(\sin \theta / \lambda)_{max} (Å^{-1})$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters No. of restraints H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å⁻³) Absolute structure Absolute structure parameter

C₆₂H₄₄N₄O₄ 909.06 Monoclinic, P21 299 9.3537 (3), 12.1471 (4), 11.0218 (3) 104.661 (3) 1211.52 (6) 1 Cu *K*α 0.62 $0.16 \times 0.16 \times 0.12$ Oxford Diffraction SuperNova Multi-scan CrysAlis PRO (Rigaku Oxford Diffraction, 2017) 0.76, 0.93 6917, 4528, 4016 0.000 0.615 0.037, 0.094, 0.95 4528 317 1 H-atom parameters not refined 0.18, -0.27 Parsons, Flack & Wagner (2013), 1957 Friedel Pairs 0.02 (15)

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å³) Ζ Radiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[l > 2.0\sigma(l)]$ reflections R_{int} $(\sin \theta / \lambda)_{max} (Å^{-1})$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å⁻³)

C₃₂H₂₇NO₂ 457.55 Monoclinic, I2/a 293 21.811899 (14), 9.84050 (1), 23.848099 (14) 101.3470 (18) 5018.70 (3) 8 Cu *K*α 0.59 0.30 × 0.28 × 0.18 Oxford Diffraction SuperNova Multi-scan CrysAlis PRO (Rigaku Oxford Diffraction, 2017) 0.67, 0.90 45155, 4846, 4399 0.021 0.615 0.041, 0.110, 0.88 4846 316 H-atom parameters constrained

0.13, -0.18

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å³) Ζ Radiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[l > 2.0\sigma(l)]$ reflections R_{int} $(\sin \theta / \lambda)_{max} (Å^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment $\Delta\rho_{max}, \Delta\rho_{min}$ (e Å⁻³) $C_{132}H_{96}N_8O_{12}$ 1986.26 Monoclinic, P_{21}/n 100 14.759600 (14), 9.835999 (10), 17.417799 (14) 94.4720 (18) 2520.94 (1) 1 Cu $K\alpha$ 0.67 0.30 × 0.10 × 0.10 Oxford Diffraction SuperNova

Multi-scan *CrysAlis PRO* (Rigaku Oxford Diffraction, 2017) 0.93, 0.93

23616, 4859, 4283

0.122 0.615

0.052, 0.138, 0.96 4859 343 H-atom parameters constrained 0.33, -0.30

6 (CCDC 2124143)

Crvsta	al data

Chemical formula <i>M</i> r	C23H16FNO2•C23H15FNO2•C35H35N2O2 1229.37
Crystal system, space group	Trigonal, <i>R</i> 3
Temperature (K)	100
<i>a</i> , <i>c</i> (Å)	28.7071 (4), 25.9528 (4)
V (Å ³)	18522.2 (6)
Ζ	9
Radiation type	Cu <i>Κ</i> α
µ (mm⁻¹)	0.53
Crystal size (mm)	$0.22 \times 0.04 \times 0.04$
Data collection	
Diffractometer	Rigaku 007HF diffractometer equipped with Varimax confocal mirrors, an AFC11 goniometer and HyPix 6000 detector
Absorption correction	Multi-scan <i>CrysAlis PRO</i> 1.171.41.113a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.393, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	72024, 14182, 10313

R _{int}	0.051
(sin θ/λ) _{max} (Å ⁻¹)	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.040, 0.110, 1.02
No. of reflections	14182
No. of parameters	896
No. of restraints	841
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ Å^{-3})$	0.15, -0.11
Absolute structure	Flack x determined using 3880 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.01 (8)
4 Measurement of Rotational Barriers

The phenol starting materials **3a-e** underwent rapid racemisation at room temperature, necessitating the separation of racemic mixtures by HPLC on a chiral stationary phase immediately prior to the thermal racemisation analysis.

General Procedure E – Measurement of Barriers in Phenols 3a-3e

A sample of racemic 2'-hydroxyphenyl-2-pyridone was separated on HPLC (3a, d and e, Chiralpak OD-RH, 60:40 MeCN/H₂O, 0.75 mL/min) or (3b and c, SB-Cellulose, 20:80 IPA/hexane, 1 mL/min) and each enantiomer semi-preparatively collected to ensure two enantioenriched samples of each enantiomer of the respective 2'-hydroxyphenyl-2-pyridone. The samples were stored at 0 °C until sampled as soon as possible for HPLC analysis (under the same conditions required for initial enantiomer separation) over 7-12 hours with the column and the sample tray held at the desired temperature (10, 20 or 30 °C) until analysis was complete. Compounds were sampled in either MeCN (60 μ L, 3a, d and e) or IPA (60 μ L, 3b and c).

General Procedure F – Measurement of Barriers in Products 4a-4p

A sample of the benzylated product (1-2 mg) was dissolved in DMSO (80 μ L), placed in a glass vial and immersed in a temperature-controlled oil bath (*t* = 0) set to the desired temperature (60, 70 and 80 °C). Samples were removed using the tip of a pasteur pipette at a series of time-points (e.g. *t* = 1 h, 2 h, 3 h, 4 h, 6 h, 16 h, 30 h, 54 h, 76 h). Each sample was added to an HPLC vial containing acetonitrile (1 mL) and its *ee* measured by HPLC on a chiral stationary phase (Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min).

Equation	$y = a + b^*x$			
Plot	In(100/ee)	In(100/ee)	In(100/ee)	
Weight		No Weighting		
Intercept	0.08202 ± 0.00118	0.06561 ± 0.00469	0.07507 ± 0.02999	
Slope	2.86714E-5 ± 7.8339E-8	7.47416E-5 ± 3.11499E-7	1.88598E-4 ± 1.74965E-6	
Residual Sum of Squares	2.00429E-5	3.16897E-4	0.01666	
Pearson's r	0.99998	0.99995	0.9997	
R-Square(COD)	0.99996	0.9999	0.9994	
Adj. R-Square	0.99995	0.99988	0.99931	

		Т (К)			
	283	293	303		
k_{rac} (s ⁻¹)	2.867E-05	7.474E-05	1.886E-04		
<i>k_{ent}</i> (s ⁻¹)	1.434E-05	3.737E-05	9.430E-05		
ΔG_T^{\ddagger} (kJ mol ⁻¹)	95.43	96.56	97.60		
_t _{1/2} (rac) ₇ (min)	402.93	154.57	61.25		

$\Delta H_{ent}^{\ddagger} = 64.7 \text{ kJ mol}^{-1}$
$\Delta S^{\ddagger}_{ent} = -108.7 \text{ J K}^{-1} \text{ mol}^{-1}$

Equation					
Plot	In(100/ee)	In(100/ee)	In(100/ee)		
Weight		No Weighting			
Intercept	0.05367 ± 0.00242	0.05367 ± 0.00242 0.07136 ± 0.01036 0.34948 ± 0.479			
Slope	2.4848E-5 ± 1.4133E-7	8.01546E-5 ± 6.8824E-7	2.06711E-4 ± 2.79789E-5		
Residual Sum of Squares	1.08723E-4	0.00155	4.26104		
Pearson's r	0.99989	0.99978	0.94145		
R-Square(COD)	0.99977	0.99956	0.88633		
Adj. R-Square	0.99974	0.99948	0.8701		

		Т (К)			
	283	293	303		
k_{rac} (s ⁻¹)	2.485E-05	8.015E-05	2.067E-04		
<i>k_{ent}</i> (s⁻¹)	1.242E-05	4.008E-05	1.034E-04		
ΔG_T^{\ddagger} (kJ mol ⁻¹)	95.77	96.39	97.37		
_t _{1/2} (rac) ₇ (min)	464.92	144.13	55.89		

 $\Delta H_{ent}^{\ddagger} =$ 73.2 kJ mol⁻¹ $\Delta S_{ent}^{\ddagger} =$ -79.6 J K⁻¹ mol⁻¹

Equation		y = a + b*x			
Plot	In(100/ee)	In(100/ee)	In(100/ee)		
Weight		No Weighting			
Intercept	0.04601 ± 0.00428	0.04601 ± 0.00428 0.025 ± 0.00493 0.08217 ± 0.02716			
Slope	1.57896E-5 ± 2.49711E-7	5.09242E-5 ± 3.27242E-7	1.31733E-4 ± 1.80372E-6		
Residual Sum of Squares	3.39413E-4	3.4974E-4	0.01063		
Pearson's r	0.99913	0.99988	0.99944		
R-Square(COD)	0.99825	0.99975	0.99888		
Adj. R-Square	0.998	0.99971	0.99869		

	Т (К)			
	283	293	303	
k_{rac} (s ⁻¹)	1.579E-05	5.092E-05	1.317E-04	
<i>k_{ent}</i> (s⁻¹)	7.895E-06	2.546E-05	6.587E-05	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	96.84	97.49	98.51	
$t_{1/2}(rac)_T$ (min)	731.65	226.86	87.70	

 $\Delta H_{ent}^{\ddagger} =$ 73.3 kJ mol⁻¹ $\Delta S_{ent}^{\ddagger} =$ -83.1 J K⁻¹ mol⁻¹

		Т (К)			
	333	343	353		
k_{rac} (s ⁻¹)	1.072E-06	5.246E-06	1.648E-05		
<i>k_{ent}</i> (s⁻¹)	5.360E-07	2.623E-06	8.239E-06		
ΔG_T^{\ddagger} (kJ mol ⁻¹)	121.84	121.06	121.31		
<i>t_{1/2}(rac)</i> ⁷ (min)	10777.55	2202.17	701.09		

 $\Delta H_{ent}^{\ddagger} = 131.0 \text{ kJ mol}^{-1}$

 $\Delta S^{\ddagger}_{ent} = +27.7 \text{ J K}^{\text{-1}} \text{ mol}^{\text{-1}}$

Extrapolated half-life of racemization at 20°C: 14.3 y

 $\Delta H_{ent}^{\ddagger} = 99.1 \text{ kJ mol}^{-1}$

 $\Delta S_{ent}^{\ddagger} = -66.5 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 2.5 y

	I (K)			
	333		333	
<i>k_{rac}</i> (s ⁻¹)	9.754E-07	k_{rac} (s ⁻¹)	9.754E-07	
<i>k_{ent}</i> (s ⁻¹)	4.877E-07	<i>k_{ent}</i> (s ⁻¹)	4.877E-07	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	122.11	ΔG_T^{\ddagger} (kJ mol ⁻¹)	122.11	
<i>t</i> _{1/2} (<i>rac</i>) ₇ (min)	11843.60	<i>t</i> _{1/2} (<i>rac</i>) ₇ (min)	11843.60	

 $\Delta H_{ent}^{\ddagger} = 122.5 \text{ kJ mol}^{-1}$

 $\Delta S^{\ddagger}_{ent} = +0.6 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 11.5 y

S45

 $\Delta H_{ent}^{\ddagger} = 113.0 \text{ kJ mol}^{\text{-1}}$

 $\Delta S_{ent}^{\ddagger} = -25.9 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 5.7 y

quation	y = a + b*x		
flot	In(100/ee)	In(100/ee)	In(100/ee)
Veight		No Weighting	
ntercept	0.42686	0.43287	0.41714
lope	1.16124E-6	1.22767E-5	4.7849E-6
tesidual Sum of Squares	6.6832E-4	0.00607	0.01187
earson's r	0.99617	0.99947	0.99618
t-Square(COD)	0.99235	0.99894	0.99238
di. R-Square	0.99126	0.99882	0.99142

	т (К)				
	333	343	353		
k_{rac} (s ⁻¹)	1.161E-06	4.785E-06	1.228E-05		
<i>k_{ent}</i> (s ⁻¹)	5.806E-07	2.392E-06	6.138E-06		
ΔG_T^{\ddagger} (kJ mol ⁻¹)	121.62	121.32	122.18		
$t_{1/2}(rac)_T$ (min)	9948.38	2414.36	941.01		

 $\Delta H_{ent}^{\ddagger} = 112.7 \text{ kJ mol}^{-1}$

 $\Delta S_{ent}^{\ddagger} = -26.5 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 5.3 y

 $\Delta H_{ent}^{\ddagger} = 112.9 \text{ kJ mol}^{-1}$

 $\Delta S_{ent}^{\ddagger} = -27.2 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 6.5 y

Equation		y = a + b*x	
Plot	In(100/ee)	In(100/ee)	In(100/ee)
Weight		No Weighting	
Intercept	0.44743	0.40233	0.43808
Slope	2.74858E-6	1.00819E-5	8.44969E-7
Residual Sum of Squares	0.00133	0.03525	1.56816E-4
Pearson's r	0.99872	0.99744	0.99995
R-Square(COD)	0.99744	0.99489	0.99989
Adj. R-Square	0.99712	0.99425	0.99987

		Т (К)	
	333	343	353
k_{rac} (s ⁻¹)	8.450E-07	2.749E-06	1.008E-05
<i>k_{ent}</i> (s ⁻¹)	4.225E-07	1.374E-06	5.041E-06
ΔG_T^{\ddagger} (kJ mol ⁻¹)	122.50	122.90	122.70
<i>t</i> _{1/2} (<i>rac</i>) ₇ (min)	13672.04	4203.06	1145.86

 $\Delta H_{ent}^{\ddagger}=118.3~\rm kJ~mol^{\text{-}1}$

 $\Delta S_{ent}^{\ddagger} = -13.0 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 10.6 y

	т (К)			
	333	343	353	
k_{rac} (s ⁻¹)	1.199E-06	3.155E-06	1.197E-05	
<i>k_{ent}</i> (s ⁻¹)	5.994E-07	1.578E-06	5.985E-06	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	121.53	122.51	122.25	
<i>t_{1/2}(rac)</i> ₇ (min)	9637.16	3661.60	965.07	

 $\Delta H_{ent}^{\ddagger} =$ 109.5 kJ mol⁻¹ $\Delta S_{ent}^{\ddagger} =$ -36.9 J K⁻¹ mol⁻¹

Extrapolated half-life of racemization at 20°C: 5.0 y

Equation	y = a + b*x			
Plot	In(100/ee)	In(100/ee)	In(100/ee)	
Weight	No Weighting			
Intercept	0.68945	0.68403	0.7229	
Slope	1.10648E-5	4.00925E-6	1.10622E-6	
Residual Sum of Squares	0.00747	0.00574	0.004	
Pearson's r	0.99751	0.99822	0.99915	
R-Square(COD)	0.99503	0.99644	0.9983	
Adi, R-Square	0.99432	0.99593	0.99796	

		Т (К)	
	333	343	353	
<i>k_{rac}</i> (s ⁻¹)	1.106E-06	4.009E-06	1.106E-05	
<i>k_{ent}</i> (s ⁻¹)	5.531E-07	2.005E-06	5.532E-06	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	121.76	121.83	122.48	
<i>t_{1/2}(rac)</i> ⁷ (min)	10443.18	2881.45	1044.07	

 $\Delta H_{ent}^{\ddagger} = 109.9 \text{ kJ mol}^{-1}$ $\Delta S_{ent}^{\ddagger} = -35.6 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 5.0 y

		Т (К)	
	333	343	353
k_{rac} (s ⁻¹)	2.213E-06	5.719E-06	1.826E-05
<i>k_{ent}</i> (s ⁻¹)	1.106E-06	2.860E-06	9.129E-06
ΔG_T^{\ddagger} (kJ mol ⁻¹)	119.84	120.81	121.01
$t_{1/2}(rac)_T$ (min)	5221.28	2019.92	632.76

 $\Delta H_{ent}^{\ddagger}=100.3~\rm kJ~mol^{\text{-1}}$

 $\Delta S_{ent}^{\ddagger} = -59.3 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 1.7 y

Equation	y = a + b*x			
Plot	In(100/ee)	In(100/ee)	In(100/ee)	
Weight	No Weighting			
Intercept	1.25769	1.20502	1.25774	
Slope	2.15851E-6	2.1275E-5	6.03728E-6	
Residual Sum of Squares	0.00214	0.02115	1.27596E-4	
Pearson's r	0.99141	0.99789	0.99985	
R-Square(COD)	0.9829	0.99578	0.9997	
Adi, R-Square	0.97948	0.99494	0.99965	

		Т (К)		
	333	343	353	
<i>k_{rac}</i> (s ⁻¹)	2.159E-06	6.143E-06	2.128E-05	
<i>k_{ent}</i> (s ⁻¹)	1.079E-06	3.071E-06	1.064E-05	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	119.91	120.61	120.56	
<i>t_{1/2}(rac)</i> [™] (min)	5352.05	1880.65	543.01	

 $\Delta H_{ent}^{\ddagger} = 109.0 \text{ kJ mol}^{-1}$

 $\Delta S_{ent}^{\ddagger} = -33.4 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 2.6 y

Equation	y = a + b*x				
Plot	In(100/ee)	In(100/ee)	In(100/ee)		
Weight	No Weighting				
Intercept	1.13025		1.15755		
Slope	2.22156E-5		4.92286E-6		
Residual Sum of Squares	0.02095		0.02741		
Pearson's r	0.99569		0.9945		
R-Square(COD)	0.9914		0.98904		
Adj. R-Square	0.98925		0.98767		

	т (К)				
	333	343	353		
k_{rac} (s ⁻¹)	not measured	4.923E-06	2.222E-05		
<i>k_{ent}</i> (s ⁻¹)	-	2.461E-06	1.111E-05		
ΔG_T^{\ddagger} (kJ mol ⁻¹)	-	121.24	120.44		
$t_{1/2}(rac)_T$ (min)	-	2346.70	520.02		

	т (К)				
	333	343	353		
k_{rac} (s ⁻¹)	1.041E-06	4.259E-06	1.067E-05		
<i>k_{ent}</i> (S ⁻¹)	5.204E-07	2.129E-06	5.335E-06		
ΔG_T^{\ddagger} (kJ mol ⁻¹)	121.93	121.65	122.59		
$t_{1/2}(rac)_T$ (min)	11100.44	2712.75	1082.79		

 $\Delta H_{ent}^{\ddagger} = 111.2 \text{ kJ mol}^{-1}$ $\Delta S_{ent}^{\ddagger} = -31.8 \text{ J K}^{-1} \text{ mol}^{-1}$

Extrapolated half-life of racemization at 20°C: 5.5 y

4m

Equation		
Plot	In(100/ee)	In(100/ee)
Weight		
Intercept	3.20285	3.19908
Slope	6.14279E-6	1.44216E-5
Residual Sum of Squares	0.03945	3.71975E-4
Pearson's r	0.99492	0.99993
R-Square(COD)	0.98986	0.99985
Adj. R-Square	0.98859	0.99983

		Т	(K)	
	333	343	353	
k_{rac} (s ⁻¹)	not measured	6.143E-06	1.442E-05	
<i>k_{ent}</i> (s⁻¹)	-	3.071E-06	7.211E-06	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	-	120.61	121.70	
<i>t_{1/2}(rac)</i> ⊤ (min)	-	1880.65	801.05	

Equation	y = a + b*x		
Plot	In(100/ee)	In(100/ee)	In(100/ee)
Weight		No Weighting	
Intercept	0.80576	0.81113	0.72264
Slope	4.43721E-6	1.32408E-6	1.54021E-5
Residual Sum of Squares	0.00534	0.00159	0.23766
Pearson's r	0.99867	0.98503	0.99274
R-Square(COD)	0.99735	0.97029	0.98554
Adi, R-Square	0.99702	0.96534	0.98373

		Т (К)	
	333	343	353	
k_{rac} (s ⁻¹)	1.324E-06	4.437E-06	1.540E-05	
<i>k_{ent}</i> (s ⁻¹)	6.620E-07	2.219E-06	7.701E-06	
ΔG_T^{\ddagger} (kJ mol ⁻¹)	121.26	121.54	121.51	
<i>t₁/₂(rac)</i> ⊤ (min)	8724.89	2603.54	750.06	

$$\begin{split} \Delta H_{ent}^{\ddagger} &= 117.1 \text{ kJ mol}^{-1} \\ \Delta S_{ent}^{\ddagger} &= -12.7 \text{ J } \text{K}^{-1} \text{ mol}^{-1} \\ \text{j} \end{split}$$

S58

5 <u>NMR Analysis of CH…π Interaction</u>

Singe crystal data and quantum chemical calculations both indicate the presence of a CH $\cdots\pi$ interaction present in the ground state of the benzylated products **4**. To demonstrate that this effect is present in solution as well as solid phase, the chemical shift values of **H**^A and **H**^B in 4-cyanobenzyl compound **4b** were compared to literature values for structurally related compounds (see manuscript, figure 2B). In addition to the comparison with *O*-(*para*-cyanobenzyl)phenol provided in the manuscript, below is given comparison with a large number of literature compounds.

Table S2. Comparison of ¹H chemical shift values of 4b with structurally similar compounds previously reported. All ¹H signals are reported in CDCl₃.

Compound	H ^A (ppm)	Н ^в (ppm)	Reference
4b	7.42	7.60	
5	7.56	7.69	19
S9	7.53	7.68	20
S10	7.54	7.67	20
S11	7.54	7.69	20
S12	7.56	7.7	20
S13	7.60	7.68	20
S14	7.56	7.66	20
S15	7.55	7.69	20
S16	7.58	7.68	21
S17	7.54	*	21
S18	7.55	7.69	21

^{*} Co-incident with another ¹H signal.

6 Density Functional Theory Calculations

6.1 Methods

All optimisation, frequency, and single-point calculations were performed with *Gaussian 16*, rev C.01.²² Structures were generated with CYLview.²³ All non-covalent interaction surfaces were calculated with and displayed using Jmol.²⁴ The B3LYP functional was used for all geometry optimisations with the 6-31G(d,p) basis set on all atoms. Grimme's DFT-D3²⁵ correction was included in the optimisation procedure as well as single point calculations. All optimised structures were confirmed as minima by the absence of imaginary frequencies while transition states were characterised by the presence of a single imaginary frequency. All transition states were further analysed via intrinsic reaction coordinate calculations. Further refinements to the electronic energies were made through single point calculations on the optimised geometries using the B3LYP functional with the 6-311+G(d,p) basis set for all atoms. Grimme's DFT-D3 correction and further corrections for bulk solvation through a polarisable continuum model (CPCM) were also incorporated. Free energies were determined from thermochemical corrections of the geometries applied to electronic energies.

6.2 Summary of Results

Three starting materials, and their corresponding products, were chosen for study each with a different (R³) substituent at the pyridine 3-position: **3a**, **3d**, and **3e** leading to **4a**, **4j**, and **4m** respectively (addition of a benzyl group). Barriers were calculated for starting material, **3**, the deprotonated intermediate, **3(int)**, and the reaction products, **4**. Calculated rotational barriers are summarised in Table S3, showing good agreement with experimentally determined barriers. Computational barriers for **3** and **3(int)** were calculated in acetonitrile but for **4** were calculated in DMSO to reflect experimental procedures (see section 4 above).

	dG₀₅т (kJ mol⁻¹)	dG _{Exp} (kJ mol⁻¹)
3a	95.4	96.6
3d	97.1	98.7
3e	97.5	102.9
3(int)a	123.0	-
3(int)d	125.9	-
3(int)e	123.4	-
4a	123.0	121.3
4j	124.7	121.0
4m	121.3	122.6

Table S3: Calculated vs. experimental barriers for 3, 3int, and 4. Calculated at B3LYP-D3-CPCM/6-311+G(d,p)//B3LYP-D3/6-31G(d,p).

Figure S1. Representative enantiomerisation transition state geometries for: a) 3a; b) 3(int)a; c) 4a. Calculated at B3LYP-D3-CPCM_{DMSO}/6-311+G(d,p)//B3LYP-D3/6-31G(d,p).

For starting material **3a**, the lowest barrier transition state was found with the phenol and carbonyl groups *syn* to allow for the favourable OH···O hydrogen bond, Figure S1a. The alternative transition state, with phenol and carbonyl groups *anti* was found to be *ca*. 10 kcal mol⁻¹ higher in energy.

A non-covalent interaction descriptor based on electron density, developed by the Johnson and Contreras-Garcia groups,²⁶ allows a qualitative visual analysis of NCIs and is shown here to be a useful tool. The coloration of the NCI surface allows identification and characterization of attractive and repulsive interactions; a strong attractive interaction is in blue, van der Waals and dispersion interactions are in green, and destabilizing steric interactions are in red. In the enantiomerisation transition state of **3a**, the strong hydrogen bond between the phenol and 2-pyridone oxygens is observed as a deep blue surface, Figure S2a. The stabilising OH···O hydrogen bond is also observed in the minimum, S2b. Rotating the phenol group out of reach of an OH···O hydrogen bond and reoptimizing the structure results in a large 6 kJ mol⁻¹ energy penalty

Figure S2. Non-covalent interaction surface of the starting material enantiomerisation transition state of 3a showing a strong hydrogen bond in deep blue. The colour spectrum ranges from blue (strongly attractive) to green (weekly attractive) to yellow (mildly repulsive) to red (strongly repulsive), geometries optimised at B3LYP-D3/6-31G(d,p).

S61

Without the proton to participate in the hydrogen bond, the enantiomerisation transition state barrier for **3(int)a** is significantly higher, by 28 kJ mol⁻¹ (Table S3) with the lowest energy transition state found with the phenoxide and carbonyl groups *anti*, Figure S1b. The *syn* transition state could not be found.

Addition of the benzyl group raises the transition state barrier for **4a** similarly to that of the deprotonated intermediate, Table S3. The lowest barrier to enantiomerisation was found with the benzyl ether and carbonyl group *anti*, Figure S1c.

The crystal structures and NMR shifts of the products, **4**, showed a CH- π non-covalent interaction between the *ortho*-CH of the benzyl group and the π -system of the 2-pyridone which was replicated in the solution phase *via* DFT. A non-covalent interaction surface shows this CH- π interaction as an area of light blue, Figure S3. The non-planar geometry around the 2-pyridone nitrogen, and tilt of this group, is also replicated.

Figure S3. Non-covalent interaction surface of the minima of 4a showing a stabilising CH-π interaction in light blue (circled). The colour spectrum ranges from blue (strongly attractive) to green (weekly attractive) to yellow (mildly repulsive) to red (strongly repulsive), geometries optimised at B3LYP-D3/6-31G(d,p).

In all structures examined, the minima that included the CH- π interaction were lower in energy than those without, Table S4, in which the benzyl group lies face on to the 2-pyridone.

Table S4. Relative energies of product minima with and without CH- π interaction as identified in the crystal structures of products 4. B3LYP-D3-CPCM_{DMSO}/6-311+G(d,p)//B3LYP-D3/6-31G(d,p).

	With CH-π interaction (kJ mol ⁻¹)	Without CH-π interaction (kJ mol ⁻¹)
4a	0.0	+7.1
4j	0.0	+4.2
4m	0.0	+2.1

6.3 Cartesian Coordinates

3a – Minimum

С	4.67967	-1.22837	1.09847
С	4.20245	-1.88348	-0.03237
С	2.848	-1.81327	-0.38189
С	1.98287	-1.04515	0.41937
С	2.46119	-0.42349	1.5761
С	3.8067	-0.50727	1.91848
Н	5.73348	-1.29568	1.35219
Н	4.85516	-2.47125	-0.66876
Н	1.76992	0.14693	2.18779
Н	4.16939	-0.01467	2.81448
С	0.10808	0.46504	-0.05847
С	-0.25331	-1.95559	-0.06958
С	-1.24546	0.68217	-0.05975
С	-1.66084	-1.68486	-0.01702
С	-2.16557	-0.4066	0.00469
Н	-1.60486	1.69103	-0.21407
Н	-2.29805	-2.55978	0.01945
С	1.05447	1.58649	-0.27623
С	2.06283	1.48731	-1.24902
С	0.90711	2.78289	0.43791
С	2.90656	2.56638	-1.49383
Н	2.17471	0.56615	-1.81149
С	1.75678	3.86119	0.19149
Н	0.13688	2.85608	1.19988
С	2.75916	3.75489	-0.77306
Н	3.68079	2.4801	-2.25005
Н	1.63943	4.78	0.75821
Н	3.42347	4.59257	-0.963
С	-3.62346	-0.14453	0.05103
С	-4.12475	0.96748	0.74808
С	-4.53404	-0.99869	-0.59288
С	-5.49535	1.2118	0.80868
Н	-3.4374	1.62711	1.26894
С	-5.90381	-0.75126	-0.5354
Н	-4.16256	-1.84349	-1.16414
С	-6.38985	0.35372	0.16658
Н	-5.86507	2.07026	1.36153
Н	-6.59216	-1.41748	-1.04679
Н	-7.45764	0.54607	0.21026
0	2.41968	-2.44818	-1.49876
Н	1.55557	-2.86152	-1.2472
0	0.23449	-3.09478	-0.17486
Ν	0.60131	-0.82991	0.04191

3a – Transition State

С	4.65174	-1.66841	1.30736
С	3.87256	-2.6547	0.73423
С	2.58312	-2.40997	0.22045
С	2.0861	-1.06694	0.1992
С	2.88581	-0.09917	0.84471
С	4.13503	-0.37494	1.38026
н	5.63283	-1.90533	1.7074
Н	4.20484	-3.68597	0.68469
н	2.52771	0.90728	0.96018
Н	4.69015	0.42499	1.85929
С	0.19976	0.58855	-0.06205
С	-0.08933	-1.60706	-0.97724
С	-1.15512	0.72688	0.06096
С	-1.49999	-1.48846	-0.72156
С	-2.0499	-0.3653	-0.16458
Н	-1.5552	1.7267	0.17248
Н	-2.08959	-2.34446	-1.02605
С	1.00195	1.82987	-0.22434
С	1.85414	1.96211	-1.3337
С	0.83638	2.91818	0.64416
С	2.52804	3.15816	-1.56121
Н	1.98582	1.11984	-2.00529
С	1.51588	4.11407	0.41299
Н	0.19283	2.8132	1.51226
С	2.36342	4.23781	-0.68875
Н	3.1825	3.24928	-2.42279
Н	1.38734	4.94624	1.09859
Н	2.89451	5.16792	-0.86641
С	-3.497	-0.2195	0.09906
С	-3.94067	0.57313	1.17126
С	-4.45541	-0.86455	-0.70072
С	-5.30061	0.70636	1.4436
Н	-3.21205	1.0643	1.80926
С	-5.81472	-0.72769	-0.42969
Н	-4.13365	-1.45218	-1.55461
С	-6.24254	0.05656	0.64395
Н	-5.62464	1.3141	2.28316
Н	-6.54194	-1.22666	-1.06319
Н	-7.30266	0.1631	0.85332
0	1.92146	-3.52738	-0.12812
Н	1.30071	-3.31629	-0.87729
0	0.36877	-2.48662	-1.72771
N	0.76098	-0.68629	-0.29548

3(int)a – Intermediate Minimum

С	-4.76149	-1.7555	-0.20808
С	-4.13721	-1.52897	1.00783
С	-2.73795	-1.19417	1.11914
С	-2.06786	-1.12472	-0.16162
С	-2.69951	-1.36702	-1.37467
С	-4.06042	-1.67239	-1.42364
н	-5.8247	-1.99918	-0.22209
Н	-4.69168	-1.58883	1.94187
Н	-2.11034	-1.31196	-2.28849
Н	-4.55598	-1.85345	-2.3733
С	-0.14255	0.40845	-0.10973
С	0.21343	-2.01474	-0.13541
С	1.21505	0.64246	-0.0718
С	1.63136	-1.72312	-0.06639
С	2.1306	-0.44598	-0.04388
н	1.56543	1.66634	-0.07255
н	2.2762	-2.59256	-0.00648
С	-1.06254	1.58147	-0.14651
С	-1.99519	1.81709	0.87507
С	-0.9239	2.51563	-1.18252
С	-2.77678	2.97079	0.84098
н	-2.08974	1.0839	1.6756
С	-1.71259	3.66716	-1.21115
н	-0.20154	2.32638	-1.97153
С	-2.64198	3.89758	-0.19665
н	-3.50094	3.1443	1.63272
н	-1.60198	4.37823	-2.02615
н	-3.25946	4.79257	-0.21521
С	3.59206	-0.19001	0.02249
С	4.10487	0.87202	0.78647
С	4.50173	-1.00183	-0.6758
С	5.47711	1.10931	0.8552
н	3.41838	1.49771	1.34833
С	5.87376	-0.76529	-0.60784
н	4.11938	-1.81166	-1.28935
С	6.36921	0.29222	0.15803
н	5.85069	1.93117	1.46053
н	6.55746	-1.40371	-1.16144
н	7.43865	0.47818	0.2098
0	-2.15822	-0.92555	2.21609
0	-0.24563	-3.15129	-0.19936
Ν	-0.64202	-0.86649	-0.15332

С	4.40566	-2.60492	-1.11183
С	4.3608	-1.23712	-0.96767
С	3.20769	-0.51813	-0.46745
С	2.09072	-1.35329	-0.06097
С	2.15884	-2.74566	-0.253
С	3.28508	-3.37935	-0.76125
н	5.30344	-3.08492	-1.50171
Н	5.2013	-0.60612	-1.24574
Н	1.3135	-3.36451	0.01428
н	3.28491	-4.4586	-0.88776
С	0.28434	0.44422	0.06136
С	-0.05454	-1.70334	1.13391
С	-1.08074	0.5821	-0.08829
С	-1.46184	-1.57692	0.83627
С	-1.9846	-0.47428	0.20802
Н	-1.46735	1.57554	-0.27695
Н	-2.07342	-2.40946	1.16516
С	1.03084	1.73423	0.11589
С	0.85374	2.70202	-0.88014
С	1.65994	2.10956	1.31728
С	1.33834	3.99934	-0.70613
Н	0.35891	2.42071	-1.80502
С	2.1272	3.40445	1.49351
Н	1.78699	1.36396	2.09494
С	1.97489	4.35986	0.48055
Н	1.21429	4.72977	-1.5025
Н	2.62063	3.67387	2.42435
н	2.34789	5.37153	0.61951
С	-3.42925	-0.32957	-0.07942
С	-3.86309	0.40832	-1.19567
С	-4.4084	-0.91899	0.74027
С	-5.21945	0.54494	-1.4853
н	-3.12089	0.8575	-1.84845
С	-5.76457	-0.78514	0.44957
Н	-4.09743	-1.46571	1.62489
С	-6.17912	-0.05245	-0.6652
Н	-5.52767	1.11454	-2.35831
н	-6.50166	-1.246	1.10231
Н	-7.23698	0.05395	-0.88997
0	3.21713	0.74528	-0.42418
0	0.38841	-2.56664	1.89163
Ν	0.82204	-0.80207	0.40649

0 -0.21381 -2.69452 -2.53727

4a – Product Minimum

3(int)a – Intermediate Transition State

0	-1.59289	0.75879	-1.10729
Ν	-0.61045	-1.66135	-0.51115
С	-1.99866	-1.53576	-0.86171
С	-2.50808	-0.24923	-1.11442
С	0.25832	-2.17184	-1.53403
С	-0.13571	-1.08458	0.65515
С	1.66854	-1.98697	-1.27399
С	-1.10042	-0.60906	1.68002
С	2.14461	-1.38447	-0.13853
С	-3.87252	-0.08822	-1.36771
С	-2.82376	-2.64965	-0.96011
С	1.2121	-0.95583	0.85708
С	3.59673	-1.16317	0.07163
С	-0.78369	2.97395	-0.76036
С	-2.00721	2.08706	-0.80465
С	-4.70034	-1.21107	-1.42785
С	-0.97547	0.68975	2.19537
С	-4.18072	-2.49206	-1.24293
С	-2.11865	-1.44014	2.17223
C	4.17596	-1.32885	1.34019
С	-1.86036	1.15277	3.16943
С	0.4982	2.44435	-0.57212
С	-2.99674	-0.97739	3.14908
С	4.42008	-0.77064	-0.99641
С	-2.87467	0.32195	3.64736
С	6.34887	-0.73033	0.46262
С	5.54048	-1.11891	1.53249
С	5.78327	-0.55586	-0.80209
С	1.60395	3.29177	-0.48378
С	1.44192	4.67447	-0.57959
н	-4.28439	0.89999	-1.53455
н	-2.39149	-3.63116	-0.80153
н	1.55791	-0.50338	1.77696
н	-2.51785	2.08267	0.17005
н	-2.71428	2.46452	-1.55596
н	-5.75834	-1.07783	-1.63293
н	-0.20218	1.34391	1.80803
н	-4.82558	-3.3618	-1.31139
н	-2.22035	-2.44814	1.78692
н	3.55789	-1.64955	2.17334
н	-1.7577	2.16505	3.54919
н	0.63055	1.37088	-0.51836
н	-3.77835	-1.63279	3.5214
н	3.97961	-0.61192	-1.97582
н	-3.5657	0.68298	4.40332
н	7.41109	-0.56256	0.61373
н	5.97336	-1.26307	2.5181
н	6.40303	-0.24462	-1.63788

Н	2.5928	2.86395	-0.34428
Н	2.30286	5.33282	-0.51029
С	-0.93851	4.36017	-0.8724
С	0.1658	5.20688	-0.77655
Н	-1.92834	4.78111	-1.03466
н	0.03081	6.28101	-0.86495
Н	2.33147	-2.36145	-2.0446

3d – Minimum

С	-4.80422	-1.40783	0.92349
С	-4.27149	-1.94709	-0.24328
С	-2.92272	-1.75654	-0.56828
С	-2.12189	-0.98603	0.29455
С	-2.65275	-0.48384	1.48557
С	-3.99167	-0.68693	1.80339
Н	-5.85271	-1.56682	1.15759
Н	-4.87441	-2.53517	-0.92677
Н	-2.00989	0.09074	2.14421
Н	-4.39608	-0.28533	2.72653
С	-0.36456	0.68961	-0.06155
С	0.17267	-1.68899	-0.22501
С	0.97059	0.99009	-0.06652
С	1.58337	-1.35302	-0.18895
С	1.96572	-0.03068	-0.09544
Н	1.27045	2.02853	-0.12639
С	-1.38839	1.75627	-0.17562
С	-1.3148	2.89244	0.64109
С	-2.39959	1.6744	-1.14701
С	-2.23956	3.92668	0.49711
Н	-0.54026	2.95225	1.39983
С	-3.31936	2.70897	-1.28862
Н	-2.45593	0.80051	-1.78775
С	-3.24498	3.83651	-0.4659
Н	-2.17786	4.79804	1.14221
Н	-4.09563	2.63598	-2.04421
Н	-3.96786	4.63931	-0.57587
С	3.38939	0.40833	-0.05721
С	3.8599	1.14487	1.03943
С	4.26461	0.14485	-1.12119
С	5.18168	1.58838	1.08237
Н	3.18504	1.35816	1.86345
С	5.58396	0.59412	-1.08097
Н	3.90053	-0.4028	-1.98514
С	6.0474	1.31336	0.02255
Н	5.53458	2.14863	1.94324

Н	6.24876	0.38631	-1.91419
Н	7.07576	1.66074	0.05408
0	-2.43766	-2.2859	-1.71724
Н	-1.55415	-2.65971	-1.47502
0	-0.24267	-2.85595	-0.37154
Ν	-0.75676	-0.64337	-0.05103
С	2.51968	-2.53797	-0.17108
Н	2.18852	-3.25199	-0.9316
Н	3.53416	-2.22613	-0.42335
С	2.52269	-3.23814	1.20058
Н	2.8614	-2.55322	1.98492
Н	1.51784	-3.58763	1.45061
Н	3.19374	-4.10293	1.18999

3d – Transition State

С	4.61507	-1.81562	-1.42665
С	3.77671	-2.72869	-0.81469
С	2.53661	-2.36942	-0.25344
С	2.15645	-0.99013	-0.22846
С	3.01024	-0.09692	-0.90982
С	4.21022	-0.48286	-1.48932
Н	5.55528	-2.13869	-1.86278
Н	4.02165	-3.78431	-0.76857
Н	2.73294	0.93609	-1.0186
Н	4.81397	0.26343	-1.99536
С	0.4385	0.83027	0.08513
С	-0.03281	-1.33659	0.97499
С	-0.90102	1.06581	-0.0248
С	-1.45077	-1.15993	0.67912
С	-1.87733	0.03367	0.14973
Н	-1.23612	2.09084	-0.12465
С	1.34793	1.99203	0.2564
С	1.25174	3.11406	-0.57964
С	2.24662	2.01943	1.33642
С	2.04067	4.23957	-0.34346
Н	0.57308	3.08969	-1.42672
С	3.03165	3.14494	1.56801
Н	2.32546	1.15149	1.98316
С	2.93309	4.25878	0.72936
Н	1.96262	5.09833	-1.00347
Н	3.72098	3.15443	2.40692
Н	3.54988	5.13378	0.91025
С	-3.29219	0.36062	-0.16955
С	-3.61786	0.83578	-1.44911
С	-4.3088	0.26159	0.79278

С	-4.93204	1.17609	-1.76779
Н	-2.83422	0.92382	-2.19616
С	-5.62143	0.60842	0.47564
Н	-4.06072	-0.07017	1.79618
С	-5.93797	1.0616	-0.80659
Н	-5.16997	1.53089	-2.76628
Н	-6.39607	0.53102	1.23282
Н	-6.96107	1.32933	-1.05311
0	1.79608	-3.42496	0.14374
Н	1.23925	-3.1519	0.92057
0	0.36013	-2.23072	1.74467
Ν	0.88724	-0.49195	0.3022
С	-2.30329	-2.38079	0.93784
Н	-2.10439	-2.74111	1.95161
Н	-3.36123	-2.12254	0.87808
С	-1.99692	-3.50411	-0.07237
Н	-2.25054	-3.18632	-1.08878
Н	-0.93789	-3.7751	-0.05697
Н	-2.58141	-4.39961	0.16071

3(int)d – Intermediate Minimum

С	-4.84668	-1.80445	-0.43445
С	-4.23048	-1.68634	0.8011
С	-2.85617	-1.27392	0.95324
С	-2.20132	-1.00848	-0.30898
С	-2.82372	-1.13922	-1.54324
С	-4.16211	-1.52649	-1.63027
Н	-5.89137	-2.1153	-0.47926
н	-4.77367	-1.89603	1.72004
н	-2.24618	-0.93268	-2.4429
н	-4.65195	-1.62208	-2.59521
С	-0.3853	0.64667	-0.13272
С	0.12762	-1.73333	-0.30729
С	0.95432	0.95373	-0.09939
С	1.5502	-1.38909	-0.24008
С	1.94047	-0.07157	-0.15674
н	1.25297	1.99033	-0.00774
С	-1.38118	1.74947	-0.03833
С	-2.31885	1.79961	1.00529
С	-1.31727	2.80491	-0.95855
С	-3.17865	2.89174	1.10657
н	-2.3532	0.97709	1.71904
С	-2.18317	3.89478	-0.85113
Н	-0.59175	2.7585	-1.76578
С	-3.11739	3.94016	0.18377

Н	-3.90539	2.92143	1.91421
Н	-2.12918	4.70197	-1.57751
н	-3.79538	4.78599	0.27027
С	3.36785	0.35618	-0.09438
С	3.832	1.10043	1.00103
С	4.26474	0.07548	-1.13669
С	5.15619	1.53545	1.06172
н	3.14255	1.3265	1.80909
С	5.58844	0.51122	-1.07896
н	3.90919	-0.48176	-1.99813
С	6.04071	1.24134	0.02227
н	5.49765	2.10352	1.92319
н	6.2663	0.28482	-1.89796
н	7.0722	1.58045	0.06815
0	-2.28667	-1.09602	2.07355
0	-0.26642	-2.89444	-0.42175
Ν	-0.79559	-0.65471	-0.26618
С	2.47684	-2.57966	-0.18427
Н	2.16003	-3.29573	-0.95059
Н	3.50656	-2.28439	-0.40109
С	2.42111	-3.27872	1.18694
Н	2.75338	-2.60087	1.98083
н	1.39576	-3.5885	1.40005
Н	3.06589	-4.16588	1.20135

3(int)d – Intermediate Transition State

С	4.39952	-2.6446	-1.21085
С	4.44645	-1.28028	-1.03371
С	3.34316	-0.49686	-0.51936
С	2.17292	-1.2642	-0.13193
С	2.14586	-2.65144	-0.36091
С	3.22785	-3.34903	-0.88292
Н	5.26458	-3.17453	-1.61
Н	5.32869	-0.70125	-1.29518
Н	1.25952	-3.21817	-0.11328
Н	3.15406	-4.42241	-1.03522
С	0.50985	0.66349	0.02922
С	-0.0083	-1.47649	1.02281
С	-0.83735	0.89761	-0.12983
С	-1.42303	-1.27127	0.71589
С	-1.82415	-0.09685	0.1178
Н	-1.15787	1.91767	-0.30106
С	1.34788	1.89044	0.14784
С	1.24945	2.91459	-0.80208
С	1.99066	2.16389	1.36966

С	1.8233	4.16418	-0.56362
Н	0.74481	2.71326	-1.74234
С	2.54798	3.41212	1.60945
Н	2.05671	1.37579	2.11233
С	2.47341	4.42267	0.64231
Н	1.75844	4.93814	-1.32518
Н	3.05063	3.60151	2.55504
Н	2.91621	5.39745	0.83111
С	-3.23492	0.24955	-0.20559
С	-3.5655	0.67192	-1.50361
С	-4.25122	0.23139	0.76372
С	-4.87122	1.03813	-1.82934
Н	-2.78246	0.70359	-2.25549
С	-5.55725	0.59857	0.44052
Н	-4.00256	-0.05683	1.78034
С	-5.87465	0.99957	-0.85904
Н	-5.1053	1.35401	-2.84272
Н	-6.3268	0.58055	1.20803
Н	-6.89236	1.28565	-1.11101
0	3.43564	0.76258	-0.45076
0	0.36381	-2.39217	1.76172
Ν	0.94154	-0.63155	0.34355
С	-2.32706	-2.42654	1.08324
Н	-2.1812	-2.66266	2.14368
Н	-3.37424	-2.14721	0.9478
С	-2.03738	-3.6932	0.25755
Н	-2.16576	-3.49706	-0.81238
Н	-1.0123	-4.02757	0.42978
Н	-2.71678	-4.50644	0.53986

4j – Product Minimum

С	2.35700	3.43200	-1.54800
С	2.66400	2.09000	-1.36500
С	1.76400	1.21300	-0.74300
С	0.52400	1.68400	-0.24300
С	0.23500	3.04200	-0.47600
С	1.12500	3.90300	-1.10800
Н	3.07400	4.09200	-2.02600
Н	3.62500	1.71100	-1.68900
Н	-0.70200	3.45500	-0.13900
Н	0.84200	4.94100	-1.25000
С	-0.72100	-0.52600	0.15000
С	-1.60200	1.56100	0.99600
С	-1.99600	-0.95200	-0.06900
С	-2.95900	1.14200	0.61500

С	-3.14000	-0.08200	0.02400	Н	0.84200	4.94100	-1.25000
Н	-2.17400	-2.01800	-0.14800	С	-0.72100	-0.52600	0.15000
С	0.29300	-1.55500	0.49300	С	-1.60200	1.56100	0.99600
С	1.01100	-1.44000	1.69400	С	-1.99600	-0.95200	-0.06900
С	0.44300	-2.71400	-0.27900	С	-2.95900	1.14200	0.61500
С	1.87000	-2.45600	2.10200	С	-3.14000	-0.08200	0.02400
Н	0.89100	-0.54400	2.29600	Н	-2.17400	-2.01800	-0.14800
С	1.30700	-3.73100	0.13200	С	0.29300	-1.55500	0.49300
Н	-0.10200	-2.80400	-1.21300	С	1.01100	-1.44000	1.69400
С	2.02700	-3.60500	1.32100	С	0.44300	-2.71400	-0.27900
Н	2.42000	-2.35300	3.03300	С	1.87000	-2.45600	2.10200
Н	1.42000	-4.62000	-0.48300	Н	0.89100	-0.54400	2.29600
Н	2.70200	-4.39400	1.63800	С	1.30700	-3.73100	0.13200
С	-4.43800	-0.62000	-0.45900	Н	-0.10200	-2.80400	-1.21300
С	-5.61200	-0.58200	0.31000	С	2.02700	-3.60500	1.32100
С	-4.48800	-1.23200	-1.72400	Н	2.42000	-2.35300	3.03300
С	-6.80200	-1.12000	-0.18000	Н	1.42000	-4.62000	-0.48300
Н	-5.58600	-0.15000	1.30300	Н	2.70200	-4.39400	1.63800
С	-5.67800	-1.76300	-2.21600	С	-4.43800	-0.62000	-0.45900
Н	-3.58400	-1.27300	-2.32500	С	-5.61200	-0.58200	0.31000
С	-6.84100	-1.70700	-1.44500	С	-4.48800	-1.23200	-1.72400
Н	-7.69800	-1.08600	0.43300	С	-6.80200	-1.12000	-0.18000
Н	-5.69800	-2.22000	-3.20100	Н	-5.58600	-0.15000	1.30300
Н	-7.76900	-2.12400	-1.82500	С	-5.67800	-1.76300	-2.21600
0	-1.39200	2.53900	1.70400	Н	-3.58400	-1.27300	-2.32500
Ν	-0.50300	0.85400	0.38300	С	-6.84100	-1.70700	-1.44500
0	2.03900	-0.11200	-0.61400	Н	-7.69800	-1.08600	0.43300
С	3.13700	-0.71200	-1.29500	Н	-5.69800	-2.22000	-3.20100
Н	2.89200	-1.77800	-1.27300	Н	-7.76900	-2.12400	-1.82500
Н	3.15900	-0.39100	-2.34600	0	-1.39200	2.53900	1.70400
С	4.47500	-0.47200	-0.62700	Ν	-0.50300	0.85400	0.38300
С	5.64900	-0.46400	-1.38800	0	2.03900	-0.11200	-0.61400
С	4.55500	-0.29600	0.75800	С	3.13700	-0.71200	-1.29500
С	6.89000	-0.29200	-0.77200	Н	2.89200	-1.77800	-1.27300
				Н	3.15900	-0.39100	-2.34600
				С	4.47500	-0.47200	-0.62700
4: 7	Draduat Tran	oition State		С	5.64900	-0.46400	-1.38800
4j — ł		SILION STATE		С	4.55500	-0.29600	0.75800
C	2 35700	3 43200	-1 54800	С	6.89000	-0.29200	-0.77200

С	2.35700	3.43200	-1.54800
С	2.66400	2.09000	-1.36500
С	1.76400	1.21300	-0.74300
С	0.52400	1.68400	-0.24300
С	0.23500	3.04200	-0.47600
С	1.12500	3.90300	-1.10800
Н	3.07400	4.09200	-2.02600
Н	3.62500	1.71100	-1.68900
Н	-0.70200	3.45500	-0.13900

3e – I	Minimum
--------	---------

С	4.8619	-1.52496	0.98473
С	4.28561	-2.05889	-0.16374
С	2.94096	-1.81429	-0.4674
С	2.19141	-0.9968	0.39725

c	2 7 6 2 0 1	0 40742	1 5 6 0 0	c	4 (2274	1 01000	1 5 7 4 5 4
C	2.76391	-0.49742	1.5698	C	4.62371	-1.91083	-1.53454
C	4.09829	-0.75442	1.86659	C	3./29/2	-2.81027	-0.98419
Н	5.9063	-1.72653	1.20345	С	2.50898	-2.41401	-0.40685
Н	4.85003	-2.68343	-0.84767	С	2.20706	-1.01998	-0.30318
Н	2.1582	0.11459	2.22993	С	3.11653	-0.13579	-0.92094
Н	4.53705	-0.35671	2.77552	С	4.29745	-0.55519	-1.51581
С	0.50319	0.74268	0.00943	Н	5.54755	-2.26001	-1.98503
С	-0.14573	-1.60847	-0.05791	Н	3.91404	-3.87894	-1.00089
С	-0.81679	1.11095	0.01756	Н	2.90076	0.91652	-0.96504
С	-1.52481	-1.19294	0.01676	Н	4.94888	0.18421	-1.97001
С	-1.86398	0.14716	0.07752	С	0.57715	0.86377	0.10979
Н	-1.06058	2.16324	-0.04813	С	-0.01657	-1.31564	0.85461
С	1.57403	1.75531	-0.15255	С	-0.74766	1.17874	-0.00134
С	2.55865	1.59526	-1.14136	С	-1.4106	-1.03617	0.56618
С	1.57138	2.91572	0.63262	С	-1.79111	0.20367	0.10154
С	3.52356	2.57953	-1.33171	Н	-1.01968	2.22558	-0.05011
Н	2.55863	0.70195	-1.75736	С	1.54411	1.96499	0.35025
С	2.54301	3.89793	0.44074	С	1.51821	3.13244	-0.42636
Н	0.81727	3.03494	1.40469	С	2.42735	1.88567	1.44022
С	3.52145	3.73135	-0.53973	С	2.36395	4.19887	-0.12277
Н	4.27876	2.44799	-2.10049	Н	0.85051	3.18982	-1.28049
Н	2.53816	4.78857	1.06178	С	3.26764	2.95361	1.74009
Н	4.27988	4.49425	-0.68729	Н	2.44968	0.98269	2.04177
С	-3.26344	0.65294	0.10272	С	3.24074	4.11286	0.95965
С	-3.661	1.61483	-0.84208	Н	2.3415	5.09401	-0.7369
С	-4.18682	0.2308	1.07211	Н	3.94377	2.88255	2.5866
С	-4.95569	2.12925	-0.83004	Н	3.90078	4.94247	1.19363
Н	-2.95601	1.94242	-1.60075	С	-3.16453	0.62317	-0.27182
С	-5.47795	0.75752	1.08702	С	-3.33673	1.3442	-1.46787
Н	-3.88768	-0.51087	1.80154	С	-4.28566	0.37607	0.53722
С	-5.8677	1.7033	0.13781	С	-4.599	1.78245	-1.85983
Н	-5.25182	2.86092	-1.57589	Н	-2.47492	1.54052	-2.09938
Н	-6.18055	0.42523	1.84529	С	-5.54562	0.82745	0.14533
Н	-6.87589	2.10679	0.15131	Н	-4.16072	-0.16494	1.46573
0	2.41111	-2.33609	-1.60089	С	-5.70886	1.52556	-1.05183
Н	1.51896	-2.67062	-1.33824	Н	-4.71614	2.32378	-2.79396
0	0.20931	-2.79528	-0.2066	Н	-6.4025	0.63379	0.78358
Ν	0.83531	-0.60218	0.07021	Н	-6.69354	1.87102	-1.35274
С	-2.53945	-2.31777	-0.03386	0	1.70557	-3.44586	-0.07134
0	-3.23732	-2.57966	0.92767	Н	1.17151	-3.18966	0.72675
С	-2.65248	-3.05783	-1.34602	0	0.2993	-2.27739	1.57776
н	-1.66985	-3.43135	-1.6441	Ν	0.95902	-0.48789	0.24507
н	-3.36225	-3.88013	-1.24396	С	-2.31721	-2.22731	0.79488
н	-2.99948	-2.36223	-2.1201	0	-3.24305	-2.19729	1.58364
				С	-2.04853	-3.43767	-0.07698
				Н	-0.98407	-3.60562	-0.25078
30	Transition	State		Н	-2.50923	-4.3201	0.36994
3e -	TANSILION	Jiale			2 54 000	2 25242	4 05420

H -2.51899 -3.25212 -1.05138

Н	1.63245	-3.76923	1.05813
Н	1.60447	-4.27202	-0.6075
Н	3.17188	-4.28879	0.2664

3(int)e – Intermediate Transition State

3(int)e – Intermediate Minimum

С	-4.8972	-1.885	-0.27486
С	-4.26268	-1.71273	0.94467
С	-2.8989	-1.25649	1.05741
С	-2.2785	-1.00865	-0.22495
С	-2.91651	-1.19537	-1.44412
С	-4.24367	-1.62331	-1.49195
н	-5.9326	-2.22724	-0.29046
н	-4.78217	-1.91103	1.87947
н	-2.36205	-1.0005	-2.36049
н	-4.74878	-1.76226	-2.4434
С	-0.51064	0.68798	-0.11789
С	0.07414	-1.68327	-0.24406
С	0.82894	1.03595	-0.09678
С	1.48581	-1.29299	-0.20585
С	1.83813	0.05287	-0.13016
Н	1.09207	2.07855	0.02422
С	-1.52959	1.77024	-0.03964
С	-2.45743	1.82711	1.01156
С	-1.49388	2.79974	-0.99009
С	-3.34097	2.9022	1.08879
Н	-2.46386	1.02605	1.74996
С	-2.38698	3.8691	-0.90857
Н	-0.77158	2.74891	-1.79992
С	-3.31313	3.92209	0.13347
Н	-4.0603	2.93984	1.90241
Н	-2.35882	4.65544	-1.65848
н	-4.01036	4.75366	0.20094
С	3.23755	0.55253	0.01036
С	4.04171	0.15853	1.08974
С	3.72859	1.52142	-0.87367
С	5.30788	0.70743	1.26913
н	3.66212	-0.58361	1.78459
С	5.00268	2.06471	-0.70131
н	3.10751	1.83743	-1.7067
С	5.79692	1.66112	0.37163
н	5.91627	0.39126	2.11233
Н	5.37178	2.80606	-1.40534
н	6.78716	2.08666	0.51103
0	-2.31032	-1.02864	2.15855
0	-0.32957	-2.83747	-0.34763
Ν	-0.88287	-0.61398	-0.21434
С	2.52754	-2.35428	-0.33334
0	3.63444	-2.10272	-0.80362
С	2.22162	-3.76438	0.13793

С	4.39291	-2.74668	-1.25331
С	4.53928	-1.40659	-0.98603
С	3.46491	-0.5559	-0.5111
С	2.21216	-1.24678	-0.24426
С	2.08813	-2.61231	-0.57066
С	3.14181	-3.36598	-1.06163
Н	5.23755	-3.32582	-1.6254
Н	5.48379	-0.89295	-1.14565
Н	1.132	-3.10557	-0.4476
Н	2.98887	-4.41264	-1.30838
С	0.61275	0.72557	0.0345
С	0.01724	-1.45194	0.87352
С	-0.74784	0.99486	-0.09816
С	-1.36292	-1.26845	0.43746
С	-1.7398	0.00464	-0.02108
Н	-1.04597	2.03231	-0.17626
С	1.4837	1.91522	0.20009
С	1.36604	3.01104	-0.66279
С	2.24853	2.05278	1.37239
С	2.02455	4.20942	-0.38256
Н	0.77744	2.90944	-1.56969
С	2.88264	3.25358	1.66105
Н	2.33612	1.20442	2.04159
С	2.78047	4.33802	0.78185
Н	1.94253	5.04284	-1.07593
Н	3.47391	3.34292	2.56867
Н	3.28761	5.27323	1.0054
С	-3.1362	0.45371	-0.27698
С	-3.42458	1.19336	-1.43268
С	-4.15944	0.26644	0.66615
С	-4.70169	1.71324	-1.65263
Н	-2.63804	1.34833	-2.16524
С	-5.42887	0.79314	0.45443
Н	-3.94588	-0.29967	1.56616
С	-5.70911	1.51736	-0.70919
Н	-4.90544	2.27345	-2.56164
н	-6.20568	0.63863	1.19887
н	-6.70317	1.92452	-0.87481
0	3.65191	0.68405	-0.37344
0	0.40306	-2.29483	1.67424

Ν	1.00991	-0.58547	0.2238
С	-2.29669	-2.4183	0.454
0	-3.36438	-2.38298	-0.1599
С	-1.93201	-3.68817	1.20905
Н	-0.99201	-4.11249	0.84466
Н	-1.76296	-3.48151	2.26858
Н	-2.75054	-4.39869	1.07435

4m – Product Minimum

0	-0.2949	-3.0466	-1.5741
0	-1.6507	0.5954	-1.2491
Ν	-0.8719	-1.5713	0.078
С	-2.2075	-1.5351	-0.459
С	-2.615	-0.3541	-1.1059
С	0.1021	-2.2726	-0.7087
С	-0.5337	-0.7276	1.1119
С	1.4979	-1.9644	-0.4117
С	-1.6019	-0.0363	1.875
С	1.8193	-1.0715	0.6
С	-3.931	-0.2401	-1.5594
С	-3.0711	-2.6169	-0.3528
С	0.7884	-0.5032	1.3956
С	3.1923	-0.5539	0.8538
С	-0.7517	2.7956	-1.4314
С	-2.015	1.9647	-1.3987
С	-4.8038	-1.3211	-1.4165
С	-1.5378	1.3565	2.0307
С	-4.3777	-2.5135	-0.8317
С	-2.663	-0.7421	2.4618
С	3.7487	-0.6042	2.1374
С	-2.5255	2.0315	2.7481
С	0.4549	2.3138	-0.9108
С	-3.6424	-0.0658	3.1845
С	3.8924	0.1068	-0.167
С	-3.58	1.3228	3.3254
С	5.686	0.6238	1.3703
С	4.9944	-0.0295	2.3907
С	5.1285	0.6939	0.0909
С	1.5961	3.118	-0.9096
С	1.5423	4.4132	-1.426
Н	-4.2694	0.6736	-2.0334
Н	-2.712	-3.5262	0.116
Н	1.0431	0.17	2.2036
Н	-2.65	2.2537	-0.5477
Н	-2.5917	2.123	-2.3202

Н	-5.8235	-1.228	-1.7779
Н	-0.7286	1.908	1.5637
Н	-5.0567	-3.3548	-0.7426
Н	-2.7167	-1.8191	2.3501
Н	3.2102	-1.1115	2.9325
Н	-2.4704	3.111	2.8518
Н	0.506	1.3026	-0.529
Н	-4.4564	-0.6236	3.6375
Н	3.457	0.1616	-1.16
Н	-4.3496	1.8481	3.883
Н	6.6525	1.0772	1.5695
Н	5.4225	-0.0907	3.3869
Н	5.6583	1.2045	-0.7079
Н	2.5244	2.7213	-0.5078
Н	2.4293	5.0399	-1.4253
С	-0.7951	4.0898	-1.9619
С	0.3428	4.8966	-1.9541
Н	-1.723	4.47	-2.3834
Н	0.2949	5.8993	-2.369
С	2.3074	-3.0595	-2.6359
Н	1.695	-3.9644	-2.6595
Н	1.7356	-2.2942	-3.1676
Н	3.2683	-3.2426	-3.1204
С	2.5732	-2.6651	-1.198
0	3.654	-2.9001	-0.6781

4m – Product Transition State

0	-0.29498	-3.04641	-1.57447
0	-1.65068	0.59558	-1.24904
N	-0.87192	-1.57132	0.07782
С	-2.20753	-1.53498	-0.45912
С	-2.61501	-0.35394	-1.1059
С	0.10199	-2.27244	-0.70888
С	-0.53377	-0.72767	1.11184
С	1.49783	-1.96438	-0.41188
С	-1.60197	-0.0365	1.87501
С	1.81922	-1.07164	0.59995
С	-3.93101	-0.2398	-1.55945
С	-3.07119	-2.61675	-0.35302
С	0.78837	-0.50338	1.39563
С	3.19225	-0.55409	0.8538
С	-0.75157	2.79576	-1.43123
С	-2.01495	1.96489	-1.39852
С	-4.80387	-1.32084	-1.41665
С	-1.53778	1.35635	2.03095

С	-4.37781	-2.51326	-0.83198
С	-2.66305	-0.74232	2.46172
С	3.74864	-0.60452	2.13746
С	-2.5255	2.03123	2.74837
С	0.45499	2.31389	-0.91044
С	-3.64247	-0.06613	3.18453
С	3.89241	0.10676	-0.16683
С	-3.58004	1.32244	3.32565
С	5.68602	0.6235	1.37049
С	4.9944	-0.02994	2.39078
С	5.12849	0.69379	0.09112
С	1.59618	3.11804	-0.90928
С	1.54254	4.41322	-1.42592
Н	-4.2694	0.67394	-2.03337
Н	-2.71215	-3.5261	0.11568
Н	1.04308	0.1697	2.2037
Н	-2.6498	2.25387	-0.54736
Н	-2.59173	2.12333	-2.31987
Н	-5.82355	-1.22761	-1.77805
Н	-0.72863	1.90781	1.56397
Н	-5.05685	-3.35454	-0.74293
Н	-2.71681	-1.81928	2.34995
Н	3.21017	-1.11198	2.93243
Н	-2.47034	3.11076	2.8522
Н	0.50595	1.30278	-0.5286
Н	-4.45641	-0.62391	3.63751
Н	3.45701	0.16176	-1.15983
Н	-4.34963	1.84777	3.88327
Н	6.65246	1.07683	1.56974
Н	5.42242	-0.09127	3.38704
Н	5.65831	1.2045	-0.70761
Н	2.52447	2.72137	-0.50743
Н	2.42953	5.03986	-1.42526
С	-0.7949	4.08986	-1.96185
С	0.34314	4.89665	-1.95407
Н	-1.7227	4.47012	-2.38353
Н	0.29527	5.89921	-2.36918
С	2.30738	-3.05918	-2.63618
Н	1.69492	-3.964	-2.65998
Н	1.73556	-2.29372	-3.16781
Н	3.26827	-3.24222	-3.12075
С	2.57317	-2.66502	-1.1983
0	3.65397	-2.9001	-0.67842
7 HPLC data

7.1 O-Benzylated N-(2-phenoxy)pyridones (4)

Racemic traces were generated *via* thermal racemisation of the enantio-enriched materials, using the end-point trace generated according to General Procedure F (see page S37 below).

1-(2-(Benzyloxy)phenyl)-4,6-diphenylpyridin-2(1*H*)-one (4a)

Conditions: **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 36.4 min, t_R (minor) = 15.5 min.

Asymmetric trace: 75% ee

Single Injection Report

Agilent Technologies

Data file:	JS #289 S10 76H.dx		
Sequence Name:	SingleSample	Project Name:	Agilent
Sample name:	JS #289 S10 76H	Operator:	Agilent
Instrument:	1220LC	Injection date:	2021-07-08 17:43:02+01:00
lnj. volume:	5.000	Location:	2
Acq. method:	Atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00
Manually modified:	None		

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.289	VB	0.23	12.81	2.80	1.18	
15.056	BB	1.69	531.33	19.66	49.03	
32.853	BB	2.87	539.44	8.83	49.78	
		Sum	1083.58			

4-((2-(2-Oxo-4,6-diphenylpyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4b)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 26.4 min, t_R (minor) = 12.3 min.

Asymmetric trace: 67% ee

Signal:	DAD1B,Sig					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.311	VB	0.61	55.44	8.71	3.77	
12.257	BB	1.37	234.75	9.55	15.96	
26.408	BB	2.96	1180.71	21.35	80.27	
		Sum	1470.89			

10-

6-4-2-0-

A B

800

2

Single Injection	Single Injection Report								
Data file:	JS #298 80C S9 102H.dx								
Sequence Name:	SingleSample	Project Name:	Agilent						
Sample name:	JS #298 80C S9 102H	Operator:	Agilent						
Instrument:	1220LC	Injection date:	2021-07-22 20:27:57+01:00						
lnj. volume:	5.000	Location:	64						
Acq. method:	Atropisomer barrier measurement.amx	Type:	Sample						
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00						
Manually modified:	None								
DAD1B,SIg=250,4 Ref=off	07								
14									

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Time[min]

426.575

1-(2-((4-Methylbenzyl)oxy)phenyl)-4,6-diphenylpyridin-2(1*H*)-one (4c)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 53.5 min, t_R (minor) = 19.9 min.

Asymmetric trace: 70% ee

Single Injection	Report		Agilent Technologies			
Data file:	JS-4-303 col 60% MeCN-H2O20210	504 142035.dx				
Sequence Name:	SingleSample	Project Name:	JS			
Sample name:	JS-4-303 col 60% MeCN/H2O	Operator:	SYSTEM			
Instrument:	1100HPLC	Injection date:	2021-05-04 14:21:44+01:00			
Inj. volume:	5.000	Location:	17			
Acq. method:	60% MeCN-H2O 45 MIN.amx	Туре:	Sample			
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00			
Manually modified:	Manual Integration					
DAD1A,Sig=250,4 Ref=360, 150 140 100 90 80 70 60 50 40 30 2 4 6 8 10 10 10 10 10 10 10 10 10 10	4 16 18 20 22 24 26 28 30 32 34 36 3 Time	8 40 42 44 46 48 50 5	2 54 56 58 60 62 64 66 68 70 72 74 76			

Signal:						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
19.948	BB	3.00	4592.01	106.31	14.78	
53.478	BB	9.53	26471.31	142.11	85.22	
		Sum	31063.32			

Single Injection	n Report		Agilent Technologies
Data file:	JS #303 80C S9 70H.dx		
Sequence Name:	SingleSample	Project Name:	Agilent
Sample name:	JS #303 80C S9 70H	Operator:	Agilent
Instrument:	1220LC	Injection date:	2021-07-24 18:59:09+01:00
lnj. volume:	5.000	Location:	80
Acq. method:	Atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00
Manually modified:	None		

Signal:	DAD1B,Sig=250,4 Ref=off									
RT [min]	Туре	Width [min]	Area	Height	Area%	Name				
2.308	VV	0.40	32.21	4.63	3.16					
17.928	BB	1.97	491.37	13.45	48.27					
42.829	BB	4.44	494.39	4.78	48.57					
		Sum	1017.96							

1-(2-(Benzyloxy)phenyl)-4-phenyl-6-(p-tolyl)pyridin-2(1H)-one (4d)

Conditions: **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 40.2 min, t_R (minor) = 18.2 min.

Asymmetric trace: 77% ee

Data fi	le:				J	S-5-	308 0	ol 6	0% N	MeCh	N-H	202	0210	430	1532	37.d	ĸ								
Seque	nce	Nam	e:		S	ingle	Sam	ple						Pr	ojec	t Nar	ne:		JS	5					
Sampl	e na	me:			J	S-5-	308 0	ol 6	0% N	/leCl	N/H	20		O	erat	or:			SYSTEM						
nstru	ment	t:			1	100	IPLO	;						Injection date:				2021-04-30 15:49:26+01:00							
nj. vo	lume	e:			10.000 60% MeCN-H2O 45 MIN.amx					Location:				15											
Acq. n	neth	od:							Туре:					Sample											
roce	ssin	ing method: 3D UV Sample amount Quantitative_DefaultMethod.pmx						:	0.00																
Manua	ally n	modi	fied:		N	lanu	al Int	egra	tion																
650-	DAD1	A,Sig	250,4	Ref=	off				_					-		-	-		_	-	1		-	_	
650- 600- 550-	DAD1	A,Sig	250,4	Ref=	off																No.				
650- 600- 550- 500-	DAD1	A,Sig	250,4	Ref=	off																14				
650- 600- 550- 500- 450- 400-	DAD1	A,Sig	250,4	Ref	off																100				
650- 600- 550- 500- 450- 450- 350- 350- 300-	DAD1.	A,Sig	250,4	Ref	off					8.194											12				
650- 600- 550- 500- 450- 350- 350- 350- 250-	DAD1.	A,Sig	250,4	Ref	the					¥18.194											P1 0				
650- 600- 550- 450- 450- 400- 350- 300- 250- 200- 150-	DAD1	A,Sig	250,4	Ref						¥18.194											74,000				
650- 600- 550- 500- 450- 350- 300- 250- 200- 150- 100- 50-	DAD1	A,Sig	250,4	Ref						194											1				

o.g.u.	0,10,1,0,0	about the on				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
18.194	BB	2.89	9504.28	242.00	11.63	
40.174	BB	6.55	72200.43	630.27	88.37	
		Sum	81704.70			

Single Injection	Single Injection Report					
Data file:	JS #308 80C S9 70.5H.dx					
Sequence Name:	SingleSample	Project Name:	Agilent			
Sample name:	JS #308 80C S9 70.5H	Operator:	Agilent			
Instrument:	1220LC	Injection date:	2021-07-31 22:02:06+01:00			
lnj. volume:	5.000	Location:	55			
Acq. method:	Atropisomer barrier measurement.amx	Type:	Sample			
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00			
Manually modified:	None					

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.299	vv	0.37	40.37	7.01	5.28	
17.350	BB	1.85	354.39	10.88	46.39	
36.252	BB	3.27	369.14	5.34	48.32	
		Sum	763.89			

4-((2-(2-Oxo-4-phenyl-6-(p-tolyl)pyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4e)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 31.3 min, t_R (minor) = 14.7 min.

Asymmetric trace: 67% ee

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Time [min]

Signal:	DAD1B,Sig					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.299	BB	0.76	36.37	4.99	21.12	
14.693	MM m	0.34	22.46	0.88	13.04	
31.261	BB	2.69	113.35	1.93	65.83	
		Sum	172.18			

1-(2-((4-methylbenzyl)oxy)phenyl)-4-phenyl-6-(p-tolyl)pyridin-2(1H)-one (4f)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 52.8 min, t_R (minor) = 22.1 min.

Asymmetric trace: 58% ee

1058.42

Sum

Single Injection	Report		Agilent Technologies
Data file:	JS #296 80C S9 102H.dx		
Sequence Name:	SingleSample	Project Name:	Aglient
Sample name:	JS #296 80C S9 102H	Operator:	Aglient
Instrument:	1220LC	Injection date:	2021-07-22 17:25:41+01:00
inj. volume:	5.000	Location:	62
Acq. method:	(90min) atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00
Manually modified:	None		
DAD18, Sig=250, 4 Ref=off 24 22 20 18 14 14 14 14 10 15 10 10 10 10 10 10 10 10 10 10	1e 20 22 24 2e 2e 30 32 34 36 3e 40 42 44 4 Time	40 48 50 52 54 56 58 60 62	2 64 66 68 70 72 74 76 78 60 62 64 66 89 90

Signal:	DAD18,Sk	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.308	vv	0.46	52.32	7.29	2.52	
4.050	BB	0.43	13.59	1.99	0.65	
21.841	BB	3.05	993.05	22.23	47.75	
50.881	BB	5.47	1020.89	9.48	49.08	
		Sum	2079.84			

1-(2-(Benzyloxy)phenyl)-6-(4-fluorophenyl)-4-phenylpyridin-2(1H)-one (4g)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) =33.3 min, t_R (minor) = 15.3 min.

Asymmetric trace: 65% ee

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.309	MM m	0.09	42.16	6.50	4.86	
15.296	BB	1.50	145.65	4.86	16.80	
33.318	BB	3.31	678.99	9.91	78.33	
		Sum	866 80			

Single Injectio	Agilent Technologies		
Data file:	JS #301 80C S8 48H.dx		
Sequence Name:	SingleSample	Project Name:	Agilent
Sample name:	JS #301 80C S8 48H	Operator:	Agilent
Instrument:	1220LC	Injection date:	2021-07-23 21:37:46+01:00
lnj. volume:	5.000	Location:	19
Acq. method:	Atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00
Manually modified:	Manual Integration		
	_		

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.309	vv	0.44	36.47	5.23	4.02	
15.224	BB	1.78	384.75	12.65	42.46	
33.105	BB	3.00	485.02	7.17	53.52	
		Sum	906.24			

4-((2-(6-(4-Fluorophenyl)-2-oxo-4-phenylpyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4h)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 30.3 min, t_R (minor) = 12.7 min.

Asymmetric trace: 58% ee

0.5

Single Injection	ı Report		Agilent Technologies	
Data file:	JS #293 70C Origin.dx			
Sequence Name:	SingleSample	Project Name:	Agilent	
Sample name:	JS #293 70C Origin	Operator:	Agilent	
Instrument:	1220LC	Injection date:	2021-07-27 04:21:37+01:00	
lnj. volume:	5.000	Location:	11	
Acq. method:	(45min) Atropisomer barrier measurement.amx	Type:	Sample	
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00	
Manually modified:	None			
DAD1B,Sig=250,4 Ref=off 6.5 5.5 5.5 4.5 4 3.5 3.5 2 1.5				

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Time [min]

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.299	BB	0.78	43.74	6.13	9.14	
12.706	BB	1.36	91.24	3.87	19.07	
30.233	BB	3.24	343.41	5.92	71.79	
		Sum	478.39			

Single Injection	Report		Agilent Technologies
Data file:	JS #293 80C S9 102H.dx		
Sequence Name:	SingleSample	Project Name:	Agilent
Sample name:	JS #293 80C S9 102H	Operator:	Agilent
Instrument:	1220LC	Injection date:	2021-07-22 16:24:22+01:00
lnj. volume:	5.000	Location:	61
Acq. method:	Atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00
Manually modified:	None		
DAD1B,Sig-250,4 Ref-off	12 14 16 18 20 22 24 26 28 30 Time	32 34 36 38 40 42 minj	44 45 48 50 52 54 56 58 60

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.308	VB	0.57	39.42	5.71	7.31	
12.571	BB	1.48	247.95	10.01	46.01	
29.504	BB	2.81	251.57	4.19	46.68	
		Sum	538.94			

6-(4-Fluorophenyl)-1-(2-((4-methylbenzyl)oxy)phenyl)-4-phenylpyridin-2(1H)-one (4i)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 52.3 min, t_R (minor) = 20.5 min.

Asymmetric trace: 51% ee

				200,4 1001 011	011010,019	orginal.
Name	Area%	Height	Area	Width [min]	туре	RT [min]
	12.30	5.11	38.58	0.53	VB	2.307
	44.94	3.61	140.96	2.30	BB	19.727
	42.77	1.27	134.16	1.24	MM m	49.071
			313.69	Sum		

1-(2-(Benzyloxy)phenyl)-3-ethyl-4,6-diphenylpyridin-2(1H)-one (4j)

Conditions: **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 69.9 min, t_R (minor) = 30.2 min.

Asymmetric trace: 40% ee

Data file:JS-4-291 col 2 60% MeCN-H2O20210330 115119.dxSequence Name:SingleSampleProject Name:WalkupSample name:JS-4-291 col 2 60% MeCN:H2OOperator:admin accountInstrument:LCMSInjection date:2021-03-30 12:33:57+01:00Inj. volume:5.000Location:P1-a3Acq. method:60% MeCN in H2O OD-RH column 40 mins MS.amxType:SampleProcessing method:LCMS Purity.pmxSample amount:0.00Manual IntegrationVVV	Single Injectior	ı Report		Agilent Technologies
Sequence Name:SingleSampleProject Name:WalkupSample name:JS-4-291 col 2 60% MeCN:H2OOperator:admin accountInstrument:LCMSInjection date:2021-03-30 12:33:57+01:00Inj. volume:5.000Location:P1-a3Acq. method:60% MeCN in H2O OD-RH column 40 mins MS.amxType:SampleProcessing method:LCMS Purity.pmxSample amount:0.00Manual IntegrationVWD1A,Wavelengh=250 mVWD1A,Wavelengh=250 m0.00	Data file:	JS-4-291 col 2 60% MeCN-H2O2021	0330 115119.dx	
Sample name:JS-4-291 col 2 60% MeCN:H2OOperator:admin accountInstrument:LCMSInjection date:2021-03-30 12:33:57+01:00Inj. volume:5.000Location:P1-a3Acq. method:60% MeCN in H2O OD-RH column 40 mins MS.amxType:SampleProcessing method:LCMS Purity.pmxSample amount:0.00Manually modified:Manual Integration''''''''WD1A.Wavelength=250 nm'''''''''''WD1A.Wavelength=250 nm'''	Sequence Name:	SingleSample	Project Name:	Walkup
Instrument:LCMSInjection date:2021-03-30 12:33:57+01:00Inj. volume:5.000Location:P1-a3Acq. method:60% MeCN in H2O OD-RH column 40 mins MS.amxType:SampleProcessing method:LCMS Purity.pmxSample amount:0.00Manually modified:Manual Integration	Sample name:	JS-4-291 col 2 60% MeCN:H2O	Operator:	admin account
Inj. volume:5.000Location:P1-a3Acq. method:60% MeCN in H2O OD-RH column 40 mins MS.amaType:SampleProcessing method:LCMS Purity.pmxSample amount:0.00Manually modified:Manual Integration	Instrument:	LCMS	Injection date:	2021-03-30 12:33:57+01:00
Acq. method: 60% MeCN in H2O OD-RH column 40 mins MS.amx Type: Sample Processing method: LCMS Purity.pmx Sample amount: 0.00 Manually modified: Manual Integration VWD1A,Wavelength=250 nm VWD1A,Wavelength=250 nm 0 0 000000000000000000000000000000000000	Inj. volume:	5.000	Location:	P1-a3
Processing method: LCMS Purity.pmx Sample amount: 0.00 Manually modified: Manual Integration	Acq. method:	60% MeCN in H2O OD-RH column 40 mins MS.amx	Туре:	Sample
Manually modified: Manual Integration	Processing method:	LCMS Purity.pmx	Sample amount:	0.00
WD1A,Wavelength=250 nm 800 600 600 600 600 600 600 600	Manually modified:	Manual Integration		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 25 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Time [min]	WD1A, Wavelength=250 nm 8000 7000 6000 5000 24000 2000 1000	21046		
	1 2 3 4 5 6 7 8	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time [m	24 25 26 27 28 29 30 31 3 in]	2 33 34 35 36 37 38 39 40 41 42 43 44 45

Signal:	VWD1A,W	avelength=250 nm				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
21.046	BB	3.08	16050.69	378.81	30.15	
24.252	BB	3.14	37179.46	758.83	69.85	
		Sum	53230.15			

Manually modified:

None

Agilent Technologies Single Injection Report Data file: JS #291 80C S10 54H (07.09).dx SingleSample Sequence Name: Project Name: Agilent JS #291 80C S10 54H (07.09) Sample name: Operator: Agilent 1220LC Instrument: Injection date: 2021-07-09 19:39:03+01:00 Inj. volume: 5.000 Location: 31 Acq. method: Atropisomer barrier Type: Sample measurement.amx Processing method: 3D UV Sample amount: 1.00 Quantitative_DefaultMethod.pmx

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.293	VB	0.59	35.16	6.04	2.84	
20.074	BB	1.97	595.66	16.83	48.06	
23.023	BB	2.26	608.50	15.18	49.10	
		Sum	1239.32			

4-((2-(3-Ethyl-2-oxo-4,6-diphenylpyridin-1(2H)-yl)phenoxy)methyl)benzonitrile (4k)

Conditions: CHIRALPAK OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = min, t_R (minor) = min.

Asymmetric trace: 28% ee

Single Injection	Report		Agilent Technologies
Data file:	JS-4-306 col 60% MeCN-H2O202105	520 211751.dx	
Sequence Name:	SingleSample	Project Name:	JS
Sample name:	JS-4-306 col 60% MeCN/H2O	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-05-20 21:18:55+01:00
Inj. volume:	2.000	Location:	37
Acq. method:	60% MeCN-H2O 45 MIN.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		
DAD1A,Sig=250,4 Ref=360		47.422 22.16	

Signal: DAD1A,Sig=250,4 Ref=360,100										
RT [min]	Туре	Width [min]	Area	Height	Area%	Name				
17.422	BB	3.23	12011.16	366.40	35.82					
22.276	BB	3.66	21520.34	494.41	64.18					
		Sum	33531.50							

Manually modified:

None

Single Injection	Agilent Technologies		
Data file:	JS #306 80C S8 96H (07.26).dx		
Sequence Name:	SingleSample	Project Name:	Agilent
Sample name:	JS #306 80C S8 96H (07.26)	Operator:	Agilent
Instrument:	1220LC	Injection date:	2021-07-26 15:51:27+01:00
lnj. volume:	5.000	Location:	83
Acq. method:	Atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.299	VB	0.63	40.68	6.82	9.80	
6.416	BB	1.01	88.00	5.64	21.20	
15.905	BB	1.56	143.69	5.05	34.61	
19.954	BB	1.73	142.80	3.99	34.40	
		Sum	415.18			

^{*} Peaks at 2.3 and 6.4 min are an impurity carried-over from a previous sample.

3-Ethyl-1-(2-((4-methylbenzyl)oxy)phenyl)-4,6-diphenylpyridin-2(1*H*)-one (4I)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 26.9 min, t_R (minor) = 25.0 min.

Asymmetric trace: 41% ee

0

Single Injection	Agilent Technologies						
Data file:	JS-4-307 col 60% MeCN-H2O20210	423 183713.dx					
Sequence Name:	SingleSample	Project Name:	JS				
Sample name:	JS-4-307 col 60% MeCN/H2O	Operator:	SYSTEM				
Instrument:	1100HPLC	Injection date:	2021-04-24 09:33:53+01:00				
Inj. volume:	10.000	Location:	54				
Acq. method:	60% MeCN-H2O 45 MIN.amx	Туре:	Sample				
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00				
Manually modified:	Manual Integration						
DAD1A,Sig=250,4 Ref=off							
400-		M.					
350-		85					
300-							
250-							
₽ 200-							
150-	1						
100-							
50-							

Signal:	DAD1A,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
25.000	BV	2.28	8345.52	153.68	29.57	
26.940	VB	3.42	19874.06	374.57	70.43	
		Sum	28219.58			

22

24 26 Time [min]

28 30

32

34

38 40

36

42 44 46

48 50

14 16 18 20

10 12

6

8

S	Single	e Inj	jecti	ion	Re	po	rt													9	Ķ	A	lgi	len	t Te	chı	nol	ogi	es
Dat	a file:				JS #	#307	80C	S8	96H	H (07	.26).dx	c																
Sec	quence	Name			Sing	gleSa	ample	е						F	roje	ect I	lam	e:			Agile	ent							
San	nple na	me:			JS ‡	#307	80C	S8	96H	H (07	.26)		C)per	ato	r:				Agile	ent							
Inst	trument	t:			122	OLC	C Injection date:				:	2021	-07	-26	16:3	86:16	+01:	:00											
lnj.	volume	:			5.00	00		Location:					1	84															
Aco	q. meth	od:			Atro mea	opiso asure	mer l emen	barri it.arr	ier 1x					Т	уре	:				1	Sam	ple							
Pro	cessing	g met	hod:		3D Qua	UV antita	tive_	Def	ault	Meth	nod.	.pm	x	9	Sam	ple	amo	ount	t:		1.00								
Mar	nually n	nodifi	ed:		Mar	nual I	Integ	ratio	n																				
mAU	DAD11 9- 8- 7- 6- 5- 4- 3- 2- 1- 0- 2	B,Sig=2	50,4 Re	ef=off	12 1	14 11	3 18	20	1 22	24		3 2	8 3 Tin	30 3 ne (m	2 3 n]	4 3	6 3	38	40 4	12	44 4	16	48	50	52 5	4 5	8 8	8 6	0
Sign	al:	DAD	1B,Sig	;=250	,4 F	Ref=0	off																						
RT	ſ [min]	Т	уре	Wi	dth [[min]				Are	ea			Не	ight			Are	a%							I	lam	ie	
	2.301		VB			0.59				50.0	01			-	8.92			27	.78										
	24.252	M	M m			0.51				65.8	80				1.52			36	.55										
1	26.015	M	Мm			0.50				64.2	22				1.51			35	.67										
						Sum			1	80 (14																		

Sum

180.04

3-Acetyl-1-(2-(benzyloxy)phenyl)-4,6-diphenylpyridin-2(1H)-one (4m)

Conditions: **HPLC**: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 11.3 min, t_R (minor) = 9.4 min.

Asymmetric trace: 6% ee

					-
Area%	Height	Area	Width [min]	Туре	RT [min]
46.76	302.83	6239.89	1.50	VB	9.433
53.24	289.41	7104.91	1.63	BB	11.277
		13344.80	Sum		
	Area% 46.76 53.24	Height Area% 302.83 46.76 289.41 53.24	Area Height Area% 6239.89 302.83 46.76 7104.91 289.41 53.24 13344.80	Width [min] Area Height Area% 1.50 6239.89 302.83 46.76 1.63 7104.91 289.41 53.24 Sum 13344.80 53.24 53.24	Type Width [min] Area Height Area% VB 1.50 6239.89 302.83 46.76 BB 1.63 7104.91 289.41 53.24 Sum 13344.80 53.24 53.24

Signal:	DAD18,SI	g=250,4 Ref=oπ				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.294	VB	0.48	34.18	5.91	3.52	
12.803	BB	1.44	460.14	19.85	47.35	
15.325	BB	1.81	477.52	16.76	49.14	
		Sum	971.83			

4-((2-(3-Acetyl-2-oxo-4,6-diphenylpyridin-1(2*H*)-yl)phenoxy)methyl)benzonitrile (4n)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 13.7 min, t_R (minor) = 10.9 min.

Asymmetric trace: 3% ee

Single Injection	Report		Agilent Technologies
Data file:	JS-4-304 col 60% MeCN-H2O202104	422 135035.dx	
Sequence Name:	SingleSample	Project Name:	JS
Sample name:	JS-4-304 col 60% MeCN/H2O	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-04-22 15:34:32+01:00
Inj. volume:	volume: 10.000		83
Acq. method:	60% MeCN-H2O 45 MIN.amx	Туре:	Sample
Processing method: 3D UV Quantitative_DefaultMethod.pmx		Sample amount:	0.00
Manually modified:	Manual Integration		
DAD1A,Sig=250,4 Ref=off		26 28 30 32 34	36 38 40 42 44 46 48 50

Signal:	DAD1A,Siç	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.892	BB	1.72	4046.90	175.25	48.65	
13.718	BB	2.30	4272.14	145.40	51.35	
		Sum	8319.04			

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.297	BB	0.73	54.92	8.63	7.35	
10.521	BB	1.60	345.12	17.55	46.22	
12.965	BB	1.74	346.71	14.17	46.43	
		Sum	746.76			

3-Acetyl-1-(2-((4-methylbenzyl)oxy)phenyl)-4,6-diphenylpyridin-2(1*H*)-one (40)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 17.5 min, t_R (minor) = 15.6 min.

Asymmetric trace: 5% ee

Single Injection	Report		Agilent Technologies
Data file:	JS-4-305 col 60% MeCN-H2O202104	22 135043.dx	
Sequence Name:	SingleSample	Project Name:	JS
Sample name:	JS-4-305 col 60% MeCN/H2O	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-04-22 16:25:40+01:00
Inj. volume:	10.000	Location:	84
Acq. method:	60% MeCN-H2O 45 MIN.amx	Туре:	Sample
Processing method:	Processing method: 3D UV Sample amount Quantitative_DefaultMethod.pmx		0.00
Manually modified:	Manual Integration		
DAD1A,Sig=250,4 Ref=off	10 12 14 16 18 20 22 24 Time	26 28 30 32 34 [min]	36 38 40 42 44 46 48 50

Signal:	DAD1A,Sig	=250,4 Ref=off	i0,4 Ref=off			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
15.609	BB	1.89	3621.20	115.52	47.71	
17.475	BB	1.95	3968.93	114.33	52.29	
		Sum	7590.13			

Single Injection	Agilent Technologies		
Data file:	JS #305 80C S8 96H (07.26).dx		
Sequence Name:	SingleSample	Project Name:	Agilent
Sample name:	JS #305 80C S8 96H (07.26)	Operator:	Agilent
Instrument:	1220LC	Injection date:	2021-07-26 15:09:40+01:00
lnj. volume:	5.000	Location:	82
Acq. method:	Atropisomer barrier measurement.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	1.00
Manually modified:	None		

Signal:	DAD1B,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.298	VB	0.67	40.74	6.76	4.52	
14.836	BB	1.56	432.90	16.11	47.99	
16.520	BB	1.65	428.50	14.42	47.50	
		Sum	902.14			

6-(4-Fluorophenyl)-1-(2-((3-methylbut-2-en-1-yl)oxy)phenyl)-4-phenylpyridin-2(1*H*)-one (4p)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 29.5 min, t_R (minor) = 13.7 min.

Asymmetric trace: 47% ee

29.537

BB

3.78

Sum

11249.32

15308.84

Single	e Injec	tion Report				\ast	Agileı	nt Te	chno	olog	ies
Data file:		JS-5-310 co	60% MeCN-H2O2	0210430 153951	1.dx						
Sequence	Name:	SingleSamp	e	Project N	lame:	JS					
Sample na	me:	JS-5-310 co	60% MeCN/H2O	Operator		SYSTE	м				
Instrument	t:	1100HPLC		Injection	date:	2021-0	4-30 16:	40:37	+01:00	0	
lnj. volume	:	10.000		Location	:	16					
Acq. metho	od:	60% MeCN-	H2O 45 MIN.amx	Type:		Sample	,				
Processing	Processing method: 3D UV Sample amoun Quantitative_DefaultMethod.pmx		amount:	0.00							
Manually n	nodified:	Manual Integ	gration								
DAD1	A,Sig=250,4 I	Ref=off									
180- 160- 140- 120- 100- 20- 0- -20- 2	4 6	8 10 12 14	16 18 20 22	24 26 28 3 Time [min]	30 32 34	36 38	40 42	44	46	48	50
Signal:	DAD1A,S	ig=250,4 Ref=off									
RT [min]	Туре	Width [min]	Area	Height	Area%				Na	me	
13.654	BB	2.22	4059.51	145.79	26.52						

183.73

73.48

RT [min]	туре	Width [min]	Area	Height	Агеа%	Name
2.299	BV	0.51	48.37	7.34	11.30	
13.042	BB	1.71	188.50	7.86	44.03	
26.415	BB	2.63	191.24	3.88	44.67	
		Sum	428.11			

7.2 Pyridinium salt (7)

Conditions: Chiralpak OD-RH, 60% MeCN/H₂O, 0.75 mL/min, λ = 250 nm, t_R (major) = 54.9 min, t_R (minor) = 20.9 min.

Asymmetric trace: 49% ee

Single Injection	Report		Agilent Technologies
Data file:	pck 3.80.dx		
Sequence Name:	SingleSample Pr	oject Name:	Aglient
Sample name:	pck 3.80 Op	erator:	Aglient
Instrument:	1220LC In	ection date:	2021-07-08 08:27:03+01:00
inj. volume:	5.000 Lo	cation:	92
Acq. method:	Atropisomer barrier Ty measurement.amx	pe:	Sample
Processing method:	3D UV Sa Quantitative_DefaultMethod.pmx	imple amount:	1.00
Manually modified:	Manual Integration		
DAD18,Sig=250,4 Ref=off	12 14 16 18 20 22 24 28 28 30 32 Time [min	34 36 38 40 -	

Signal:	DAD18,Sk	-250,4 Ref-off				
RT [min]	туре	Width [min]	Area	Height	Агеа%	Name
21.020	MM m	0.49	24.36	0.59	49.70	
55.436	MM m	1.29	24.65	0.22	50.30	
		Sum	49.01			

8 NMR data

1a - ¹H NMR, 400 MHz, CDCl₃

1c - ¹³C NMR, 101 MHz, CDCl₃

	4	139.28	A 128.72 127.87 127.87									5.69	BR	UKER	ł
													NAME EXPNO PROCNO	JS=4=294 recol	1 1 1
													F2 - Acc Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D1 TD0 SF01 NUC1 P0 P1 PLW1 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13 F2 - Pro	uisition Parame 2021050 23.11 AVIII 400 2108618_0146 2gpg30 96155 CDC11 4099 24038.461 0.500020 1.9999200 20.50 20.800 6.55 300.6 1.00000000 0.03000000 100.617800 130 9.00 96.6800003 400.111600 9.00 17.2919998 0.4803299 0.2416000 000000000000000000000000000000000	eters 5 1 h 0 0 3 6 4 Hz 0 Hz 0 Hz 0 Usec 0 usec 0 usec 0 usec 0 sec 1 MHz 0 usec 1 W 4 MHz 4 MHz 4 MHz 4 MHz 1 W 2 W 9 W 1 W ters 2
													SF WDW SSB LB GB	100.6077428 EN (1.00	8 MHz M O O Hz O
170	160 150	140 1	30 120	110	100 9	90 80	0 70	60	50 4	40 30	20	ppn	₩₽C T	1.40)

-

S5 - ¹H NMR, 400 MHz, CDCl₃

14 12 11 F		20 Me									F C T I F F T S N C S F A R C C T C T T T	12 - Acq late_ 'ime 'NSTRUM 'ROBHD 'ULPROG 'D OLVENT IS WH 'IDRES Q WH 'IDRES Q WH 'IDRES Q N WE D D D D D D D D D D D D D	uisition Parame 20210420 0.01 AVIII 400 2108618_0146 (29 261992 CDC13 16 4 89285.711 0.681591 1.4671552 575 5.600 7.11 300.0 1.0000000(Hz Hz Hz busec K sec
											S N P F S S W S I G P	FO1 UC1 '1 'LW1 '2 - Pro I I I I DW SB .B :B 'C	376.4418995 19F 11.80 32.96500015 cessing paramet 262144 376.4795470 EM 0.30 0.30 0.1.00	MHz W ers MHz) Hz
	0	-20	-40	-60	-80	-100	-120 S ¹	-140 137	-160	-180	ppm			

QD-1 - ¹H NMR, 400 MHz, CDCl₃

14 12 11 N O CN		-111.69	Current NAME EXPNO	Data Parameters JS-4-293 col 18
			PROCNO F2 = Ac Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 SF01 NUC1 P1 PLW1 F2 = Pr SI SF WDW SSB LB GB PC	1 quisition Parameters 20210505 14.07 h AVIII 400 2108618_0146 (2g 261992 CDC13 16 4 89285.711 Hz 0.681591 Hz 1.4671552 sec 645 5.600 usec 7.11 usec 300.0 K 1.00000000 sec 1 376.4418995 MHz 19F 11.80 usec 32.96500015 W ocessing parameters 262144 376.4795470 MHz EM 0 0.30 Hz 0 1.00
0 -20 -40	-60 -80 -100	-120 -140 -160	-180 ppm	

	-112.15	C N F	Current Data Parameters NAME JS-4-297 EXPNO 14 PROCNO 1
$F \xrightarrow{1} 0 \xrightarrow{2} 23$			'2 - Acquisition Parameters >ate20210420 'ime23.06 h INSTRUM400 'ROBHD108618_0146 ('ULPROG2g 'D261992 OLVENTCDC13 IS16 'SWH89285.711 Hz 'TIDRES0681591 Hz 'Q1.4671552 sec 'G575 'WW5.600 usec 'SE300.0 K '11.00000000 sec 'SFO1376.4418995 MHz UUC119F '11.80 usec PLUN132.96500015 W
		F S S S S S S S S S S S S S S S S S S S	'2 - Processing parameters II 262144 F 376.4795470 MHz IDW EM ISB 0 .B 0.30 Hz IB 0 PC 1.00
0 -20 -40 -6	0 -80 -100 -120 -1	40 -160 -180 ppm	

9 <u>References</u>

- 1. L. H. Wang, Advanced Materials Research, 2012, **396-398**, 1232-1235.
- 2. A. Kakefuda, T. Suzuki, T. Tobe, A. Tahara, S. Sakamoto and S.-i. Tsukamoto, *Bioorg. Med. Chem.*, 2002, **10**, 1905-1912.
- 3. A. Maiti, P. V. N. Reddy, M. Sturdy, L. Marler, S. D. Pegan, A. D. Mesecar, J. M. Pezzuto and M. Cushman, *J. Med. Chem.*, 2009, **52**, 1873-1884.
- 4. A. Grozavu, H. B. Hepburn, E. P. Bailey, P. J. Lindsay-Scott and T. J. Donohoe, *Chem. Sci.*, 2020, **11**, 8595-8599.
- 5. B. Lecea, J. M. Aizpurua and C. Palomo, *Tetrahedron*, 1985, **41**, 4657-4665.
- 6. G.-W. Wang and C.-B. Miao, *Green Chemistry*, 2006, **8**, 1080-1085.
- 7. Q. Shen, W. Huang, J. Wang and X. Zhou, *Organometallics*, 2008, **27**, 301-303.
- 8. Q.-H. Teng, X.-J. Peng, Z.-Y. Mo, Y.-L. Xu, H.-T. Tang, H.-S. Wang, H.-B. Sun and Y.-M. Pan, *Green Chemistry*, 2018, **20**, 2007-2012.
- 9. E. J. Corey and M. C. Noe, *Org. Synth.*, 2003, **80**, 38.
- 10. X.-F. Tang, J.-N. Zhao, Y.-F. Wu, Z.-H. Zheng, S.-H. Feng, Z.-Y. Yu, G.-Z. Liu and Q.-W. Meng, *Org. Biomol. Chem.*, 2019, **17**, 7938-7942.
- 11. S. Arai, H. Tsuge, M. Oku, M. Miura and T. Shioiri, *Tetrahedron*, 2002, **58**, 1623-1630.
- 12. J. Cosier and A. M. Glazer, *Journal of Applied Crystallography*, 1986, **19**, 105-107.
- 13. CrysAlisPRO, Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England
- 14. G. M. Sheldrick, Acta Crystallographica A, 2015, **71**, 3-8.
- 15. (a) P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *Journal of Applied Crystallography*, 2003, **36**, 1487; (b) R. I. Cooper, A. L. Thompson and D. J. Watkin, *Journal of Applied Crystallography*, 2008, **43**, 1100-1107.
- 16. S. Parsons, H. D. Flack and T. Wagner, Acta Crystallographica Section B, 2013, 69, 249-259.
- 17. G. Sheldrick, Acta Crystallographica Section C, 2015, 71, 3-8.
- 18. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography*, 2009, **42**, 339-341.
- 19. G. A. Molander and B. Canturk, *Org. Lett.*, 2008, **10**, 2135-2138.
- 20. R. Gallardo-Macias, P. Kumar, M. Jaskowski, T. Richmann, R. Shrestha, R. Russo, E. Singleton, M. D. Zimmerman, H. P. Ho, V. Dartois, N. Connell, D. Alland and J. S. Freundlich, *Bioorg. Med. Chem. Lett.*, 2019, **29**, 601-606.
- 21. S. Tong, J.-T. Li, D.-D. Liang, Y.-E. Zhang, Q.-Y. Feng, X. Zhang, J. Zhu and M.-X. Wang, *J. Am. Chem. Soc.*, 2020, **142**, 14432-14436.
- 22. Gaussian 16 Rev. C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Wallingford, CT
- 23. CYLView, C. Y. Legault, Université de Sherbrooke: Quebec , Canada
- 24. Jmol: an open-source Java viewer for chemical structures in 3D, http://www.jmol.org/.
- 25. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 26. (a) J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, *Journal of Chemical Theory and Computation*, 2011, 7, 625-632; (b) E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, *J. Am. Chem. Soc.*, 2010, 132, 6498-6506.