Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Decyanation–(Hetero)arylation of Malononitriles to access α-(Hetero)arylnitriles

L. Reginald Mills, Purvish Patel, and Sophie A. L. Rousseaux*

Davenport Research Laboratories, Department of Chemistry, University of Toronto 80 St. George St., Toronto, ON, M5S 3H6

*sophie.rousseaux@utoronto.ca

Supporting Information: Experimental Data, Characterization, and NMR Spectra

Table of contents

A. General Information	S2
B. Optimization and Mechanistic Details	S3
Table S1. Evaluation of Grignard reagents for transnitrilation	S3
Table S2. Evaluation of decyanation-arylation conditions using 2-methyl-2-	
phenylmalononitrile	S3
Table S3. Evaluation of decyanation-arylation conditions using 2,2-dibenzylmalono	nitrile
	S4
Table S4. Attempted decyanation–lithiation with α -arylnitrile substrates (unoptimize	ed)
(yields <20%)	S4
Table S5. Yields for same-pot competition experiment	S5
Figure S1. Hammett trend for same-pot competition experiment	S5
C. Preparation of α-(Hetero)Arylnitrile Products	S6
Table S6. Additional incompatible substrates (yield <10%)	S6
Table S7. Lower yielding substrates	S7
D. Preparation of Malononitrile Starting Materials.	S21
E. Preparation of (Hetero)Aryl Electrophile Starting Materials	S29
F. NMR Spectra	S30
G. References	S97

A. General Information

Unless otherwise noted, all reactions were set up on benchtop and run under Ar or N₂ using flame-dried glassware and anhydrous solvents. PhMe and THF were purchased as HPLC-grade (inhibitor-free) from Caledon or Sigma–Aldrich and were dried using a PureSolv MD 5 solvent purification system. MeMgBr and PhMgBr were purchased from Sigma–Aldrich and were titrated using I₂ before use.¹ All other commercial reagents and starting materials were used as received. Compounds were purified by flash column chromatography using SiliCycle SilicaFlash P60 silica gel. The 8- and 16-mL culture tubes used for reactions were purchased from Fisher Scientific (catalogue nos. 14-957-76A and 14-959-35A) and were sealed using size 19 rubber septa and electrical tape.

GC-MS data was obtained on a Shimadzu GCMS-QP2010 SE; yields represent peak areas calibrated against each compound's response factor relative to *n*-dodecane as internal standard. NMR spectra were recorded on Agilent DD2 500 MHz, Varian MercuryPlus 400 MHz or Bruker Avance III 400 MHz spectrometers. TLC samples were run on EMD Millipore TLC Silica gel 60 F₂₅₄ plates and were visualized by UV or by staining with KMnO₄, phosphomolybdic acid (PMA), or *p*-anisaldehyde stains. Melting points were obtained on a Fisher-Johns Melting Point Apparatus. IR spectra were obtained on a Perkin-Elmer Spectrum 100 instrument equipped with a single-bounce diamond/ZnSe ATR accessory as solids or thin films. High-resolution mass spectra (HRMS) were recorded on a JEOL AccuTOF JMS-T1000LV mass spectrometer equipped with a Direct Analysis in Real Time (DART) ion source.

B. Optimization and Mechanistic Details

NC CN RMgBr (1 equiv) NC н R-CN THF Ph Pł Ме Ме temp., 1 h 1a (1 equiv) Entry RMgBr•LiX Conv. 1a (%)a Yield (%)^a temp. (°C) 1 23 92 73 PhMgBr•LiBr 2 70 23 99 96 3 100 81 MeMgBr + LiBr (1 equiv) 23 98 84 4 n-BuMgBr•LiBr 79 70 100 5 23 30 16 6 CyMgBr•LiBr 7 95 70 71 8 23 58 43 i-PrMgCI•LiCl 9 70 98 79

Table S1. Evaluation of Grignard reagents for transnitrilation²

^aDetermined by GC-MS using *n*-dodecane as internal standard.

Table S2. Evaluation of decyanation-arylation conditions using 2-methyl-2-phenylmalononitrile

	PhMgBr (1.2 equiv)	[NC, Me
NC CN	LiBr (1.2 equiv)	NC MgBr	(1 equiv)	N_{N}
Ph	THF, r.t., 1 h	Ph Me	cosolvent/	Ph'
1a (1.2 equiv)		- 3a	THF (2:1) temp., 12 h	4a

Entry	Cosolvent	Temp. (°C)	Yield 4a (%)
1	THF	23	0
2	PhMe	23	7
3	DMF	23	18
4	MeCN	23	0
5	DMSO	23	39
6	DMSO	50	82

Yields determined by GC-MS using *n*-dodecane as internal standard.

	NC CN Bn Bn - (1.2 equiv)	hMgBr (1.2 equiv) LiBr (1.2 equiv) THF, r.t., 1 h	Br n Cl (1 equiv) r temp., 12 h NC Bn NC Bn N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC N NC NC	
Reaction	Cosolvent	Temp. (°C)	Remaining 2-PyCl (%)	Yield (%)
1	none	23	28	9
2	PhMe	23	20	53
3	DMF	23	32	8
4	MeCN	23	34	0
5	DMSO	23	33	0
6	PhMe	50	20	80
7	PhMe	80	17	77
8	PhMe	110	11	87

Table S3. Evaluation of decyanation–arylation conditions using 2,2-dibenzylmalononitrile

Yields determined by GC-MS using *n*-dodecane as internal standard.

Table S4. Attempted decyanation–lithiation with α -arylnitrile substrates (unoptimized) (yields <20%)

Table S5. Yields for same-pot competition experiment

Yields determined by GC-MS using *n*-dodecane as internal standard; RAP = relative area percent.

Figure S1. Hammett trend for same-pot competition experiment

C. Preparation of a-(Hetero)AryInitrile Products

<u>General Procedure A: Decyanation–Metalation and Arylation</u>. An 8-mL threaded culture tube sealed with a size 19 septum was flame-dried under vacuum and cooled under N₂. To the tube was added malononitrile (1) (0.36 mmol, 1.2 equiv), and the tube was resealed and evacuated and backfilled with N₂ (×3). A stock solution of LiCl in THF (0.60 mL of a 0.60 M solution in THF, 0.36 mmol LiCl, 1.2 equiv) was added, followed by methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv). The reaction was stirred at r.t. for 1 h. Then, the reaction was diluted with DMSO (1.2 mL, total reaction volume = 1.8 mL of a 2:1 DMSO/THF mixture), and aryl electrophile was added (if liquid) (0.30 mmol, 1.0 equiv) (if the aryl electrophile was added as a stock solution in DMSO). The reaction was stirred at 23 °C until completion, as judged by TLC. The reaction was quenched with half-saturated NH₄Cl and extracted with EtOAc (×3). The organic fractions were combined, filtered over a plug of MgSO₄/Celite (1:1), and the filtrate was concentrated. The crude residue was purified by flash column chromatography to yield the desired α -(hetero)arylnitrile.

LiCl Solution (0.60 M in THF). To a 25-mL round-bottom flask with a stir bar was added LiCl (0.25 g, 6.0 mmol) and the flask was flame-dried and cooled under vacuum. Once cool, THF (10 mL, 0.60 M) was added, and the solution was stirred for 15 min to yield a 0.60 M solution of LiCl in THF.

 Table S6. Additional incompatible substrates (yield <10%)</th>

Electrophiles

2-Phenyl-2-(pyridin-2-yl)propanenitrile (4a): Prepared according to General Procedure A on 0.30-mmol scale with the modification that the reaction was heated at 50 °C. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyridine (28 μ L, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–40% EtOAc/hexanes) to yield the product as a colourless oil (51 mg, 0.245 mmol, 82%). Analytical data:³ **¹H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.63 (dd, *J* = 4.9, 1.9 Hz, 1H), 7.67 (td, *J* = 7.8, 1.9 Hz, 1H), 7.49–7.40 (m, 3H), 7.39–7.33 (m, 2H), 7.33–7.28 (m, 1H), 7.23 (dd, *J* = 7.6, 3.9 Hz, 1H), 2.18 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 159.3, 149.5, 140.5, 137.3, 129.1, 128.1, 126.5, 123.2, 122.9, 121.8, 48.9, 27.0 ppm.

2-Phenyl-2-(pyrazin-2-yl)propanenitrile (4b): Prepared according to General Procedure A on 0.30-mmol scale using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-iodopyrazine (30 μ L, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 20–50% EtOAc/hexanes) to yield the product as a white solid (62 mg, 0.297 mmol, 99%). Analytical data:⁴ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.72 (dd, *J* = 1.5, 0.4 Hz, 1H), 8.59 (dd, *J* = 2.5, 1.6 Hz, 1H), 8.54 (dd, *J* = 2.4, 0.4 Hz, 1H), 7.48–7.47 (m, 1H), 7.47–7.45 (m, 1H), 7.41–7.37 (m, 2H), 7.36–7.31 (m, 1H), 2.20 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 155.1, 144.0, 143.9, 143.5, 139.1, 129.3, 128.6, 126.4, 122.0, 47.1, 26.7 ppm.

2-(5-Bromopyridin-2-yl)-2-phenylpropanenitrile (4c): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 5-bromo-2-fluoropyridine (31 μ L, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes)

to yield the product as a colourless oil (85 mg, 0.296 mmol, 99%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.67 (dd, J = 2.4, 0.8 Hz, 1H), 7.79 (dd, J = 8.4, 2.4 Hz, 1H), 7.46–7.42 (m, 2H), 7.40–7.29 (m, 4H), 2.16 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 157.8, 150.6, 139.9, 129.2, 128.3, 126.4, 123.2, 122.7, 120.3, 48.5, 26.9 ppm (one peak is overlapping); HRMS *m/z* (DART): calcd for C₁₄H₁₂N₂Br (M+H): 287.0178; found: 287.0173; **IR** (neat): 2918, 2850, 2242, 1612, 1565, 1452, 1242, 1086, 785, 743, 697 cm⁻¹.

2-Phenyl-2-(pyrimidin-2-yl)propanenitrile (4d): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 20–50% EtOAc/hexanes) to yield the product as an off-white solid (55 mg, 0.263 mmol, 88%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 7.56–7.52 (m, 2H), 7.38–7.33 (m, 2H), 7.29 (tt, *J* = 6.6, 1.3 Hz, 1H), 7.23 (t, *J* = 4.9 Hz, 1H), 2.24 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.2, 157.8, 139.5, 129.0, 128.3, 126.3, 122.4, 120.1, 51.0, 26.5 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₂N₃ (M+H): 210.1026; found: 210.1026; IR (neat): 2961, 2853, 2237, 1716, 1584, 1564, 1496, 1455, 1411, 1183, 800, 755, 718, 695 cm⁻¹; m.p.: 80–81 °C.

2-Phenyl-2-(pyrimidin-2-yl)propanenitrile (4d) (gram-scale): Prepared on 7.1-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (1.3 g, 8.5 mmol, 1.2 equiv), methylmagnesium bromide (2.8 mL a 3.0 M solution in Et₂O, 8.5 mmol, 1.2 equiv), LiCl solution (14 mL of a 0.60 M solution in THF, 8.5 mmol, equiv), DMSO (28 mL), and 2-chloropyrimidine (0.81 g, 7.1 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 20–50% EtOAc/hexanes) to yield the product as an off-white solid (1.1 g, 5.2 mmol, 74%). The analytical data was identical to the product prepared on 0.30-mmol scale.

2-(5-Bromopyrimidin-2-yl)-2-phenylpropanenitrile (4e): Prepared according to General Procedure A on 0.20-mmol scale. The reaction was performed using 2-methyl-2-phenylmalononitrile (37 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL) and 5-bromo-2-chloropyrimidine (39 mg, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a white solid (54 mg, 0.188 mmol, 94%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.79 (s, 2H), 7.56–7.48 (m, 2H), 7.40–7.24 (m, 3H), 2.22 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 166.3, 158.5, 139.0, 129.1, 128.5, 126.2, 121.9, 119.6, 50.5, 26.4 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₁N₃Br (M+H): 288.0131; found: 288.0124; IR (neat): 2963, 2873, 2230, 1732, 1542, 1496, 1412, 1366, 1121, 1018, 764, 737, 699 cm⁻¹; m.p.: 93–95 °C.

2-(Benzoxazol-2-yl)-2-phenylpropanenitrile (4f): Prepared according to General Procedure A on 0.20-mmol scale. The reaction was performed using 2-methyl-2-phenylmalononitrile (37 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL) and iodobenzoxazole (49 mg, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless oil (34 mg, 0.137 mmol, 69%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.82–7.75 (m, 1H), 7.56–7.47 (m, 3H), 7.45–7.34 (m, 5H), 2.31 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 162.6, 151.4, 140.7, 137.0, 129.5, 129.1, 127.8, 125.9, 125.1, 120.8, 119.4, 111.3, 43.7, 26.8 ppm; HRMS *m/z* (DART): calcd for C₁₆H₁₃N₂O (M+H): 249.1022; found: 249.1028; **IR** (neat): 2918, 2851, 2242, 1613, 1566, 1453, 1242, 1086, 785, 743, 697 cm⁻¹.

2-(4-Chlorophenyl)-2-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H***-purin-8yl)propanenitrile (4g): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(4-chlorophenyl)-2-methylmalononitrile (69 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and bromocaffeine (82 mg, 0.30 mmol, 1.0 equiv). The crude material was purified by flash column chromatography to yield the product as a white solid (58 mg, 0.162 mmol, 54%). ¹H NMR (500 MHz, CDCl₃, 298 K): \delta_{\rm H} 7.42–7.36 (m, 2H), 7.25–7.19 (m, 2H), 3.70 (s, 3H), 3.63 (s, 3H), 3.40 (s, 3H), 2.18 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): \delta_{\rm C} 155.4, 151.5, 147.8, 146.8, 136.2, 135.1, 129.9, 126.6, 118.5, 109.4, 41.8, 33.1, 29.8, 29.5, 28.0 ppm; HRMS** *m/z* **(DART): calcd for C₁₇H₁₇N₅O₂Cl (M+H) 358.1065; found: 318.1063.**

Me CN Ph

4-(1-Cyano-1-phenylethyl)benzonitrile (4h): Prepared according to General Procedure A on 0.20-mmol scale. The reaction was performed using 2-methyl-2-phenylmalononitrile (37 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL) and 4-chlorobenzonitrile (28 mg, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (40% EtOAc/hexanes) to yield the product as a colourless oil (46 mg, 0.198 mmol, 99%). Analytical data:⁵ ¹**H** NMR (500 MHz, CDCl₃, 298 K): δ_H 7.70–7.64 (m, 2H), 7.53–7.48 (m, 2H), 7.43–7.33 (m, 5H), 2.11 (s, 3H) ppm; ¹³**C** NMR (126 MHz, CDCl₃, 298 K): δ_C 146.7, 139.9, 132.9, 129.4, 128.7, 127.6, 126.7, 122.5, 118.3, 112.3, 46.4, 27.9 ppm.

Me CN Ph NO₂

2-(4-Nitrophenyl)-2-phenylpropanenitrile (4i): Prepared according to General Procedure A on 0.20-mmol scale. The reaction was performed using 2-methyl-2-phenylmalononitrile (37 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL) and 1-chloro-4-nitrobenzene (32 mg, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (10–40% EtOAc/hexanes) to yield the product as a colourless oil (31 mg, 0.123 mmol, 62%). Analytical data:^{5 1}**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.26–8.19 (m, 2H), 7.60–7.55 (m, 2H), 7.44–7.33 (m, 5H), 2.14 (s, 3H) ppm.

Ethyl 4-(1-cyano-1-phenylethyl)benzoate (4j): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and ethyl 4-fluorobenzoate (44 μL, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless oil (32 mg, 0.115 mmol, 38%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.06–8.01 (m, 2H), 7.48–7.44 (m, 2H), 7.40–7.31 (m, 5H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.11 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 166.0, 146.1, 140.6, 130.3, 129.2, 128.4, 126.8, 126.7, 123.0, 61.3, 46.3, 28.1, 14.4 ppm (one peak is overlapping); HRMS *m/z* (DART): calcd for C₁₈H₁₈NO₂ (M+H): 280.1332; found: 280.1333; IR (neat): 2984, 2239, 1715, 1611, 1410, 1273, 1104, 1018, 756, 696 cm⁻¹.

2-(4-(Morpholinosulfonyl)phenyl)-2-phenylpropanenitrile (4k): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 4-((4-fluorophenyl)sulfonyl)morpholine (74 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 30–80% EtOAc/hexanes) to yield the product as a colourless wax (63 mg, 0.177 mmol, 59%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.77–7.72 (m, 2H), 7.59–7.54 (m, 2H), 7.43–7.33 (m, 5H), 3.74 (dd, *J* = 4.5, 4.5 Hz, 4H), 3.04–2.97 (m, 4H), 2.12 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 146.8, 139.9, 135.1, 129.4, 128.6, 128.6, 127.6, 126.7, 122.6, 66.2, 46.3, 46.0, 28.0 ppm; HRMS *m/z* (DART): calcd for C₁₉H₂₁N₂O₃S (M+H): 357.1267; found: 357.1261; IR (neat): 2918, 2851, 2241, 2210, 1613, 1566, 1452, 1242, 1086, 743, 697 cm⁻¹.

2-(1-Cyano-1-phenylethyl)-4-(trifluoromethyl)benzonitrile (4l): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-fluoro-4-(trifluoromethyl)benzonitrile (42 μ L, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a white solid (67 mg, 0.223 mmol, 74%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.11–8.08 (m, 1H), 7.86–7.82 (m, 1H), 7.79–7.74 (m, 1H), 7.45–7.36 (m, 3H), 7.35–7.30 (m, 2H), 2.28 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 144.8, 138.5, 136.6, 135.0 (q, *J* = 33.8 Hz), 129.4, 129.1, 127.2, 126.0 (q, *J* = 3.7 Hz), 124.6 (q, *J* = 3.8 Hz), 122.8 (q, *J* = 274.2 Hz), 120.8, 116.0 (q, *J* = 1.3 Hz), 115.4, 46.1, 27.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –63.3 ppm; **HRMS** *m/z* (DART): calcd for C₁₇H₁₅N₃F₃ (M+NH₄): 318.1213; found: 318.1206; **IR** (neat): 2960, 2247, 2229, 1739, 1487, 1326, 1179, 1140, 1074, 848, 693 cm⁻¹; **m.p.:** 123–124 °C.

2-(1-Cyano-1-phenylethyl)-6-fluorobenzonitrile (4m): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2,6-difluorobenzonitrile (42 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as a colourless oil (26 mg, 0.104 mmol, 35%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.73–7.66 (m, 2H), 7.44–7.32 (m, 5H), 7.29–7.22 (m, 1H), 2.26 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 165.3 (d, *J* = 261.6 Hz), 145.4, 138.5, 134.8 (d, *J* = 9.3 Hz), 129.3, 128.9, 127.3, 123.4 (d, *J* = 3.2 Hz), 121.2, 116.6 (d, *J* = 20.5 Hz), 111.3 (d, *J* = 1.1 Hz), 101.4 (d, *J* = 16.9 Hz), 46.2, 27.1 ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –102.7 ppm; **HRMS** *m/z* (DART): calcd for C₁₆H₁₅N₃F (M+NH₄): 268.1244; found: 268.1256

Me CN Ph

2-Chloro-4-(1-cyano-1-phenylethyl)benzonitrile (4n): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2,4-dichlorobenzonitrile (52 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield the product as a colourless oil (36 mg, 0.135 mmol, 45%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.67 (d, *J* = 8.2 Hz, 1H), 7.53 (d, *J* = 1.8 Hz, 1H), 7.44–7.33 (m, 6H), 2.10 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 148.3, 139.1, 137.8, 134.6, 129.6, 129.0,

128.4, 126.7, 125.7, 122.0, 115.5, 113.3, 46.3, 27.8 ppm; **HRMS** *m*/*z* (DART): calcd for C₁₆H₁₂N₂Cl (M+H): 267.0683; found: 267.0692

Me_CN Ph

2-Methyl-2-phenylhexanenitrile (40): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 1-iodobutane (34 μ L, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–15% EtOAc/hexanes) to yield the product as a colourless oil (32 mg, 0.171 mmol, 57%). Analytical data:⁶ ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.46–7.42 (m, 2H), 7.41–7.36 (m, 2H), 7.33–7.28 (m, 1H), 1.94–1.87 (m, 2H), 1.71 (s, 3H), 1.48–1.39 (m, 1H), 1.36–1.16 (m, 3H), 0.87 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 140.6, 129.0, 127.8, 125.6, 123.8, 42.7, 42.1, 27.9, 27.7, 22.7, 13.9 ppm.

2,3-Dimethyl-2-phenylbutanenitrile (4p): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-iodopropane (20 μ L, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–15% EtOAc/hexanes) to yield the product as a colourless oil (18 mg, 0.104 mmol, 35%). Analytical data:⁷ **1H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.44–7.40 (m, 2H), 7.40–7.35 (m, 2H), 7.32–7.28 (m, 1H), 2.10 (app sept, J = 6.7 Hz, 1H), 1.70 (s, 3H), 1.14 (d, J = 6.7 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 140.6, 128.8, 127.7, 126.0, 122.5, 48.0, 38.3, 25.1, 19.1, 18.3 ppm.

2-(4-(Diethylamino)phenyl)-2-(pyrimidin-2-yl)propanenitrile (4q): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(4-(diethylamino)phenyl)-2-methylmalononitrile (82 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as an orange solid (47 mg, 0.168 mmol, 56%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ_H 8.74 (d, *J* = 4.9 Hz, 2H), 7.36–7.32 (m, 2H), 7.19 (t, *J* = 4.8 Hz, 1H), 6.63–6.57 (m, 2H), 3.31 (q, *J* = 7.1 Hz, 4H), 2.20 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): δ_C 169.0, 157.7, 147.5, 127.3, 125.6, 123.0, 119.7, 111.6, 50.0, 44.4, 26.2, 12.7 ppm; HRMS *m/z* (DART): calcd for C₁₇H₂₁N₄ (M+H): 281.1761; found: 281.1759; IR (neat): 2973, 2934, 2238, 2203, 1742, 1614, 1562, 1522, 1411, 1198, 818, 810, 792 cm⁻¹; m.p.: 78–79 °C.

2-(4-Phenoxyphenyl)-2-(pyrimidin-2-yl)propanenitrile (4r): Prepared on 0.20-mmol scale according to General Procedure A. The reaction was performed 2-methyl-2-(4-phenoxyphenyl)malononitrile (89 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL), and 2-chloropyridine (19 µL, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as an off-white solid (45 mg, 0.149 mmol, 75%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.77 (d, *J* = 4.8 Hz, 2H), 7.51–7.46 (m, 2H), 7.37–7.30 (m, 2H), 7.24 (t, *J* = 4.9 Hz, 1H), 7.14–7.10 (m, 1H), 7.01–6.98 (m, 2H), 6.98–6.94 (m, 2H), 2.23 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.3, 157.9, 157.5, 156.6, 134.0, 130.0, 127.8, 123.9, 122.5, 120.1, 119.5, 118.8, 50.4, 26.5 ppm; HRMS *m/z* (DART): calcd for C₁₉H₁₆N₃O (M+H): 302.1288; found: 302.1293; IR (neat): 3073, 2989, 2242, 1741, 1589, 1567, 1505, 1489, 1409, 1254, 1171, 851, 821, 749 cm⁻¹; m.p.: 68–69 °C.

2-(4-(*tert***-Butyl)phenyl)-2-(pyrimidin-2-yl)propanenitrile (4s):** Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(4-(*tert*-butyl)phenyl)-2-methylmalononitrile (76 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography to yield the product as a colourless oil (52 mg, 0.196 mmol, 65% yield). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 7.49–7.42 (m, 2H), 7.39–7.33 (m, 2H), 7.22 (t, *J* = 4.9 Hz, 1H), 2.23 (s, 3H), 1.28 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.2, 157.6, 151.0, 136.3, 125.8, 125.8, 122.4, 119.8, 50.4, 34.4, 31.2, 26.3 ppm; HRMS *m/z* (DART): calcd for C₁₇H₂₀N₃ (M+H): 266.1652; found: 266.1648.

2-(4-Fluorophenyl)-2-(pyrimidin-2-yl)propanenitrile (4t): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(4-fluorophenyl)-2-methylmalononitrile (63 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography to yield the product as an off-white solid (45 mg, 0.198 mmol, 66%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 7.56–7.50 (m, 2H), 7.25 (t, *J* = 4.9 Hz, 1H), 7.08–7.01 (m, 2H), 2.23 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.1, 162.5 (d, *J* = 248.8 Hz), 157.9, 153.3 (d, *J* = 3.5 Hz), 128.2 (d, *J* = 8.5 Hz), 122.2, 120.2, 115.9 (d, *J* = 21.8 Hz), 50.4, 26.6 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₁N₃F (M+H): 228.0932; found: 228.0929; IR (neat): 2973, 2241, 1741, 1565, 1509, 1410, 1230, 1169, 834, 816 cm⁻¹; m.p.: 84–85 °C.

2-(4-Bromophenyl)-2-(pyrimidin-2-yl)propanenitrile (4u): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(4-bromophenyl)-2-methylmalononitrile (85 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography to yield the product as a pale yellow oil (52 mg, 0.180 mmol, 60%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, J = 4.8 Hz, 2H), 7.50–7.46 (m, 2H), 7.46–7.41 (m, 2H), 7.25 (t, J = 4.9 H, 1H), 2.22 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.8, 157.9, 138.6, 132.2, 128.1, 122.6, 121.9, 120.2, 50.6, 26.4 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₁N₃Br (M+H): 288.0131; found: 288.0131; **IR** (neat): 2990, 2246, 1563, 1489, 1410, 1076, 1009, 818, 795 cm⁻¹.

2-(3,5-Dimethylphenyl)-2-(pyrimidin-2-yl)propanenitrile (4v): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(3,5-dimethylphenyl)-2-methylmalononitrile (66 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as a colourless oil (25 mg, 0.105 mmol, 35%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 7.23 (t, *J* = 4.9 Hz, 1H), 7.14–7.11 (m, 2H), 6.93–6.90 (m, 1H), 2.29 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.4, 157.8, 139.4, 138.7, 130.0, 124.0, 122.6, 120.0, 50.8, 26.4, 21.5 ppm; HRMS *m/z* (DART): calcd for C₁₅H₁₆N₃ (M+H): 238.1339; found: 238.1338

4-(1-(4-(*tert***-Butyl)phenyl)-1-cyanoethyl)benzonitrile (4w):** Prepared on 0.30-mmol scale with the modification that the second step was performed at 50 °C. The reaction was performed using 2-(4-(*tert*-butyl)phenyl)-2-methylmalononitrile (76 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 4-chlorobenzonitrile (41 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography to yield the product as a colourless oil (68 mg, 0.240 mmol, 80%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ_H 7.69–7.64 (m, 2H), 7.53–7.49 (m, 2H), 7.42–7.37 (m, 2H), 7.28–7.24 (m, 2H), 2.09 (s, 3H), 1.31 (s, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): δ_C 151.8, 146.9, 136.7, 132.8, 127.6, 126.4, 126.3, 122.7, 118.3, 112.2, 46.1, 34.7, 31.4, 27.9 ppm; HRMS *m/z* (DART): calcd for C₂₀H₂₄N₃ (M+NH₄): 306.1965; found: 306.1961; IR (neat): 2964, 2906, 2231, 1607, 1505, 1407, 1016, 822 cm⁻¹.

2-(3,4-Dimethoxyphenyl)-2-(pyrimidin-2-yl)propanenitrile (4x): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(3,4-dimethoxyphenyl)-2-methylmalononitrile (78 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (70% EtOAc/hexanes) to yield the product as an orange wax (47 mg, 0.175 mmol, 58%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 7.23 (t, *J* = 4.9 Hz, 1H), 7.08 (obscured dd, *J* = 8.2, 2.3 Hz, 1H), 7.06 (obsc d, *J* = 2.2 Hz, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 2.22 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.4, 157.8, 149.2, 149.0, 131.8, 122.6, 120.0, 118.5, 111.2, 109.7, 56.1, 56.0, 50.5, 26.4 ppm; HRMS *m/z* (DART): calcd for C₁₅H₁₆N₃O₂ (M+H): 270.1237; found: 270.1235; IR (neat): 3349, 2963, 2867, 2241, 2209, 1609, 1567, 1551, 1515, 1412, 1242, 1173, 815, 801 cm⁻¹.

2-(3-Chlorophenyl)-2-(pyrimidin-2-yl)propanenitrile (4y): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-(3-chlorophenyl)-2-methylmalononitrile (69 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as a colourless oil (59 mg, 0.242 mmol, 81%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.77 (d, *J* = 4.8 Hz, 2H), 7.53 (app td, *J* = 1.9, 0.6 Hz, 1H), 7.47 (app dt, *J* = 6.8, 2.0 Hz, 1H), 7.32–7.28 (m, 2H), 7.26 (obsc t, *J* = 4.8 Hz, 1H), 2.23 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.7, 158.0, 141.4, 135.0, 130.3, 128.6, 126.7, 124.7, 121.8, 120.3, 50.7, 26.5 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₁N₃Cl (M+H): 244.0636; found: 244.0642; IR (neat): 2992, 2246, 1595, 1563, 1408, 811, 784, 700, 686 cm⁻¹.

2-(4-Bromo-2-fluorophenyl)-2-(pyrimidin-2-yl)propanenitrile (4z): Prepared on 0.20-mmol scale according to General Procedure A. The reaction was performed 2-(4-bromo-2-fluorophenyl)-2-methylmalononitrile (61 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL), and 2-chloropyridine (19 μ L, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as an off-white solid (38 mg, 0.124 mmol, 62%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 7.52 (t, *J* = 8.3 Hz, 1H), 7.40 (ddd, *J* = 8.4, 2.0, 0.9 Hz, 1H), 7.27 (t, *J* = 4.9 Hz, 1H), 7.22 (dd, *J* = 10.5, 2.0 Hz, 1H), 2.20 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.6, 160.0 (d, *J* = 255.4 Hz), 158.0, 129.4 (d, *J* = 3.8 Hz), 128.0 (d, *J* = 3.7 Hz), 126.2 (d, *J* = 12.2 Hz), 123.3 (d, *J* = 9.7 Hz), 120.6, 120.4, 120.3, 120.2 (the peaks between 120.6–120.2 represent two indistinguishable doublets), 47.6,

25.3 ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): δ_F –108.0 ppm; HRMS *m/z* (DART): calcd for C₁₃H₁₀N₃FBr (M+H): 306.0037; found: 306.0031; IR (neat): 2939, 2241, 2209, 1996, 1741, 1562, 1486, 1412, 1090, 887, 817 cm⁻¹; m.p.: 91–92 °C.

2-(5-Bromopyrimidin-2-yl)-2-(2-methoxyphenyl)propanenitrile (4aa): Prepared on 0.30mmol scale according to General Procedure A. The reaction was performed using 2-(2methoxyphenyl)-2-methylmalononitrile (67 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 5-bromo-2chloropyrimidine (58 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a colourless oil (40 mg, 0.126 mmol, 42%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.74 (s, 2H), 7.54 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.38 (ddd, *J* = 8.3, 7.5, 1.6 Hz, 1H), 7.08 (td, *J* = 7.6, 1.2 Hz, 1H), 6.87 (dd, *J* = 8.3, 1.1 Hz, 1H), 3.58 (s, 3H), 2.13 (s, 3H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.1, 158.0, 156.5, 130.2, 127.1, 126.9, 121.4, 121.0, 118.4, 111.8, 55.5, 47.2, 25.3 ppm; **HRMS** *m/z* (DART): calcd for C₁₄H₁₃BrN₃O (M+H): 318.0236; found: 318.0243.

4-(1-Cyano-1-(naphthalen-1-yl)ethyl)benzonitrile (4ab): Prepared on 0.10-mmol scale with the modification that the second step was heated at 50 °C. The reaction was performed using 2-methyl-2-(naphthalen-1-yl)malononitrile (25 mg, 0.12 mmol, 1.2 equiv), methylmagnesium bromide (0.040 mL of a 3.0 M solution in Et₂O, 0.12 mmol, 1.2 equiv), LiCl solution (0.20 mL of a 0.60 M solution in THF, 0.12 mmol, 1.2 equiv), DMSO (0.40 mL), and 4-chlorobenzonitrile (14 mg, 0.10 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 5–40% EtOAc/hexanes) to yield the product as a white solid (19 mg, 0.067 mmol, 67%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.96 (app dt, *J* = 8.2, 1.0 Hz, 1H), 7.90 (app dt, *J* = 8.1, 0.8 Hz, 1H), 7.77 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.63–7.56 (m, 4H), 7.48–7.43 (m, 3H), 7.34 (ddd, *J* = 8.5, 6.8, 1.4 Hz, 1H), 2.24 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 148.1, 134.9, 133.2, 132.9, 130.9, 130.0, 129.5, 126.9, 126.7, 126.2, 125.3, 125.2, 125.0, 122.2, 118.3, 112.1, 45.2, 30.6 ppm; HRMS *m/z* (DART): calcd for C₂₀H₁₈N₃ (M+NH₄): 300.1495; found: 300.1496; IR (neat): 2962, 2866, 2203, 1741, 1606, 1568, 1511, 1412, 1174, 815, 800 cm⁻¹; **m.p.:** 57–59 °C.

4-(1-(4'-Bromo-[1,1'-biphenyl]-4-yl)-1-cyanoethyl)benzonitrile (4ac): Prepared on 0.10-mmol scale according to General Procedure A. The reaction was performed using 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-2-methylmalononitrile (37 mg, 0.12 mmol, 1.2 equiv), methylmagnesium bromide (0.040 mL of a 3.0 M solution in Et₂O, 0.12 mmol, 1.2 equiv), LiCl solution (0.20 mL of a 0.60 M solution in THF, 0.12 mmol, 1.2 equiv), DMSO (0.40 mL), and 4-chlorobenzonitrile (14 mg, 0.10 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography

(gradient of 5–40% EtOAc/hexanes) to yield the product as a white foam (36 mg, 0.093 mmol, 93%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.71–7.66 (m, 2H), 7.60–7.52 (m, 6H), 7.45–7.40 (m, 4H), 2.14 (s, 3H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 146.4, 140.4, 139.2, 138.8, 132.9, 132.2, 128.8, 127.8, 127.6, 127.3, 122.3, 122.3, 118.2, 112.4, 46.2, 27.9 ppm; **HRMS** *m/z* (DART): calcd for C₂₂H₁₉N₃Br (M+NH₄): 404.0757; found: 404.0755; **IR** (neat): 2295, 2230, 1626, 1568, 1409, 1070, 1002, 894, 811 cm⁻¹.

2-(Pyrimidin-2-yl)-2-(6-(pyrrolidin-1-yl)pyridin-3-yl)propanenitrile (4ad): Prepared on 0.30mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-(6-(pyrrolidin-1-yl)pyridin-3-yl)malononitrile (81 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (70% EtOAc/hexanes) to yield the product as a pale orange solid (50 mg, 0.179 mmol, 60%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.74 (d, *J* = 4.9 Hz, 2H), 8.25 (dd, *J* = 2.6, 0.8 Hz, 1H), 7.62 (dd, *J* = 8.9, 2.6 Hz, 1H), 7.21 (t, *J* = 4.9 Hz, 1H), 6.32 (dd, *J* = 9.0, 0.8 Hz, 1H), 3.46–3.38 (m, 4H), 2.20 (s, 3H), 2.02–1.94 (m, 4H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 168.5, 157.8, 156.8, 146.2, 135.3, 122.3, 122.1, 119.9, 106.4, 48.6, 46.8, 26.1, 25.7 ppm; **HRMS** *m/z* (DART): calcd for C₁₆H₁₈N₅ (M+H): 280.1557; found: 280.1553; **IR** (neat): 3348, 2961, 2863, 2242, 2204, 1743, 1608, 1568, 1550, 1511, 1413, 1312, 1173, 816, 801 cm⁻¹; **m.p.:** 177–179 °C.

2-(2-Morpholinopyrimidin-5-yl)-2-(pyrimidin-2-yl)propanenitrile (4ae): Prepared on 0.20mmol scale according to General Procedure A. The reaction was performed 2-methyl-2-(2morpholinopyrimidin-5-yl)malononitrile (58 mg, 0.24 mmol, 1.2 equiv), methylmagnesium bromide (0.080 mL of a 3.0 M solution in Et₂O, 0.24 mmol, 1.2 equiv), LiCl solution (0.40 mL of a 0.60 M solution in THF, 0.24 mmol, 1.2 equiv), DMSO (0.80 mL), and 2-chloropyridine (19 μ L, 0.20 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (70% EtOAc/hexanes) to yield the product as an off-white solid (41 mg, 0.138 mmol, 69%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.9 Hz, 2H), 8.51 (s, 2H), 7.25 (obsc t, *J* = 4.8 Hz, 1H), 3.82–3.77 (m, 4H), 3.76–3.71 (m, 4H), 2.21 (s, 3H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.7, 161.2, 158.0, 156.2, 121.2, 121.2, 120.3, 66.9, 47.0, 44.3, 26.1 ppm; **HRMS** *m/z* (DART): calcd for C₁₅H₁₇N₆O (M+H): 297.1465; found: 297.1461; **IR** (neat): 3352, 2963, 2856, 2242, 2211, 1604, 1568, 1511, 1412, 810 cm⁻¹; **m.p.:** 189–190 °C.

4-(1-Cyano-1-(thiophen-3-yl)ethyl)benzonitrile (4af): Prepared on 0.30-mmol scale according to General Procedure A with the modification that step 2 was heated at 50 °C. The reaction was performed using 2-methyl-2-(thiophen-3-yl)malononitrile (58 mg, 0.36 mmol, 1.2 equiv),

methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 4-chlorobenzonitrile (41 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 5–40% EtOAc/hexanes) to yield the product as a colourless oil (19 mg, 0.080 mmol, 27%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.70–7.65 (m, 2H), 7.54–7.49 (m, 2H), 7.38 (dd, J = 5.1, 3.0 Hz, 1H), 7.30 (dd, J = 2.9, 1.4 Hz, 1H), 6.92 (dd, J = 5.1, 1.4 Hz, 1H), 2.10 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 146.1, 140.3, 132.9, 128.0, 127.2, 126.4, 122.9, 122.0, 118.2, 112.4, 43.4, 28.3 ppm.

2-(6-(1*H***-Pyrazol-1-yl)pyridin-2-yl)-2-phenylbutanenitrile (4ag):** Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-ethyl-2-phenylmalononitrile (61 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-bromo-6-(1*H*-pyrazol-1-yl)pyridine (67 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–50% EtOAc/hexanes) to yield the product as a colourless oil (26 mg, 0.090 mmol, 30%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.58 (dd, *J* = 2.7, 0.8 Hz, 1H), 7.90 (dd, *J* = 8.1, 0.8 Hz, 1H), 7.80 (t, *J* = 7.9 Hz, 1H), 7.74 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.57–7.50 (m, 2H), 7.41–7.32 (m, 3H), 6.48 (dd, *J* = 2.6, 1.7 Hz, 1H), 2.75 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.51 (dq, *J* = 14.6, 7.4 Hz, 1H), 1.09 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 156.9, 150.9, 142.4, 140.0, 138.6, 128.9, 128.1, 127.1, 126.6, 121.4, 119.5, 111.2, 108.0, 55.0, 32.4, 10.1 ppm; **HRMS** *m/z* (DART): calcd for C₁₈H₁₇N₄ (M+H): 289.1448; found: 289.1451.

2-Phenyl-2-(pyrimidin-2-yl)hexanenitrile (4ah): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-butyl-2-phenylmalononitrile (71 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 2-chloropyrimidine (34 mg, 0.30 mmol, 1.0 equiv). The product was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as a colourless oil (24 mg, 0.095 mmol, 32%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.76 (d, *J* = 4.8 Hz, 2H), 7.61–7.57 (m, 2H), 7.37–7.32 (m, 2H), 7.30–7.26 (m, 1H), 7.22 (t, *J* = 4.8 Hz, 1H), 2.74–2.65 (m, 1H), 2.53–2.44 (m, 1H), 1.51–1.29 (m, 4H), 0.90 (app t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 167.7, 157.6, 138.3, 128.8, 128.0, 126.4, 121.2, 119.8, 56.7, 38.7, 27.7, 22.6, 13.8 ppm; HRMS *m*/*z* (DART): calcd for C₁₆H₁₈N₃ (M+H): 252.1495; found: 252.1496; IR (neat): 2953, 2931, 2873, 2229, 1567, 1411, 1002, 810, 694 cm⁻¹.

4-(5-Bromopyridin-2-yl)tetrahydro-2*H***-pyran-4-carbonitrile (4aj):** Prepared on 0.30-mmol scale with the modification that step 2 was performed using PhMe as cosolvent at 50 °C. The reaction was performed using tetrahydro-4*H*-pyran-4,4-dicarbonitrile (49 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol,

1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 5-bromo-2-fluoropyridine (31 μ L, 0.30 mmol, 1.0 equiv). The product was purified by flash column chromatography to yield the product as a colourless oil (80 mg, 0.299 mmol, 99%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.66 (dd, J = 2.4, 0.8 Hz, 1H), 7.87 (dd, J = 8.4, 2.4 Hz, 1H), 7.48 (dd, J = 8.4, 0.8 Hz, 1H), 4.11–4.02 (m, 2H), 3.85 (td, J = 12.4, 1.9 Hz, 2H), 2.31 (ddd, J = 13.8, 12.3, 4.5 Hz, 2H), 2.00 (dq, J = 13.6, 2.3 Hz, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 156.5, 150.9, 139.9, 121.8, 121.1, 120.3, 64.7, 43.7, 35.1 ppm; HRMS *m/z* (DART): calcd for C₁₁H₁₂N₂OBr (M+H): 267.0128; found: 267.0127.

1-(1,3,7-Trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H***-purin-8-yl)cyclopentane-1-carbonitrile** (**4ak**): Prepared on 0.30-mmol scale according to General Procedure A with the modification that step 2 was performed using PhMe as cosolvent at 50 °C. The reaction was performed using cyclopentane-1,1-dicarbonitrile (42 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and bromocaffeine (82 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography to yield the product as a white solid (42 mg, 0.146 mmol, 49%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ_H 4.17 (s, 3H), 3.54 (s, 3H), 3.40 (s, 3H), 2.53 (ddd, *J* = 7.7, 5.3, 1.8 Hz, 4H), 2.06–1.86 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): δ_C 155.4, 151.7, 149.1, 146.7, 120.8, 109.2, 41.2, 38.3, 33.3, 29.7, 28.0, 24.5 ppm; HRMS *m/z* (DART): calcd for C₁₄H₁₈N₅O₂ (M+H): 288.1455; found: 288.1458.

2-(6-Morpholinopyridin-2-yl)-2-phenylpropanenitrile (4am): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a 3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 4-(6-bromopyridin-2-yl)morpholine (73 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 10–50% EtOAc/hexanes) to yield the product as an off-white solid (25 mg, 0.085 mmol, 28%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.50–7.47 (m, 2H), 7.45 (dd, *J* = 8.5, 7.5 Hz, 1H), 7.37–7.32 (m, 2H), 7.31–7.27 (m, 1H), 6.70 (dd, *J* = 7.4, 0.5 Hz, 1H), 6.52 (dd, *J* = 8.5, 0.5 Hz, 1H), 3.84–3.80 (m, 4H), 3.55–3.51 (m, 4H), 2.12 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 158.8, 157.4, 140.7, 138.7, 128.8, 127.9, 126.5, 123.4, 110.8, 105.7, 66.8, 49.0, 45.4, 26.9 ppm; HRMS *m/z* (DART): calcd for C₁₈H₂₀N₃O (M+H): 294.1601; found: 294.1608.

NC Me Ph

2-(5-Bromo-2-iodophenyl)-2-phenylpropanenitrile (4an): Prepared on 0.30-mmol scale according to General Procedure A. The reaction was performed using 2-methyl-2-phenylmalononitrile (56 mg, 0.36 mmol, 1.2 equiv), methylmagnesium bromide (0.12 mL of a

3.0 M solution in Et₂O, 0.36 mmol, 1.2 equiv), LiCl solution (0.60 mL of a 0.60 M solution in THF, 0.36 mmol, 1.2 equiv), DMSO (1.2 mL), and 4-bromo-2-fluoro-1-iodobenzene (90 mg, 0.30 mmol, 1.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (22 mg, 0.053 mmol, 18%). ¹H NMR 7.82 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 2.3 Hz, 1H), 7.38–7.29 (m, 3H), 7.28–7.19 (m, 3H), 2.14 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 144.5, 142.3, 140.5, 133.3, 131.8, 129.1, 128.0, 127.0, 123.1, 121.1, 97.1, 49.3, 30.8 ppm; HRMS *m/z* (DART): calcd for C₁₅H₁₅N₂BrI (M+NH₄): 428.9458; found: 428.9466.

D. Preparation of Malononitrile Starting Materials

The following malononitriles were prepared as previously described by us:² 2-phenylmalononitrile, 2-methyl-2-phenylmalononitrile, 2-(4-fluorophenyl)-2-methylmalononitrile, 2-(4-chlorophenyl)-2-methylmalononitrile, 2-(4-chlorophenyl)-2-methylmalononitrile, and 2-(4-(*tert*-butyl)phenyl)-2-methylmalononitrile. 2,2-Dibenzylmalononitrile was prepared using a previously reported method.⁸ Tetrahydro-4*H*-pyran-4,4-dicarbonitrile⁹ and cyclopentane-1,1-dicarbonitrile¹⁰ were prepared using known procedures.

General Procedure B: Preparation of malononitrile starting materials²

Step 1: An appropriate-sized round-bottom flask with a stir bar was flame-dried and cooled under vacuum. To the flask were added potassium carbonate (4.0 equiv), copper(I) iodide (10 mol %), L-proline (10 mol %), malononitrile (3.0 equiv), and aryl halide (if a solid) (1.0 equiv). The flask was evacuated and backfilled with N_2 (×3) and DMSO (0.20 M) was added. The flask was again evacuated and backfilled with N_2 (×3), sealed, and put under a balloon of N_2 . Aryl halide (if an oil) was added (1.0 equiv). The reaction was stirred at the appropriate temperature (90 °C for aryl iodides, 110 °C for aryl bromides) until full conversion of aryl halide was achieved, as determined by TLC (18–36 h). The reaction was cooled to 0 °C and opened to air, and 1.0 M HCl was added to bring the solution to pH 2–3. The solution was extracted with EtOAc (×3), and the organic fractions were combined, washed with H₂O (×3) and brine (×3), dried over MgSO₄, filtered, and concentrated. The crude residue was purified by flash column chromatography to yield the desired arylmalononitrile.

Step 2: To an appropriate-sized round-bottom flask with a stir bar were added 2-arylmalononitrile (1.0 equiv), potassium carbonate (1.2–1.5 equiv), DMSO (1.0 M), and alkyl iodide (1.1–1.5 equiv), and the reaction was stirred at r.t. until full conversion was achieved, as determined by TLC (1–18 h). The reaction was quenched with H₂O and extracted with EtOAc (×3), and the organic fractions were combined, washed with brine (×3), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the disubstituted malononitrile.

2-(4-(Diethylamino)phenyl)-2-methylmalononitrile (S1): Prepared according to General Procedure B – Step 2 using 2-(4-(diethylamino)phenyl)malononitrile (1.07 g, 5.0 mmol, 1.0 equiv), iodomethane (0.34 mL, 5.5 mmol, 1.1 equiv), potassium carbonate (0.83 g, 6.0 mmol, 1.2 equiv), and DMSO (10 mL, 0.50 M). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as a pale pink solid (1.0 g, 4.4 mmol, 88%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.38–7.32 (m, 2H), 6.73–6.65 (m, 2H), 3.37 (q, *J* = 7.1 Hz, 4H), 2.07 (s, 3H), 1.18 (t, *J* = 7.0 Hz, 6H) ppm; ¹³C NMR (126

MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 148.6, 126.6, 118.4, 116.5, 111.9, 44.5, 35.7, 29.1, 12.5 ppm; **HRMS** *m/z* (DART): calcd for C₁₄H₁₈N₃ (M+H): 228.1495; found: 228.1491; **IR** (neat): 3347, 2945, 2867, 2242, 2204, 1610, 1568, 1514, 1551, 1485, 1412, 1312, 1175, 1003, 815 cm⁻¹; **m.p.:** 49–50 °C.

2-(4-Phenoxyphenyl)malononitrile (S2): Prepared according to General Procedure B – Step 1 using 1-bromo-4-phenoxybenzene (1.2 mL, 8.0 mmol, 1.0 equiv), malononitrile (1.6 g, 24 mmol, 3.0 equiv), copper(I) iodide (0.15 g, 0.80 mmol, 0.10 equiv), L-proline (92 mg, 0.80 mmol, 0.10 equiv), potassium carbonate (4.4 g, 32 mmol, 4.0 equiv), and DMSO (40 mL, 0.20 M), and the reaction was stirred at 110 °C for 18 h. The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as an off-white solid (0.94 g, 4.0 mmol, 50%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.46–7.42 (m, 2H), 7.42–7.37 (m, 2H), 7.22–7.17 (m, 1H), 7.10–7.03 (m, 4H), 5.04 (s, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 159.6, 155.8, 130.2, 129.0, 124.7, 120.1, 120.0, 119.4, 112.0, 27.6 ppm.

2-Methyl-2-(4-phenoxyphenyl)malononitrile (S3): Prepared according to General Procedure B – Step 2 using 2-(4-phenoxyphenyl)malononitrile (**S2**) (0.70 g, 3.0 mmol, 1.0 equiv), iodomethane (0.22 mL, 3.3 mmol, 1.1 equiv), potassium carbonate (0.50 g, 3.6 mmol, 1.2 equiv), and DMSO (5.0 mL, 0.60 M). The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield the product as an off-white solid (0.54 g, 2.1 mmol, 70%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.56–7.50 (m, 2H), 7.43–7.36 (m, 2H), 7.22–7.16 (m, 1H), 7.11–7.02 (m, 4H), 2.12 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 159.2, 155.9, 130.2, 127.2, 127.1, 124.6, 119.9, 119.2, 115.9, 36.0, 29.4 ppm; HRMS *m/z* (DART): calcd for C₁₆H₁₆N₃O (M+NH₄): 266.1288; found: 266.1284; **IR** (neat): 3000, 2230, 1588, 1506, 1488, 1240, 1201, 1174, 833, 753, 692 cm⁻¹; m.p.: 78–79 °C.

2-(4-Bromophenyl)malononitrile (S4): Prepared according to General Procedure B – Step 1 using 1-bromo-4-iodobenzene (2.3 g, 8.0 mmol, 1.0 equiv), malononitrile (1.6 g, 24 mmol, 3.0 equiv), copper(I) iodide (0.15 g, 0.80 mmol, 0.10 equiv), L-proline (92 mg, 0.80 mmol, 0.10 equiv), potassium carbonate (4.4 g, 32 mmol, 4.0 equiv), and DMSO (40 mL, 0.20 M), and the reaction was stirred at 90 °C for 18 h. The crude residue was purified by flash column chromatography (gradient of 10–30% EtOAc/hexanes) to yield the product as an off-white solid (0.43 g, 1.95 mmol, 24%). The analytical data was consistent with literature:¹¹ ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.67–7.61 (m, 2H), 7.42–7.35 (m, 2H), 5.05 (s, 1H) ppm.

2-(4-Bromophenyl)-2-methylmalononitrile (S5): Prepared according to General Procedure B – Step 2 using 2-(4-bromophenyl)malononitrile (**S4**) (0.41 g, 1.9 mmol, 1.0 equiv), iodomethane (0.22 mL, 3.3 mmol, 1.7 equiv), potassium carbonate (0.50 g, 3.6 mmol, 1.9 equiv), and DMSO (5.0 mL, 0.38 M). The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield the product as an off-white solid (0.37 g, 1.6 mmol, 84%). ¹H **NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.68–7.60 (m, 2H), 7.51–7.43 (m, 2H), 2.10 (s, 3H) ppm; ¹³C **NMR** (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 139.1, 133.2, 127.1, 124.6, 115.3, 36.2, 29.4 ppm; **HRMS** *m/z* (DART): calcd for C₁₀H₁₁N₃Br (M+NH₄): 252.0131; found: 252.0131; **IR** (neat): 3352, 2962, 2867, 2242, 2209, 1611, 1568, 1551, 1513, 1485, 1412, 1312, 1175, 815, 801 cm⁻¹; **m.p.:** 66–67 °C.

2-(4-Bromo-2-fluorophenyl)malononitrile (S6): Prepared according to General Procedure B – Step 1 using 4-bromo-2-fluoro-1-iodobenzene (2.4 g, 8.0 mmol, 1.0 equiv), malononitrile (1.6 g, 24 mmol, 3.0 equiv), copper(I) iodide (0.15 g, 0.80 mmol, 0.10 equiv), L-proline (92 mg, 0.80 mmol, 0.10 equiv), potassium carbonate (4.4 g, 32 mmol, 4.0 equiv), and DMSO (40 mL, 0.20 M), and the reaction was stirred at 90 °C for 18 h. The crude residue was purified by flash column chromatography (gradient of 10–30% EtOAc/hexanes) to yield the product as an off-white solid (0.56 g, 2.3 mmol, 29%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.53–7.46 (m, 2H), 7.46–7.40 (m, 1H), 5.18 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 159.3 (d, *J* = 257.2 Hz), 130.1, 129.3 (d, *J* = 3.8 Hz), 126.1 (d, *J* = 9.2 Hz), 120.6 (d, *J* = 23.1 Hz), 113.6 (d, *J* = 14.2 Hz), 110.4, 22.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –112.7 ppm.

2-(4-Bromo-2-fluorophenyl)-2-methylmalononitrile (S7): Prepared according to General Procedure B – Step 2 using 2-(4-bromo-2-fluorophenyl)malononitrile (0.48 g, 2.0 mmol, 1.0 equiv), potassium carbonate (0.33 g, 2.4 mmol, 1.2 equiv), iodomethane (0.15 mL, 2.4 mmol, 1.2 equiv), and DMSO (5.0 mL, 0.40 M). The crude residue was purified by flash column chromatography (5–30% EtOAc/hexanes) to yield the product as a white solid (0.40 g, 1.6 mmol, 80%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.54–7.39 (m, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 159.5 (d, *J* = 257.8 Hz), 128.8 (d, *J* = 3.7 Hz), 128.6 (d, *J* = 2.5 Hz), 125.6 (d, *J* = 9.6 Hz), 121.2 (d, *J* = 23.9 Hz), 119.4 (d, *J* = 11.1 Hz), 114.1, 33.0, 26.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –108.7 ppm; HRMS *m/z* (DART): calcd for C₁₀H₁₀N₃FBr (M+NH₄): 270.0037; found: 270.0045; IR (neat): 3338, 2961, 2867, 2241, 2209, 1607, 1568, 1513, 1484, 1412, 1312, 815, 801 cm⁻¹.

MeO NC CN Me

2-(2-Methoxyphenyl)-2-methylmalononitrile (S8): Prepared according to General Procedure B – Step 2 using 2-(2-methoxyphenyl)malononitrile (0.86 g, 5.0 mmol, 1.0 equiv), iodomethane (0.34 mL, 5.5 mmol, 1.1 equiv), potassium carbonate (0.83 g, 6.0 mmol, 1.2 equiv), and DMSO (10 mL, 0.50 M). The crude residue was purified by flash column chromatography (gradient of 0–30% EtOAc/hexanes) to yield the product as an off-white solid (0.88 g, 4.7 mmol, 94%). ¹H

NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.51 (dd, J = 7.8, 1.5 Hz, 1H), 7.45 (ddd, J = 9.1, 7.5, 1.6 Hz, 1H), 7.06 (dd, J = 7.6, 1.1 Hz, 1H), 7.03 (dd, J = 8.5, 1.1 Hz, 1H), 3.99 (s, 3H), 2.17 (s, 3H) ppm; ¹³C **NMR** (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 156.7, 131.9, 126.7, 121.4, 120.2, 115.8, 112.5, 56.1, 33.5, 25.4 ppm.

2-(Naphthalen-1-yl)malononitrile (S9): Prepared from 1-bromonaphthalene (1.7 mL, 12 mmol, 1.0 equiv), malononitrile (2.4 g, 36 mmol, 3.0 equiv), copper(I) iodide (0.23 g, 1.2 mmol, 0.10 equiv), L-proline (0.14 g, 1.2 mmol, 0.10 equiv), potassium carbonate (6.6 g, 48 mmol, 4.0 equiv), and DMSO (50 mL, 0.20 M), and the reaction was stirred at 110 °C for 24 h. The crude residue was purified by flash column chromatography (gradient of 10–40% EtOAc/hexanes) to yield the product as an off-white solid (0.33 g, 1.7 mmol, 21%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.03–7.97 (m, 2H), 7.95–7.91 (m, 1H), 7.82–7.79 (m, 1H), 7.72 (ddd, *J* = 8.4, 7.0, 1.4 Hz, 1H), 7.65 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.56 (dd, *J* = 8.2, 7.1 Hz, 1H), 5.57 (s, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 134.2, 131.8, 129.7, 129.4, 128.4, 127.3, 127.1, 125.6, 121.8, 121.7, 111.8, 26.5 ppm.

2-Methyl-2-(naphthalen-1-yl)malononitrile (S10): Prepared from 2-(naphthalen-1-yl)malononitrile (**S9**) (0.33 g, 1.7 mmol, 1.0 equiv), iodomethane (0.12 mL, 2.0 mmol, 1.2 equiv), potassium carbonate (0.36 g, 2.6 mmol, 1.5 equiv), and DMSO (5.0 mL, 0.34 M). The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield the product as a pale pink solid (0.24 g, 1.2 mmol, 71%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.37 (app dq, J = 8.6, 0.9 Hz, 1H), 8.01–7.97 (m, 2H), 7.79 (dd, J = 7.4, 1.1 Hz, 1H), 7.72 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.63 (ddd, J = 8.1, 6.8, 1.0 Hz, 1H), 7.53 (dd, J = 8.2, 7.3 Hz, 1H), 2.43 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 134.8, 131.9, 130.0, 128.9, 127.9, 126.9, 126.8, 125.1, 124.8, 123.1, 116.0, 34.8, 26.5 ppm; HRMS *m/z* (DART): calcd for C₁₄H₁₀N₂ (M): 206.0839; found: 206.0833; IR (neat): 3340, 2965, 2866, 2203, 1740, 1604, 1568, 1511, 1486, 1412, 1168, 800, 775 cm⁻¹; m.p.: 123–124 °C.

2-(4'-Bromo-[1,1'-biphenyl]-4-yl)malononitrile (S11): Prepared according to General Procedure B – Step 1 using 4,4'-dibromobiphenyl (3.7 g, 12 mmol, 1.0 equiv), malononitrile (2.4 g, 36 mmol, 3.0 equiv), copper(I) iodide (0.23 g, 1.2 mmol, 0.10 equiv), L-proline (0.14 g, 1.2 mmol, 0.10 equiv), potassium carbonate (6.6 g, 48 mmol, 4.0 equiv), and DMSO (40 mL, 0.20 M), and the reaction was stirred at 110 °C for 18 h. The crude residue was purified by flash column chromatography (gradient of 5–40% EtOAc/hexanes) to yield the product as an off-white solid (1.3 g, 4.4 mmol, 55%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.70–7.64 (m, 2H), 7.63–7.54 (m, 4H), 7.47–7.41 (m, 2H), 5.12 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 142.4, 138.4, 132.3, 128.9, 128.6, 127.9, 125.5, 122.8, 111.8, 28.0 ppm.

2-(4'-Bromo-[1,1'-biphenyl]-4-yl)-2-methylmalononitrile (S12): Prepared according to General Procedure B – Step 2 using 2-(4'-bromo-[1,1'-biphenyl]-4-yl)malononitrile (1.2 g, 4.0 mmol, 1.0 equiv), iodomethane (0.30 mL, 4.8 mmol, 1.2 equiv), potassium carbonate (0.83 g, 6.0 mmol, 1.5 equiv), and DMSO (10 mL, 0.40 M). The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield the product as a white solid (0.27 g, 0.87 mmol, 22%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.69–7.64 (m, 4H), 7.62–7.58 (m, 2H), 7.47–7.42 (m, 2H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 142.1, 138.4, 132.5, 132.3, 128.9, 128.4, 126.1, 122.8, 115.7, 36.3, 29.5 ppm; **IR** (neat): 2965, 2867, 2210, 1741, 1607, 1568, 1511, 1483, 1412, 1177, 1095, 1003, 814 cm⁻¹ **m.p.:** 113–114 °C; **HRMS** *m/z* (DART): calcd for C₁₆H₁₁N₂Br (M+): 310.0100; found: 310.0097.

2-(2-Morpholinopyrimidin-5-yl)malononitrile (S13): Prepared according to General Procedure B – Step 1 using 4-(5-bromopyrimidin-2-yl)morpholine (2.9 g, 12 mmol, 1.0 equiv), malononitrile (2.4 g, 36 mmol, 3.0 equiv), copper(I) iodide (0.23 g, 1.2 mmol, 0.10 equiv), L-proline (0.14 g, 1.2 mmol, 0.10 equiv), potassium carbonate (6.6 g, 48 mmol, 4.0 equiv), and DMSO (40 mL, 0.30 M), and the reaction was stirred at 110 °C for 18 h. The organic extracts were concentrated and washed with Et₂O to yield an off-white solid (1.5 g, ca. 6.5 mmol, 54% crude yield) that corresponded to the desired compound as determined by ¹H NMR, which material was used without further purification.

2-Methyl-2-(2-morpholinopyrimidin-5-yl)malononitrile (S14): Prepared according to General Procedure B – Step 2 using 2-(2-morpholinopyrimidin-5-yl)malononitrile (0.69 g, 3.0 mmol, 1.0 equiv), iodomethane (0.20 mL, 3.3 mmol, 1.1 equiv), potassium carbonate (0.62 g, 4.5 mmol, 1.5 equiv), and DMSO (10 mL, 0.30 M). The crude residue was purified by flash column chromatography (gradient of 25–70% EtOAc/hexanes) to yield the product as an off-white solid (0.42 g, 1.7 mmol, 57%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.49 (s, 2H), 3.89–3.84 (m, 4H), 3.79–3.74 (m, 4H), 2.10 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 161.8, 155.3, 115.0, 114.9, 66.8, 44.4, 32.3, 28.6 ppm; HRMS *m/z* (DART): calcd for C₁₂H₁₄N₅O (M+H): 244.1193; found: 244.1198; IR (neat): 3348, 2964, 2866, 2210, 1741, 1608, 1568, 1551, 1513, 1483, 1412, 1176, 815 cm⁻¹; m.p.: 157–158 °C.

2-(Thiophen-3-yl)malononitrile (S15): Prepared according to General Procedure B – Step 1 using malononitrile (3.0 g, 45 mmol, 3.0 equiv), potassium carbonate (8.3 g, 60 mmol, 4.0

equiv), copper(I) iodide (0.44 g, 2.3 mmol, 15 mol %), L-proline (0.26 g, 2.3 mmol, 15 mol %), DMSO (75 mL, 0.20 M), and 3-bromothiophene (1.4 mL, 15 mmol, 1.0 equiv), and the reaction was stirred at 110 °C for 16 h. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as an off-white solid (0.74 g, 5.0 mmol, 33%). Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.58–7.53 (m, 1H), 7.53–7.48 (m, 1H), 7.22–7.17 (m, 1H), 5.12 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 129.3, 125.7, 125.6, 125.3, 111.5, 23.9 ppm; **R**_f (7:3 hexanes/EtOAc; UV/KMnO₄): 0.47.

2-Methyl-2-(thiophen-3-yl)malononitrile (S16): Prepared according to General Procedure B – Step 2 using 2-(thiophen-3-yl)malononitrile (0.74 g, 5.0 mmol, 1.0 equiv), DMSO (20 mL, 0.5 M), iodomethane (0.34 mL, 5.5 mmol, 1.1 equiv), and potassium carbonate (0.83 g, 6.0 mmol, 1.2 equiv). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (0.72 g, 4.4 mmol, 88%). Analytical data: ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.57–7.51 (m, 1H), 7.51–7.46 (m, 1H), 7.24–7.18 (m, 1H), 2.13 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 133.1, 129.2, 124.7, 123.9, 115.6, 32.5, 28.3 ppm; **R**_f (8:2 hexanes/EtOAc; UV/KMnO₄): 0.47.

NC CN Ph

2-Ethyl-2-phenylmalononitrile (S17): Prepared according to General Procedure B – Step 2 using 2-phenylmalononitrile (0.71 g, 5.0 mmol, 1.0 equiv), iodoethane (0.44 mL, 5.5 mmol, 1.1 equiv), potassium carbonate (0.83 g, 6.0 mmol, 1.2 equiv), and DMSO (10 mL, 0.50 M). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (0.80 g, 4.7 mmol, 94%). Analytical data:¹² ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.59–7.54 (m, 2H), 7.52–7.44 (m, 3H), 2.29 (q, *J* = 7.3 Hz, 2H), 1.24 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 132.1, 130.0, 129.8, 125.9, 115.1, 43.3, 36.7, 10.1 ppm.

NC CN Ph

2-Butyl-2-phenylmalononitrile (S18): Prepared according to General Procedure B – Step 2 using 2-phenylmalononitrile (4.3 g, 30 mmol, 1.0 equiv), potassium carbonate (8.3 g, 60 mmol, 2.0 equiv), DMSO (75 mL, 0.40 M), and 1-iodobutane (6.8 mL, 60 mmol, 2.0 equiv). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (5.5 g, 28 mmol, 93%). Analytical data:¹² ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.64–7.45 (m, 5H), 2.30–2.20 (m, 2H), 1.71–1.58 (m, 2H), 1.43 (h, *J* = 7.3 Hz, 2H), 0.96 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C NMR** (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 132.3, 129.8, 129.7, 125.7, 115.1, 42.5, 42.4, 27.6, 21.9, 13.6 ppm; **R**_f (9:1 hexanes/EtOAc; UV): 0.61.

2-(3,5-Dimethylphenyl)malononitrile (S19): Prepared according to General Procedure B – Step 1 using 1-bromo-3,5-dimethylbenzene (1.1 mL, 8.0 mmol, 1.0 equiv) malononitrile (1.6 g, 24 mmol, 3.0 equiv), copper(I) iodide (0.30 g, 1.6 mmol, 0.20 equiv), L-proline (0.18 g, 1.6 mmol,

0.20 equiv), potassium carbonate (4.4 g, 32 mmol, 4.0 equiv), and DMSO (40 mL, 0.20 M), and the reaction was stirred at 110 °C for 36 h. The crude residue was purified by flash column chromatography (gradient of 5–30% EtOAc/hexanes) to yield the product as a white solid (0.65 g, 3.8 mmol, 48%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.09 (app s, 3H), 4.97 (s, 1H), 2.37 (overlapping s, 3H), 2.37 (overlapping s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 140.2, 132.1, 126.0, 125.0, 112.1, 28.1, 21.4 ppm.

2-(3,5-Dimethylphenyl)-2-methylmalononitrile (S20): Prepared according to General Procedure B – Step 2 using 2-(3,5-dimethylphenyl)malononitrile (0.51 g, 3.0 mmol, 1.0 equiv), iodomethane (0.28 mL, 4.5 mmol, 1.5 equiv), potassium carbonate (0.50 g, 3.6 mmol, 1.2 equiv), and DMSO (10 mL, 0.30 M). The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield the product as a colourless oil (0.50 g, 2.7 mmol, 90%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.19–7.16 (m, 2H), 7.09–7.06 (m, 1H), 2.37 (s, 6H), 2.09 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 139.9, 133.0, 131.7, 123.1, 116.0, 36.4, 29.6, 29.6, 21.5 ppm; HRMS *m/z* (DART): calcd for C₁₂H₁₃N₂ (M+H): 185.1073; found: 185.1073.

2-(3,4-Dimethoxyphenyl)-2-methylmalononitrile (S21):⁸ To a 16-mL threaded culture tube with a stir bar was added lithium chloride (0.18 g, 4.4 mmol, 1.1 equiv). The tube was fitted with a size 19 septum and was flame-dried under vacuum and cooled under N2. To the tube was added 2-(3,4-dimethoxyphenyl)acetonitrile (0.71 g, 4.0 mmol, 1.0 equiv), and the tube was sealed and evacuated and backfilled with N₂ (×3) and fitted with a balloon of N₂. THF (4.0 mL, 1.0 M) was added, followed by MeMgBr (1.5 mL of a 4.0 M solution in Et₂O, 4.4 mmol, 1.1 equiv), and the reaction was stirred at r.t. for 30 min. The reaction was briefly opened to air and dimethylmalononitrile (0.41 g, 4.4 mmol, 1.1 equiv) was added at once, and the reaction was stirred at 80 °C for 6 h. The reaction was cooled to r.t., and DMF (4.0 mL) was added, followed by iodomethane (0.30 mL, 4.8 mmol, 1.2 equiv), and the reaction was stirred at 80 °C for 16 h. The reaction was cooled to r.t., quenched with sat. aq. NH_4Cl , and extracted with EtOAc (\times 3). The organic extracts were combined, washed with brine $(\times 1)$, dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 20-60% EtOAc/hexanes) to yield the product as a white semisolid (0.54 g, 2.5 mmol, 63%). ¹**H NMR** (500 MHz, CDCl₃, 298 K); $\delta_{\rm H}$ 7.13 (dd, J = 8.4, 2.4 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 2.11 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): δ_C 150.4, 150.0, 125.2, 118.0, 116.0, 111.7, 108.4, 56.3, 56.2, 36.2, 29.5 ppm; HRMS *m/z* (DART): calcd for C₁₂H₁₆N₃O₂ (M+NH₄): 234.1237; found: 234.1237; IR (neat): 3001, 2965, 2940, 2836, 2229, 1598, 1519, 1462, 1417, 1261, 1243, 1149, 1022, 856, 806 cm⁻¹.

2-(6-(Pyrrolidin-1-yl)pyridin-3-yl)acetonitrile (S22): To a 100-mL flask with a stir bar were sequentially added 2-(6-chloropyridin-3-yl)acetonitrile (1.2 g, 8.0 mmol, 1.0 equiv), DMSO (20 mL, 0.40 M), pyrrolidine (0.80 mL, 9.6 mmol, 1.2 equiv), and triethylamine (1.7 mL, 12 mmol, 1.5 equiv), and the reaction was stirred at 100 °C for 24 h. The reaction was cooled to r.t., quenched with H₂O, and extracted with EtOAc (×3), and the organic fractions were combined, washed with brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 40–70% EtOAc/hexanes) to yield the desired product as an off-white solid (0.59 g, 3.2 mmol, 40%). ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.06–8.01 (m, 1H), 7.41–7.38 (m, 1H), 6.36 (dd, *J* = 8.8, 0.8 Hz, 1H), 3.58 (s, 2H), 3.48–3.40 (m, 4H), 2.05–1.98 (m, 4H) ppm; ¹³C NMR (126 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 157.1, 147.5, 136.7, 118.3, 112.3, 106.9, 46.9, 25.6, 20.5 ppm.

2-Methyl-2-(6-(pyrrolidin-1-yl)pyridin-3-yl)malononitrile (S23):⁸ To a 16-mL threaded culture tube with a stir bar was added lithium chloride (0.18 g, 4.4 mmol, 1.5 equiv). The tube was fitted with a size 19 septum and was flame-dried under vacuum and cooled under N₂. To the tube was added 2-(6-(pyrrolidin-1-yl)pyridin-3-yl)acetonitrile (0.56 g, 3.0 mmol, 1.0 equiv), and the tube was sealed and evacuated and backfilled with N_2 (×3) and fitted with a balloon of N_2 . THF (4.0 mL, 0.75 M) was added, followed by MeMgBr (1.1 mL of a 4.0 M solution in Et₂O, 3.3 mmol, 1.1 equiv), and the reaction was stirred at r.t. for 30 min. The reaction was briefly opened to air and dimethylmalononitrile (0.31 g, 3.3 mmol, 1.1 equiv) was added at once, and the reaction was stirred at 80 °C for 6 h. The reaction was cooled to r.t., and DMF (4.0 mL) was added, followed by iodomethane (0.22 mL, 3.6 mmol, 1.2 equiv), and the reaction was stirred at 80 °C for 16 h. The reaction was cooled to r.t., guenched with sat. aq. NH₄Cl, and extracted with EtOAc (\times 3). The organic extracts were combined, washed with brine (\times 1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 20-60% EtOAc/hexanes) to yield the product as an off-white solid (0.44 g, 1.9 mmol, 63%). ¹**H NMR** (500 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 8.35–8.31 (m, 1H), 7.55 (dd, J = 8.9, 2.8 Hz, 1H), 6.41 $(dd, J = 9.0, 0.7 Hz, 1H), 3.54-3.40 (m, 4H), 2.08 (s, 3H), 2.05-2.01 (m, 4H) ppm; {}^{13}C NMR$ (126 MHz, CDCl₃, 298 K): δ_C 157.6, 145.5, 134.1, 115.8, 115.3, 107.0, 47.0, 34.0, 28.7, 25.6 ppm; **HRMS** m/z (DART): calcd for C₁₃H₁₅N₄ (M+H): 227.1291; found: 227.1290; **IR** (neat): 3349, 2965, 2866, 2242, 2209, 1741, 1608, 1568, 1550, 1514, 1484, 1413, 1311, 1174, 815 cm⁻¹; **m.p.:** 56–57 °C.

E. Preparation of (Hetero)Aryl Electrophile Starting Materials

8-Bromocaffeine was prepared from caffeine and NBS according to a literature procedure.¹³

2-Iodobenzoxazole (S24):¹⁴ To a flame-dried 25-mL flask with stir bar was added benzoxazole (0.48 g, 4.0 mmol, 1.0 equiv). The flask was evacuated and backfilled with N₂ (×3) and DMF (4.0 mL, 1.0 M) was added. The flask was briefly opened to air and iodine (2.0 g, 8.0 mmol, 2.0 equiv) was added. The reaction flask was briefly opened to air and anhydrous lithium *tert*-butoxide (0.96 g, 12 mmol, 3.0 equiv) was added at once. Under a balloon of N₂, the reaction was heated to 100 °C for 2 h. The reaction was cooled to r.t., quenched with sat. aq. NH₄Cl, and extracted with EtOAc (×3). The organic fractions were combined, washed with sat. aq. Na₂S₂O₃ (×1), H₂O (×1), and brine (×1), dried over MgSO₄, and concentrated. The crude residue was purified by flash column chromatography (gradient of 0–20% EtOAc/hexanes) to yield 2-iodobenzoxazole as a white solid (0.25 g, 1.0 mmol, 25%). The analytical data was consistent with literature:¹⁵ ¹**H** NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.75–7.67 (m, 1H), 7.58–7.50 (m, 1H), 7.36–7.27 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 154.3, 142.9, 125.5, 124.9, 119.5, 110.3, 108.1 ppm; **R**_f (8:2 hexanes/EtOAc; UV): 0.62.

4-((4-Fluorophenyl)sulfonyl)morpholine (S25): To a 50-mL flask with a stir bar were added 4-fluorobenzenesulfonyl chloride (0.58 g, 3.0 mmol, 1.0 equiv) and dichloromethane (15 mL, 0.20 M), and the solution was cooled to 0 °C. To the flask were sequentially added morpholine (0.29 mL, 3.3 mmol, 1.1 equiv) and triethylamine (0.46 mL, 3.3 mmol, 1.1 equiv), and the reaction was stirred at 0 °C for 2 h. The reaction was concentrated and the concentrate was purified by flash column chromatography (gradient of 10–30% EtOAc/hexanes) to yield the product as a white solid (0.70 g, 2.9 mmol, 97%). The analytical data was consistent with literature:¹⁶ ¹**H NMR** (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ 7.84–7.74 (m, 2H), 7.28–7.20 (m, 2H), 3.78–3.72 (m, 4H), 3.03–2.97 (m, 4H) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃, 298 K): $\delta_{\rm F}$ –104.5 ppm.

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (p	pm)											

110 100 f1 (ppm) 220 210 200 ò -10

4

220 210 200 180 170 160 ò -10 f1 (ppm)

----63.3069

¹⁹F NMR 376 MHz, CDCl₃

170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
									f1 (ppr	n)									

170 150 -10 f1 (ppm) 70 1 Т -110 -130 -150 -170 -190 -210 130 110 90 50 30 10 -30 -50 -70 -90

20201009_vnmrs_500_RM-XVII-113c_17-19-PROTON_01

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

																					<u> </u>		
220	210	200	100	180	170	160	150	140	130	120	110	100	an	80	70	60	50	40	30	20	10	0	_10
220	210	200	150	100	170	100	100	140	100	120	110	100	50	00	10	00	50		00	20	10	0	-10
f1 (ppm)																							

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ó	-10
f1 (ppm)																							

 $^{19}\mathsf{F}\,\mathsf{NMR}$ 376 MHz, CDCl_3

4z

170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

210 200 ò -10 f1 (ppm)

-10 220 210 200 190 180 170 160 150 140 130 120 ò f1 (ppm)

-10 220 210 200 190 180 170 160 150 140 130 120 ò f1 (ppm)

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	Ó	-10
f1 (ppm)																							

S75

 $^{19}\mathsf{F}\,\mathsf{NMR}$ 376 MHz, CDCl_3

170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
									f1 (pp	om)									

¹⁹F NMR 376 MHz, CDCl₃

170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

f1 (ppm) Ó

								1						
160 150	140	130 120	110	100	00	80	70	60	50	40	30	20	10	0
100 150	140	130 120	110	100	30	00	10	00	30	40	30	20	10	0
f1 (gpm)														
	160 150	160 150 140	160 150 140 130 120	160 150 140 130 120 110	160 150 140 130 120 110 100 f1 (ppr	160 150 140 130 120 110 100 90 f1 (ppm)	160 150 140 130 120 110 100 90 80 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 60 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 60 50 40 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)	160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

										1									
100	180	170	160	150	140	130	120	110	100	an	80	70	60	50	40	30	20	10	0
150	100	170	100	100	140	100	120	110	100	50	00	10	00	00	40	50	20	10	0
	f1 (nnm)																		
									ii (ppi	' '									

7.5515 7.5675 7.5675 7.5675 7.5675 7.5675 7.55874 7.55874 7.55874 7.55874 7.55874 7.55874 7.55874 7.55875 7.55875 7.55875 7.55875 7.55875 7.55875 7.55875 7.55875 7.55875 7.75598 7.74886 7.74886 7.74886 7.74895 7.747895 7.747895 7.74785 7.74895 7.74895 7.74895 7.74795 7.74895 7.74795 7.

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																	20		•
									f1 (pp	m)									
										,									

170 150 110 70 30 -10 -70 -210 130 90 50 10 -30 -50 -90 -110 -130 -150 -170 -190 f1 (ppm)

G. References

- ¹ Krasovskiy, A.; Knochel, P. Convenient Titration Method for Organometallic Zinc, Magnesium, and Lanthanide Reagents. *Synthesis* **2006**, 890–891.
- ² Mills, L. R.; Edjoc, R. K.; Rousseaux, S. A. L. Design of an Electron-Withdrawing Benzonitrile Ligand for Ni- Catalyzed Cross-Coupling Involving Tertiary Nucleophiles. *J. Am. Chem. Soc.* **2021**, *143*, 10422–10428.
- ³ Luconi, L.; Kissel, A. A.; Rossin, A.; Khamaletdinova, N. M.; Cherkasov, A. V.; Tuci, G.; Fukin, G. K.; Trifonov, A. A.; Giambastiani, G. *New J. Chem.* **2017**, *41*, 540–551.
- ⁴ Weinstock, J. Dialkylaminoalkylaminopteridine Derivatives. US Patent 3028387, Apr. 3, 1962.
- ⁵ Shigeno, M.; Hayashi, K.; Nozawa-Kumada, K.; Kondo, Y. Catalytic C(sp²)–C(sp³) Bond
- Formation of Methoxyarenes by the Organic Superbase t-Bu-P4. Org. Lett. 2020, 22, 9107–9113.
- ⁶ Gaudin, J.-M.; Millet, P. Transition metal-free addition of ketones or nitriles to 1,3-dienes. *Chem. Commun.* **2008**, 588–590.
- ⁷ Giovannini, E.; Pasquier, P. Über Umlagerungen bei der Cyclialkylierung von Arylpentanolen zu 2,3-Dihydro-1*H*-inden-Derivaten, 3. Mitteilung. *Helv. Chim. Acta* **2002**, *85*, 1850–1855.
- ⁸ Mills, L. R.; Rousseaux, S. A. L. A one-pot electrophilic cyanation–functionalization strategy for the synthesis of disubstituted malononitriles. *Tetrahedron* **2019**, *75*, 4298–4306.
- ⁹ Mizuhara, T.; Oishi, S.; Ohno, H.; Shimura, K.; Matsuoka, M.; Fujii, N. Structure–activity relationship study of pyrimido[1,2-*c*][1,3]benzothiazin-6-imine derivatives for potent anti-HIV agents. *Bioorg. Med. Chem.* **2012**, *20*, 6434–6441.
- ¹⁰ Van Loevezijin, A. et al. J. Med. Chem. 2011, 54, 7030–7054.
- ¹¹ Davis, W. A.; Cava, M. P. J. Org. Chem. 1983, 48, 2774–2775.
- ¹² Han, J.; Qian, X.; Xu, B.; Wang, L. Synlett **2017**, *28*, 2139–2142.
- ¹³ Rad, M. N. S.; Behrouz, S.; Nekoei, A.-R. Synlett 2012, 23, 1191–1198.
- ¹⁴ Do, H.-Q.; Daugulis, O. Org. Lett. **2009**, 11, 421–423.
- ¹⁵ Bayh, O.; Awad, H.; Mongin, F.; Hoarau, C.; Biscoff, L.; Trecourt, F.; Queguiner, G.; Marsais,
- F.; Blanco, F.; Abarca, B.; Ballasteros, R. J. Org. Chem. 2005, 70, 5190-5196.
- ¹⁶ Tang, X.; Huang, L.; Qi, C.; Wu, X.; Wu, W.; Jiang, J. Chem. Commun. 2013, 49, 6102–6104.