Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

A Novel quinoline-based NNN-pincer Cu(II) complex as a superior catalyst for oxidative esterification of allylic C(sp³)-H bonds

Krishna Mohan Das,^a Adwitiya Pal,^a Nayarassery N. Adarsh,^b Arunabha Thakur*^a

^aDepartment of Chemistry, Jadavpur University, Kolkata- 700032, India.

^bChemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam

New York, 13699.

Phone : 0332-4572779, +919937760940.

Email: arunabha.thakur@jadavpuruniversity.in, babuiitm07@gmail.com

Table of Contents	Page no.
General Procedure for gram-scale reaction	4
Compound characterization Table	4
Fig. S1. ¹ H NMR spectra of compound 4a	5
Fig. S2. ¹³ C NMR spectra of compound 4a	6
Fig. S3. ¹ H NMR spectra of compound 4b	7
Fig. S4. ¹³ C NMR spectra of compound 4b	8
Fig. S5. ¹ H NMR spectra of compound 4c	9
Fig. S6. 13 C NMR spectra of compound 4 c	10
Fig. S7. ¹ H NMR spectra of compound 4d	11
Fig. S8. ¹³ C NMR spectra of compound 4d	12
Fig. S9. ¹ H NMR spectra of compound 4e	13
Fig. S10. ¹³ C NMR spectra of compound 4e	14
Fig. S11. ¹ H NMR spectra of compound 4f	15

Fig. S12. ¹³ C NMR spectra of compound 4f	16
Fig. S13. Ortep diagram of compound 4f	17
Table S1. Crystallographic details of compound 4f	18
Fig. S14. ¹ H NMR spectra of compound 4g	19
Fig. S15. ¹³ C NMR spectra of compound 4g	20
Fig. S16. HRMS of compound 4g	21
Fig. S17. ¹ H NMR spectra of compound 4h	22
Fig. S18. ¹³ C NMR spectra of compound 4h	23
Fig. S19. ¹ H NMR spectra of compound 4i	24
Fig. S20. ¹³ C NMR spectra of compound 4i	25
Fig. S21. ¹ H NMR spectra of compound 4j	26
Fig. S22. ¹³ C NMR spectra of compound 4j	27
Fig. S23. ¹ H NMR spectra of compound 4k	28
Fig. S24. ¹³ C NMR spectra of compound 4k	29
Fig. S25. ¹ H NMR spectra of compound 4l	30
Fig. S26. ¹³ C NMR spectra of compound 4l	31
Fig. S27. HRMS of compound 4l	32
Fig. S28. ¹ H NMR spectra of compound 4m	33
Fig. S29. ¹³ C NMR spectra of compound 4m	34
Fig. S30. HRMS of compound 4m	35
Fig. S31. ¹ H NMR spectra of compound 4n	36
Fig. S32. ¹³ C NMR spectra of compound 4n	37
Fig. S33. ¹ H NMR spectra of compound 40	38
Fig. S34. ¹³ C NMR spectra of compound 40	39
Fig. S35. HRMS of compound 40	40
Fig. S36. ¹ H NMR spectra of compound 4p	41
Fig. S37. ¹³ C NMR spectra of compound 4p	42
Fig. S38. ¹ H NMR spectra of compound 4q	43
Fig. S39. ¹³ C NMR spectra of compound 4q	44
Fig. S40. ¹ H NMR spectra of compound 4r	45

Fig. S41. ¹³ C NMR spectra of compound 4r	46
Fig. S42. ¹ H NMR spectra of compound 4s	47
Fig. S43. ¹³ C NMR spectra of compound 4s	48
Fig. S44. HRMS of compound 4s	49
Fig. S45. ¹ H NMR spectra of compound 4t	50
Fig. S46. ¹³ C NMR spectra of compound 4t	51
Fig. S47. HRMS of compound 4t	52
Fig. S48. ¹ H NMR spectra of compound 6c	53
Fig. S49. ¹³ C NMR spectra of compound 6c	54
Fig. S50. ¹ H NMR spectra of compound 6d	55
Fig. S51. ¹³ C NMR spectra of compound 6d	56
Fig. S52. ¹ H NMR spectra of compound 6e	57
Fig. S53. ¹³ C NMR spectra of compound 6e	58
Fig. S54. HRMS spectra of compound 6e	59
Fig. S55. HRMS of copper complex 1	60
Table S2: Crystallographic details of complex 1	61
Fig. S56. ¹ H NMR spectra of TEMPO-based alkoxyamine compound	62
References	63

General Procedure for gram-scale reaction:

Benzoic acid (A) and 4-hydroxybenzoic acid (B) have been used for exploring the gram-scale reaction.

A Schlenk flask equipped with a stir bar was charged with carboxylic acid derivative (1 g, 8.2 mmol (**A**)/ 7.2 mmol (**B**)) and catalyst (0.08 mmol, 85 mg (**A**)/ 0.07 mmol, 75 mg (**B**)). The Schlenk flask was then evacuated and back-filled with nitrogen. The process was repeated three times. Under nitrogen atmosphere, the Schlenk was charged with cyclohexene (8.2 mL, 82 mmol (**A**)/ 7.2 ml, 72 mmol (**B**)), TBHP (2.36 mL, 24.6 mmol (**A**)/ 2.07 ml, 21.6 mmol (**B**)), and DMF (10 mL) by syringe. The Schlenk flask was then placed in an oil bath preheated at 40 °C. After 1 h, the reaction mixture was cooled to room temperature and extracted with EtOAc and water. Organic phase was dried under reduced pressure. The crude product was purified by column chromatography on silica gel (5% EtOAc/pet ether) to afford the corresponding products **4a** and **4f** in 72% (1.2 g, 5.9 mmol) and 73% (1.14 g, 5.25 mmol) yields respectively.

Known		Unknown
Compound name	Reference	
4a-4e, 4i	1	
4n	2	
4h, 4p, 4q	3	
4k, 4r, 4f	4	4g, 4l, 4m, 40, 4s, 4l, 6b, 6d
4j	5	
<u>6a</u>	6	
6с	7	

Compound characterization Table

Fig. S1. ¹H NMR spectra of compound 4a

Fig. S2. ¹³C NMR spectra of compound 4a

Fig. S3. ¹H NMR spectra of compound 4b

Fig. S4. ¹³CNMR spectra of compound 4b

Fig. S5. ¹H NMR spectra of compound 4c

Fig. S6. ¹³C NMR spectra of compound 4c

Fig. S7. ¹H NMR spectra of compound 4d

Fig. S8. ¹³C NMR spectra of compound 4d

Fig. S9. ¹H NMR spectra of compound 4e

Fig. S10. ¹³C NMR spectra of compound 4e

Fig. S11. ¹H NMR spectra of compound 4f

Fig. S12. ¹³C NMR spectra of compound 4f

Fig. S13. ORTEP representation of the molecular structure of **4f** with thermal ellipsoids drawn at the 50% probability level. Selected bond lengths (Å) and angles (deg) for **4f**: O3-CB 1.481(4), C9-O3 1.334(4), CB-CD 1.488(5), CD-CF 1.339(8), CF-CE 1.44(1), CE-CG 1.464(7), CG-CC 1.396(9), CC-CB 1.498(7); C9-O3-CB 118.8(3), O3-CB-CD 108.4(3), O3-CB-CC 106.1(3), O3-C9-C4 111.6(2), CB-CD-CF 120.4(5), CB-CC-CG 115.0(4), CG-CE-CF 111.0(5).

Empirical formula	$C_{13}H_{14}O_3$
Formula weight	218.24
Crystal size (mm)	0.32 X 0.22 X 0.12
Crystal system	monoclinic
Space group	P21/c
<i>a</i> [Å]	a=10.8811(2)
<i>b</i> [Å]	b=10.233(2)
<i>c</i> [Å]	c=11.017(2)
α [°]	90
β[°]	108.43(3)
γ [°]	90
volume [Å ³]	1163.7(4)
Z	4
F(000)	464
$\mu MoK_{\alpha} [mm^{-1}]$	0.088
Temperature [K]	293(2)
R _{int}	0.4013
Range of h, k, l	-13/13, -13/13, -14/14
$\theta_{\min/\max}$ (°)	1.973/27.290
GOF on F^2	1.048
Final R indices [I > $2\sigma(I)$]	R1 = 0.0565 wR2 = 0.1555
R indices [all data]	R1 = 0.0776 wR2 = 0.1735

 Table S1: Crystallographic details of compound 4f

Fig. S14. ¹H NMR spectra of compound 4g

Fig. S15. ¹³C NMR spectra of compound 4g

Fig. S16. HRMS of compound 4g

Fig. S17. ¹H NMR spectra of compound 4h

Fig. S18. ¹³C NMR spectra of compound 4h

Fig. S19. ¹H NMR spectra of compound 4i

Fig. S20. ¹³C NMR spectra of compound 4i

Fig. S21. ¹H NMR spectra of compound 4j

Fig. S22. ¹³C NMR spectra of compound 4j

Fig. S23. ¹H NMR spectra of compound 4k

Fig. S24. ¹H NMR spectra of compound 4k

Fig. S25. ¹H NMR spectra of compound 4l

Fig. S26. ¹³C NMR spectra of compound 4l

Fig. S27. HRMS of compound 4l

Fig. S28. ¹H NMR spectra of compound 4m

Fig. S29. ¹³C NMR spectra of compound 4m

Fig. S30. HRMS of compound 4m

Fig. S31. ¹H NMR spectra of compound 4n

Fig. S32. ¹³C NMR spectra of compound 4n

Fig. S33. ¹H NMR spectra of compound 40

Fig. S34. ¹³C NMR spectra of compound 40

Fig. S35. HRMS of compound 40

Fig. S36. ¹H NMR spectra of compound 4p

Fig. S37. ¹³C NMR spectra of compound 4p

Fig. S38. ¹H NMR spectra of compound 4q

Fig. S39. ¹³C NMR spectra of compound 4q

Fig. S40. ¹H NMR spectra of compound 4r

Fig. S41. ¹³C NMR spectra of compound 4r

Fig. S42. ¹H NMR spectra of compound 4s

Fig. S43. ¹³C NMR spectra of compound 4s

Fig. S44. HRMS of compound 4s

Fig. S45. ¹H NMR spectra of compound 4t

Fig. S46. ¹³C NMR spectra of compound 4t

Fig. S47. HRMS of compound 4t.

Fig. S48. ¹H NMR spectra of compound 6b

Fig. S49. ¹³C NMR spectra of compound 6b

Fig. S50. ¹H NMR spectra of compound 6c

Fig. S51. ¹³C NMR spectra of compound 6c

Fig. S52. ¹H NMR spectra of compound 6d

Fig. S53. ¹³C NMR spectra of compound 6d

Fig. S54. HRMS spectra of compound 6d

Fig. S55. HRMS of copper complex 1

Empirical formula	C ₂₅ H ₁₃ ClN ₅ O ₂
Formula weight	517.42
Crystal size (mm)	0.2 X 0.2 X 0.1
Crystal system	triclinic
Space group	P -1
<i>a</i> [Å]	a=8.1305(7)
<i>b</i> [Å]	b=9.2545(8)
<i>c</i> [Å]	c=14.7289(13)
α [°]	96.831(3)
β[°]	98.583(3)
γ [°]	104.865(3)
volume [Å ³]	1044.74(16)
Z	2
F(000)	526.0
$\mu \ MoK_{\alpha} \ [mm^{-1}]$	1.21
Temperature [K]	273(2)
R _{int}	0.0589
Range of h, k, l	-10/10, -12/12, -19/14
θ _{min/max} (°)	2.308/28.358
GOF on F^2	1.133
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0785 wR2 = 0.2316
R indices [all data]	R1 = 0.0828 wR2 = 0.2338

 Table S2: Crystallographic details of complex 1

Fig. S56. ¹H NMR spectra of the TEMPO-based alkoxyamine compound 1- (cyclohex-2-en-1-yloxy)-2,2,6,6-tetramethylpiperidine.

References:

- 1. S. K. Rout, S. Guin, W. Ali, A. Gogoi and B. K. Patel, Org. Lett., 2014, 16, 3086–3089.
- 2. J. Zhao, H. Fang, J. Han and Y. Pan, Org. Lett. 2014, 16, 2530-2533.
- T. L. Ren, B. H. Xu, S. Mahmood, M. X. Sun and S. J. Zhang, *Tetrahedron*, 2017, 73, 2943-2948.
- 4. X. -Y. Chena, S. Yang, B. -P. Ren, L. Shi, D. -Z. Lin, H. Zhang and H. -Y. Liu, *Tetrahedron*, 2021, **96**, 132377.
- 5. S. Samadi, A. Ashouri and M. Samadi, ACS Omega, 2020, 5, 22367–22378.
- 6. É. Balaux and R. Ruel, *Tetrahedron Lett.*, 1996, **37**, 801-804.
- 7. R. E. McKinney Brooner, R. A. Widenhoefer, Chem. Eur. J., 2011, 17, 6170-6178.