Electronic Supplementary Information

Copper-mediated synthesis of fullerooxazoles from [60]fullerene and N-hydroxybenzimidoyl cyanides
Qing-Song Liu, ${ }^{\text {a }}$ Wen-Jie Qiu, ${ }^{\text {a }}$ Wen-Qiang Lu ${ }^{\mathrm{a}}$ and Guan-Wu Wang*a,b
${ }^{\text {a }}$ Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
E-mail: gwang@ustc.edu.cn; Fax: +86 551 3607864; Tel: +86 5513607864
${ }^{\mathrm{b}}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Table of Contents

1. General information S2
2. General procedure for the reaction of C_{60} with substrates $\mathbf{1}$ S2
3. Synthesis and spectral data of compounds 2a-r and 3a S2-11
4. Attempted reaction of $\mathbf{2 a}^{2-}$ with MeI or $\mathrm{D}_{2} \mathrm{O}$ S12-13
5. Control experiments S13-14
6. Reaction mechanism leading to fulleroisoxazoles S14
7. References S15
8. NMR spectra of compounds $\mathbf{2 a - r}$ and 3a S16-55
9. UV-vis spectra of compounds $\mathbf{2 d}-\mathbf{f}, \mathbf{2 k}-\mathbf{o}, \mathbf{2 r}$ and $\mathbf{3 a}$ S56-57

1. General information

Anhydrous 1,2-dichlorobenzene $\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$ was freshly distilled, N hydroxybenzimidoyl cyanides $\mathbf{1 a - r}$ were synthesized by the literature procedure. ${ }^{1}$ Other chemicals were purchased from commercial sources and used as received. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ASCEND III-400 or a Bruker ASCEND III-500 or a JEOL JNM-ECZ600R/SI spectrometer at room temperature. ${ }^{1} \mathrm{H}$ NMR chemical shifts were determined relative to TMS. ${ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to TMS or residual DMSO ($\delta 39.03 \mathrm{ppm}$). Abbreviations for signal couplings are: s, singlet; d, doublet; t, triplet; m, multiplet. High resolution mass spectra were obtained on a Bruker UltrafleXtreme MALDI-TOF/TOF instrument. UV-vis spectra were obtained on a SHIMADZU UV-3600PLUS instrument. IR spectra were obtained on a Thermo Scientific Nicolet 6700 instrument. Electrochemical reaction was performed under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$ using a Shanghai Chenhua CHI630D workstation.

2. General procedure for the reaction of C_{60} with substrates 1

A mixture of $\mathrm{C}_{60}(0.05 \mathrm{mmol}), \mathbf{1}(0.15 \mathrm{mmol})(0.25 \mathrm{mmol}$ for $\mathbf{1 c}, \mathbf{1 f}$ and $\mathbf{1 m}), \mathrm{CuBr}_{2}$ $(0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.10 \mathrm{mmol})$ was completely dissolved in anhydrous 1,2$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and the reaction was performed in a sealed tube. After being stirred in an oil bath at $150^{\circ} \mathrm{C}\left(160^{\circ} \mathrm{C}\right.$ for $\left.\mathbf{1 i}\right)$ for 1 h , the resulting solution was evaporated in vacuo and subsequently separated on a silica gel column (300-400 mesh) with carbon disulfide $\left(\mathrm{CS}_{2}\right)$ as the eluent to give recovered C_{60} and then the desired products $\mathbf{2}$.

Products $\mathbf{2 a}-\mathbf{c}, \mathbf{2 g}-\mathbf{j}, \mathbf{2 p}$ and $\mathbf{2 q}$ were known compounds, and their spectra were consistent with those reported in the literature. ${ }^{2 a-f}$

3. Synthesis and spectral data of compounds $2 a-r$ and $3 a$

2a
Synthesis and spectral data of 2a: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 a}(21.9 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(16.8 \mathrm{mg}$, 46%) and $\mathbf{2 a} \mathbf{a}^{2 a,-\mathrm{cf}}$ ($12.7 \mathrm{mg}, 30 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock) $\delta 8.44-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H})$, 7.64-7.58 (m, 2H).

2b
Synthesis and spectral data of 2b: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 b}(24.3 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(20.9 \mathrm{mg}$, 58%) and $\mathbf{2 b}{ }^{2 a, e, f}(11.0 \mathrm{mg}, 26 \%)$: amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$.

Synthesis and spectral data of 2c: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 c}(44.3 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(16.9 \mathrm{mg}$, 47%) and $2 \mathbf{c}^{2 \mathrm{a}-\mathrm{f}}$ ($10.4 \mathrm{mg}, 24 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$.

2d
Synthesis and spectral data of 2d: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 d}(26.6 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(15.2 \mathrm{mg}$, 42%) and $\mathbf{2 d}$ ($9.8 \mathrm{mg}, 22 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock) $\delta 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=2.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (ddd, $J=8.3,2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock and reference, all 2 C unless indicated) $\delta 164.40(1 \mathrm{C}, C=\mathrm{N}), 159.04$ (1 C , aryl C), 147.55 (1C), 147.49, 147.14 (1C), 145.75 (4C), 145.61, 145.46, 145.40, 145.12, 144.98, 144.83, 144.59, 144.48, 144.22, 143.97, 143.65, 143.02, 142.18, 142.15, 142.07, 141.75 (4C), 141.66, $141.51,141.39$ (4C), 139.85, 139.01, 137.21, 135.51, 129.30 (1 C , aryl C), 127.56 (1C,
aryl C), $121.20(1 \mathrm{C}$, aryl $C), 118.85(1 \mathrm{C}$, aryl $C), 112.85(1 \mathrm{C}$, aryl $C), 96.71$ ($1 \mathrm{C}, \mathrm{sp}^{3}-$ C of C_{60}), $91.62\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 54.64(1 \mathrm{C}) ;$ FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1641,1580,1512$, $1489,1461,1431,1327,1042,983,936,786,715,526$; UV-vis (CHCl3) $\lambda_{\text {max }} \mathrm{nm}(\log$ ع) 257 (5.03), 316 (4.56), 418 (3.34), 453 (3.09), 684 (1.97); MALDI-TOF MS m / z calcd for $\mathrm{C}_{68} \mathrm{H}_{7} \mathrm{NO}_{2}[\mathrm{M}]^{-8} 869.0482$, found 869.0474.

2e
Synthesis and spectral data of $\mathbf{2 e}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 e}(30.5 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(18.3 \mathrm{mg}$, 50%) and 2e ($8.5 \mathrm{mg}, 19 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock) $\delta 8.30$ ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.46 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock and reference, all 2C unless indicated) $\delta 164.37(1 \mathrm{C}, C=\mathrm{N}), 154.85$ (1 C , aryl C), $147.70,147.56$ (1C), 147.14 (1C), 145.75, 145.74, 145.60, 145.46, 145.40, $145.12,145.04,144.86,144.59,144.48,144.26,143.99,143.66,143.21,142.17$, 142.16, 142.06, 141.77 (4C), 141.66, 141.52, 141.40 (4C), 139.82, 139.00, 137.23, $135.49,128.72(\operatorname{aryl} C), 125.23(\operatorname{aryl} C), 123.67(1 \mathrm{C}, \operatorname{aryl} C), 96.58\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right)$, 91.72 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C 60), 34.26 (1C), $30.80(3 \mathrm{C})$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1640,1324,1111$, $1085,984,932,843,774,686,661,603,576,563,525$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } \mathrm{nm}(\log$ ع) 256 (5.08), 316 (4.62), 419 (3.45), 456 (3.23), 680 (2.27); MALDI-TOF MS m / z calcd for $\mathrm{C}_{71} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}]^{-8} 895.1003$, found 895.1001.

2f
Synthesis and spectral data of 2f: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 f}(53.5 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.3 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(17.3 \mathrm{mg}$, 49%) and $\mathbf{2 f}$ ($10.6 \mathrm{mg}, 23 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock) $\delta 8.46$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (dd, J $=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock and reference, all 2 C unless indicated) $\delta 164.46$ ($1 \mathrm{C}, C=\mathrm{N}$), 147.74 (3C), 147.31 (1C), 145.93 (4C), 145.78,
145.64, 145.58, 145.31, 145.20, 145.02, 144.77 (3C including 1 aryl C), 144.66, 144.41, $144.16,143.83,143.26,142.35$ (4C), $142.24,141.94$ (4C), 141.84, 141.69, 141.57 (4C), 140.02, 139.58 (1 C , aryl C), $139.19,137.41,135.68,129.52$ (aryl C), 128.81 (aryl C), 127.97 (1C, aryl C), 127.13 (aryl C), 127.02 (aryl C), 125.39 (1C, aryl C), 96.89 (1C, $\mathrm{sp}^{3}-C$ of C_{60}), 91.91 (1C, $\mathrm{sp}^{3}-C$ of C_{60}); FT-IR $\mathrm{v}^{2} \mathrm{~cm}^{-1}(\mathrm{KBr}) 1638,1511,1322,1088$, 982, 931, 847, 766, 730, 694, 661, 603, 575, 563, 525; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ 258 (5.04), 314 (4.75), 413 (3.52), 454 (3.22), 689 (2.34); MALDI-TOF MS m / z calcd for $\mathrm{C}_{73} \mathrm{H}_{9} \mathrm{NO}[\mathrm{M}]^{-} 915.0690$, found 915.0684.

2 g
Synthesis and spectral data of $\mathbf{2 g}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 g}(27.4 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(15.6 \mathrm{mg}$, 44%) and $\mathbf{2} \mathbf{g}^{2 b-\mathrm{d}, \mathrm{f}}$ ($12.6 \mathrm{mg}, 29 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$.

2h
Synthesis and spectral data of $\mathbf{2 h}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 h}(27.6 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(10.1 \mathrm{mg}$, 28%) and $\mathbf{2 h}^{2 \mathrm{e}}$ ($9.4 \mathrm{mg}, 21 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dt}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis and spectral data of 2i: by following the general procedure, the reaction of
$\mathrm{C}_{60}(36.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 i}(27.2 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $160{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(16.2 \mathrm{mg}$, 45%) and $\mathbf{2 i}^{2 \mathrm{e}, \mathrm{f}}$ ($8.0 \mathrm{mg}, 18 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.0,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.

2j
Synthesis and spectral data of $\mathbf{2 j}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 j}$ ($34.4 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{CuBr}_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(13.6 \mathrm{mg}$, 38%) and $\mathbf{2 j}{ }^{2 \mathrm{aa}}(11.7 \mathrm{mg}, 25 \%)$: amorphous brown solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CS}_{2}\right.$ with DMSO- d_{6} as the external deuterium lock) $\delta 8.30$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H})$.

2k
Synthesis and spectral data of $\mathbf{2 k}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 k}(25.0 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h and afforded recovered $\mathrm{C}_{60}(16.8$ $\mathrm{mg}, 47 \%$) and $\mathbf{2 k}$ ($13.1 \mathrm{mg}, 31 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock) $\delta 8.44$ (dd, $\left.J=8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.28(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock, all 2 C unless indicated) $\delta 164.29$ (1 C , aryl $C, \mathrm{~d}, J=255.5 \mathrm{~Hz}$), $163.06(1 \mathrm{C}, C=\mathrm{N})$, 147.10 (1C), 146.90, 146.68 (1C), 145.29 (4C), 145.15, 145.00, 144.95, 144.67, 144.48, $144.33,144.13,144.02,143.68,143.50,143.17,142.41,141.72,141.69,141.61$, $141.28,141.25,141.18,141.04,140.92,140.87,139.37,138.55,136.75,135.00$, 130.61 (aryl $C, \mathrm{~d}, J=8.8 \mathrm{~Hz}$), $122.24(1 \mathrm{C}$, aryl $C, \mathrm{~d}, J=3.2 \mathrm{~Hz}$), 114.93 (aryl $C, \mathrm{~d}, J=$ 21.8 Hz), $96.41\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 91.16\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right)$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1638$, $1604,1510,1459,1426,1341,1270,1178,748,563,527$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\mathrm{log}$ ع) 256 (5.01), 317 (4.56), 416 (3.52), 458 (3.27), 684 (2.65); MALDI-TOF MS m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{4} \mathrm{NOF}[\mathrm{M}]^{-} 857.0282$, found 857.0286 .

21
Synthesis and spectral data of 21: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 l}(22.2 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(13.0 \mathrm{mg}$, 36%) and $2 \mathbf{2 l}$ ($11.5 \mathrm{mg}, 27 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock) $\delta 8.25-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.61$ $(\mathrm{td}, J=7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CS}_{2}$ with DMSO- d_{6} as the external deuterium lock and reference, all 2 C unless indicated) $\delta 163.05$ (1C, $C=\mathrm{N}, \mathrm{d}, J=3.0 \mathrm{~Hz}$), 161.56 (1 C , aryl $C, \mathrm{~d}, J=248.8 \mathrm{~Hz}$), 147.11 (1C), 146.69 (3C), 145.32 , $145.31,145.17,145.02,144.96,144.70,144.49,144.33,144.15,144.03$, $143.68,143.49,143.17,142.24,141.74,141.69,141.62,141.30,141.23,141.20$, 141.06, 140.93, 140.87, 139.39, 138.58, 136.74, 135.05, 129.39 (1C, aryl $C, J=7.7$ $\mathrm{Hz}), 128.20(1 \mathrm{C}, \operatorname{aryl} C, \mathrm{~d}, J=8.2 \mathrm{~Hz}), 123.91(1 \mathrm{C}$, aryl $C, \mathrm{~d}, J=3.1 \mathrm{~Hz}), 118.34(1 \mathrm{C}$, aryl $C, \mathrm{~d}, J=21.1 \mathrm{~Hz}), 115.24\left(1 \mathrm{C}\right.$, aryl $C, \mathrm{~d}, J=23.5 \mathrm{~Hz}$), $96.46\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right)$, 91.10 ($1 \mathrm{C}, \mathrm{sp}^{3}-\mathrm{C}$ of C_{60}); FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1644,1452,1316,1086,982,936,883$, $848,789,713,564,526$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 256$ (5.11), 316 (4.67), 412 (3.62), 454 (3.36), 683 (2.61); MALDI-TOF MS m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{4} \mathrm{NOF}$ [M] 857.0282, found 857.0285.

Synthesis and spectral data of $\mathbf{2 m}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 m}(37.0 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.1 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered C_{60} ($11.4 \mathrm{mg}, 31 \%$) and $\mathbf{2 m}(10.4 \mathrm{mg}, 24 \%)$: amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 162.81$ ($1 \mathrm{C}, C=\mathrm{N}, \mathrm{d}, J=5.4 \mathrm{~Hz}$), 161.62 (1 C , aryl $C, \mathrm{~d}, J=261.6 \mathrm{~Hz}$), 148.15 (1C), 147.74 (1C), 147.53, 146.34 (4C), 146.22, 146.04, 145.99, 145.76, 145.60, $145.40,145.16,145.06,144.78,144.50,144.19,143.22,142.73,142.68,142.62$, $142.31,142.20$ (4C), $142.06,141.94,141.88,140.34,139.58,137.79,136.25,134.18$ (1C, aryl C, d, $J=8.7 \mathrm{~Hz}$), 131.95 (1C, aryl C), 124.32 (1 C , aryl $C, \mathrm{~d}, J=3.8 \mathrm{~Hz}$), 117.14 ($1 \mathrm{C}, \operatorname{aryl} C, \mathrm{~d}, J=21.6 \mathrm{~Hz}$), 115.16 (1 C , aryl $C, \mathrm{~d}, J=10.2 \mathrm{~Hz}$), 97.01 ($1 \mathrm{C}, \mathrm{sp}^{3}-$
C of C_{60}), 91.98 (1C, $\mathrm{sp}^{3}-C$ of C_{60}); FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1641,1495,1456,1330,1229$, $1066,982,932,822,763,740,658,603,563,526 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 256$ (5.02), 317 (4.57), 417 (3.53), 454 (3.30), 684 (2.52); MALDI-TOF MS m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{4} \mathrm{NOF}[\mathrm{M}]^{-} 857.0282$, found 857.0289.

2n
Synthesis and spectral data of $\mathbf{2 n}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 n}(27.8 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(13.2 \mathrm{mg}$, 37%) and 2n ($11.1 \mathrm{mg}, 26 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.34-8.28(\mathrm{~m}, 1 \mathrm{H}), 8.28-8.24(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 163.93(1 \mathrm{C}, C=\mathrm{N}$), 153.23 (1 C , aryl C, dd, $J=256.9,12.7 \mathrm{~Hz}$), 150.34 (1 C , aryl C, dd, $J=250.9,13.1 \mathrm{~Hz}$), 148.18 (1C), 147.77 (1C), $147.36,146.37$ (4C), 146.23, 146.07, 146.02, 145.77, 145.39, 145.35, $145.19,145.09,144.61,144.49,144.19,143.01,142.77,142.71,142.66,142.30$, $142.21,142.19,142.08,141.95,141.83,140.41,139.61,137.81,136.19,126.01$ (1C, aryl C, dd, $J=7.1,3.7 \mathrm{~Hz}$), $123.88(1 \mathrm{C}$, aryl C, dd, $J=6.4,3.8 \mathrm{~Hz}$), $118.60(1 \mathrm{C}$, aryl $C, \mathrm{~d}, J=19.6 \mathrm{~Hz}$), $117.85\left(1 \mathrm{C}, \operatorname{aryl} C, \mathrm{~d}, J=17.9 \mathrm{~Hz}\right.$), $97.84\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of C 60), 91.95 (1C, $\mathrm{sp}^{3}-\mathrm{C}_{\text {of }} \mathrm{C}_{60}$); FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1646,1512,1438,1339,1323,1268,1195,1141$, 1080, 983, 937, 823, 794, 776, 720, 563, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 256$ (5.07), 317 (4.61), 416 (3.45), 452 (3.20), 683 (2.42); MALDI-TOF MS m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{3} \mathrm{NOF}_{2}[\mathrm{M}]^{-} 875.0188$, found 875.0182 .

20
Synthesis and spectral data of 20: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 0}(27.3 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(14.2 \mathrm{mg}$, 40%) and 2 o ($8.8 \mathrm{mg}, 20 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{tt}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) $\delta 163.89(1 \mathrm{C}, C=\mathrm{N}, \mathrm{t}, J=3.6 \mathrm{~Hz}$), 162.99 (aryl C, dd, $J=250.7,12.1 \mathrm{~Hz}$), 148.19 (1C), 147.77 (1C), 147.13, 146.39, 146.37, 146.24, $146.08,146.02,145.79,145.38,145.33,145.19,145.09,144.60,144.48,144.18$,
142.81, 142.77, 142.70, 142.66, 142.30, 142.21, 142.16, 142.08, 141.95, 141.81, $140.42,139.63,137.80,136.23,129.92$ (1C, aryl C, t, $J=10.2 \mathrm{~Hz}$), 112.31 (aryl C, dd, $J=20.9,6.9 \mathrm{~Hz}$), $107.88\left(1 \mathrm{C}\right.$, aryl $C, \mathrm{t}, J=25.1 \mathrm{~Hz}$), $97.88\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 91.89$ (1C, sp ${ }^{3}-C$ of C_{60}); FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 1648,1619,1593,1437,1354,1123,987,938$, $873,853,717,561,526$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 254$ (5.06), 318 (4.59), 415 (3.48), 457 (3.22), 682 (2.50); MALDI-TOF MS m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{3} \mathrm{NOF}_{2}[\mathrm{M}]^{-}$ 875.0188 , found 875.0185 .

2p
Synthesis and spectral data of $\mathbf{2 p}$: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 p}(30.7 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.3 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(10.8 \mathrm{mg}$, 30%) and $\mathbf{2 p}{ }^{2 \mathrm{bbe}}$ ($10.1 \mathrm{mg}, 23 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.

2q
Synthesis and spectral data of 2q: by following the general procedure, the reaction of $\mathrm{C}_{60}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 q}(25.4 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(12.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(9.7 \mathrm{mg}$, 27%) and $\mathbf{2 q}{ }^{2 b}$ ($10.4 \mathrm{mg}, 24 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis and spectral data of 2r: by following the general procedure, the reaction of $\mathrm{C}_{60}(36.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ with $1 \mathbf{r}(22.4 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{CuBr}_{2}(11.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(14.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $150{ }^{\circ} \mathrm{C}$ for 1 h afforded recovered $\mathrm{C}_{60}(24.9 \mathrm{mg}$,
69%) and 2 r ($4.7 \mathrm{mg}, 14 \%$): amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, $1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) $\delta 164.14(1 \mathrm{C}, C=\mathrm{N}), 150.63(\operatorname{aryl} C), 148.15$ (1C), 147.74 (1C), $146.97,146.37$ (4C), 146.22, 146.05, 146.00, 145.77, 145.36, 145.29, $145.17,145.08,144.57,144.44,144.15,142.76,142.69$ (4C), 142.65, 142.28, 142.19, $142.13,142.06,141.93,141.79,140.42,139.63,137.72,136.19,134.13$ (1C, aryl C), $122.44(\operatorname{aryl} C), 97.76\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 91.91\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right)$; FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 1648, 1592, 1556, 1408, 1333, 1099, 991, 981, 930, 831, 773, 563, 526; UV-vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max } \mathrm{nm}(\log \varepsilon) 255$ (5.04), 317 (4.58), 416 (3.49), 449 (3.26), 684 (2.39); MALDI-TOF MS m/z calcd for $\mathrm{C}_{66} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{-} 840.0329$, found 840.0315.

3a
Synthesis and spectral data of 3a: $16.8 \mathrm{mg}(0.02 \mathrm{mmol})$ of $\mathbf{2 a}$ was electroreduced by controlled potential electrolysis (CPE) at -1.07 V vs saturated calomel electrode (SCE) in 15 mL of $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ containing 0.1 M n -butylammonium perchlorate (TBAP) under an argon atmosphere at $0^{\circ} \mathrm{C}$. CPE was carried out on a potentiostat/galvanostat using an " H " type cell which consisted of two platinum gauze electrodes (serving as working and counter electrodes, respectively) separated by a sintered glass frit. The SCE was used as reference electrode and separated from the bulk of the solution by a fritted-glass bridge of low porosity, which contained the solvent/supporting electrolyte mixture. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of $\mathbf{2 a}$ to $\mathbf{2 a}{ }^{2-}$ was reached. Then, the dianionic $\mathbf{2 a}{ }^{2-}$ was reacted with trifluoroacetic acid $(7.6 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was filtered through a silica gel (200-300 mesh) plug with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1, v / v) to remove the supporting electrolyte and insoluble materials. After evaporation in vacuo, the residue was separated on a silica gel ($300-400$ mesh) column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1, \mathrm{v} / \mathrm{v})$ to afford product $\mathbf{3 a}(8.5 \mathrm{mg}, 50 \%)$ as an amorphous brown solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}$, 1 H), $7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 2: 1 \mathrm{CDCl}_{2} \mathrm{CDCl}_{2} / \mathrm{CS}_{2}$, all 2 C unless indicated) $\delta 166.99$ ($1 \mathrm{C}, C=\mathrm{O}$), $151.84,147.98,146.90$ (1C), 146.15 (1C), $145.59,145.48,145.23,145.09,145.06,145.03,144.64,144.37,144.24,144.20$ (4C), $143.88,143.33,142.05,141.62,141.51,141.35,141.17,141.00,140.81,140.50$, $140.17,139.25,138.74,137.64,135.45,132.40$ (1 C , aryl C), 131.67 (1 C , aryl C), $128.09(\operatorname{aryl} C), 126.47(\operatorname{aryl} C), 71.75\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 59.53\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right)$; FTIR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 3416,1668,1639,1577,1515,1464,1427,1269,1250,707,688,551$, 527; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon) 258$ (5.03), 328 (4.52), 405 (3.77), 431 (3.62), 697 (2.87); MALDI-TOF MS m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{7} \mathrm{NO}[\mathrm{M}]^{-} 841.0533$, found 841.0541 .

Synthesis and spectral data of 3a-D: $8.4 \mathrm{mg}(0.01 \mathrm{mmol})$ of 2a was electroreduced by controlled potential electrolysis (CPE) at -1.07 V vs saturated calomel electrode (SCE) in 15 mL of $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ containing $0.1 \mathrm{M} n$-butylammonium perchlorate (TBAP) under an argon atmosphere at $0^{\circ} \mathrm{C}$. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of $\mathbf{2 a}$ to $\mathbf{2 a}^{2-}$ was reached. Then, the dianionic $2 \mathbf{a}^{2-}$ was reacted with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}(73.2 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 10 min . After removal of volatiles in vacuo, the residue was dissolved in CS_{2}. Subsequent filtration to remove TBAP and insoluble impurities. Evaporation of the resulting filtrate to remove CS_{2} and then washing with methanol provided product 3aD along with decomposition product C_{60} as an amorphous brown solid (Figure S 1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$) $\delta 8.54(\mathrm{~s}, 0.85 \mathrm{H}), 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.64$ $(\mathrm{m}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 0.44 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a - D}$ showed all expected signals of $\mathbf{3 a}$ except that the fullerenyl proton at 6.91 ppm had an integral of 0.44 and the amide proton at 8.54 ppm had an integral of 0.85 , hinting partial H-D exchange during the workup process.

Figure S1. Reaction of $\mathbf{2 a}{ }^{2-}$ and CF_{3} COOD.

4. Attempted reaction of $\mathbf{2 a}{ }^{\mathbf{2 -}}$ with MeI or $\mathrm{D}_{2} \mathrm{O}$

Attempted reaction of $\mathbf{2 a}{ }^{\mathbf{2 -}}$ with MeI: $8.4 \mathrm{mg}(0.01 \mathrm{mmol})$ of $\mathbf{2 a}$ was electroreduced by controlled potential electrolysis (CPE) at -1.07 V vs saturated calomel electrode (SCE) in 15 mL of $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ containing $0.1 \mathrm{M} n$-butylammonium perchlorate (TBAP) under an argon atmosphere at $0^{\circ} \mathrm{C}$. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of $\mathbf{2 a}$ to $\mathbf{2 a}^{2-}$ was reached. Then, the dianionic $\mathbf{2 a}{ }^{2-}$ was reacted with $\operatorname{MeI}(32.0 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 6 h . It was found that $\mathbf{2 a}$ was partially decomposed to C_{60} (Figure S2).

Figure S2. Reaction of $\mathbf{2 a}^{2-}$ and MeI.

Attempted reaction of $\mathbf{2 a}{ }^{\mathbf{2}}$ with $\mathbf{D}_{\mathbf{2}} \mathbf{O}: 8.4 \mathrm{mg}(0.01 \mathrm{mmol})$ of $\mathbf{2 a}$ was electroreduced by controlled potential electrolysis (CPE) at -1.07 V vs saturated calomel electrode (SCE) in 15 mL of $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ containing $0.1 \mathrm{M} n$-butylammonium perchlorate (TBAP) under an argon atmosphere at $0^{\circ} \mathrm{C}$. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of $\mathbf{2 a}$ to $\mathbf{2 a}^{2-}$ was reached. Then, the dianionic $2 \mathrm{a}^{2-}$ was reacted with $\mathrm{D}_{2} \mathrm{O}(10.0 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ for 6 h , It was found that $2 \mathbf{a}$ was partially decomposed to C_{60} (Figure S3).

Figure S3. Reaction of $\mathbf{2 a}{ }^{2-}$ and $\mathrm{D}_{2} \mathrm{O}$.

5. Control experiments

A mixture of $\mathrm{C}_{60}(36.1 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{1 a}(21.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{CuBr}_{2}(11.4 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{HPO}_{4}(14.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ and TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}$) was completely dissolved in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$. After being stirred in an oil bath at $150^{\circ} \mathrm{C}$ for 1 h , the resulting solution was evaporated in vacuo and subsequently separated on a silica gel column (300-400 mesh) with CS_{2} as the eluent to give recovered $\mathrm{C}_{60}(24.5 \mathrm{mg}$, 68%) and the product $\mathbf{2 a}(4.4 \mathrm{mg}, 10 \%)$. While adding 1 equiv. of TEMPO $(7.8 \mathrm{mg}$, 0.05 mmol), there was no desired product, and the radical coupling product 4 between TEMPO and 1a radical was successfully detected by ESI-MS. ESI-MS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$286.1914, found 286.1919.

Figure S4. HRMS of product 4.

6. Reaction mechanism leading to fulleroisoxazoles

Scheme S1. Reaction mechanism for the formation of fulleroisoxazoles 2'.

7. References

1 A. J. Neel and R. Zhao, Org. Lett., 2018, 20, 2024-2027.
2 (a) F.-B. Li, T.-X. Liu and G.-W. Wang, J. Org. Chem., 2008, 73, 6417-6420; (b) Y. Takeda, S. Enokijima, T. Nagamachi, K. Nakayama and S. Minakata, Asian J. Org. Chem., 2013, 2, 91-97; (c) H.-T. Yang, W.-L. Ren, C.-P. Dong, Y. Yang, X.Q. Sun and C.-B. Miao, Tetrahedron Lett., 2013, 54, 6799-6803; (d) H.-T. Yang, X.-C. Liang, Y.-H. Wang, Y. Yang, X.-Q. Sun and C.-B. Miao, Org. Lett., 2013, 15, 4650-4653; (e) T.-X. Liu, Y. Liu, D. Chao, P. Zhang, Q. Liu, L. Shi, Z. Zhang and G. Zhang, J. Org. Chem., 2014, 79, 11084-11090; (f) X.-F. Zhang, F.-B. Li, J.-L. Shi, J. Wu and L. Liu, New J. Chem., 2016, 40, 1626-1632.

8. NMR spectra of compounds $2 a-r$ and $3 a$

Parameter	Value
1 Data File Name	D:/ 2a-/ fid
2 Title	$\begin{aligned} & \text { wcl90517-H. } \\ & \text { 10. fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMS0
7 Temperature	292.3
8 Pulse Sequence	zg30
9 Number of Scans	128
10 Receiver Gain	168.1
11 Relaxation Delay	1. 0000
12 Pulse Width	10.0000
13 Acquisition Time	4.0894
14 Acquisition Date	$\begin{aligned} & 2019-05-17 \mathrm{~T} 14: \\ & 03: 00 \end{aligned}$
$\begin{aligned} & 15 \text { Modification } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & 2019-05-17 \mathrm{~T} 14: \\ & 03: 56 \end{aligned}$
16 Purity	100.00\%
$\begin{aligned} & 17 \text { Spectrum } \\ & \text { Quality } \end{aligned}$	0.000
18 Spectrometer Frequency	400. 13
19 Spectral Width	8012.8
20 Lowest Frequency	-1448.7
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

0000 :

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$) of 2a.

(

Parameter	Value
1 Data File Name	$\text { D:/fid } \mathrm{H} \mathrm{3-0Me/}$
2 Title	$\begin{aligned} & \text { wcl90524-H m- } \\ & \text { OMe. 10.fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMSO
7 Temperature	292.3
8 Pulse Sequence	z830
$9 \begin{aligned} & \text { Number of } \\ & \text { Scans } \end{aligned}$	128
10 Receiver Gain	189.4
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
$\begin{aligned} & 13 \text { Acquisition } \\ & \text { Time } \end{aligned}$	4. 0894
$\begin{aligned} & 14 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & 2019-05-24 \mathrm{~T} 21: \\ & 42: 00 \end{aligned}$
```15 Modification```	$\begin{aligned} & 2019-05-24 \mathrm{~T} 21: \\ & 42: 14 \end{aligned}$
16 Purity	100.00\%
$17 \begin{aligned} & \text { Spectrum } \\ & \text { Quality }\end{aligned}$	0.000
18 Spectrometer Frequency	400.13
19 Spectral Width	8012.8
20 Lowest Frequency	-1446.9
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536


0000 :0-




Parameter	Value
1 Data File Name	$\begin{aligned} & \mathrm{D}: / \mathrm{C} 3-0 \mathrm{Me} / \\ & 10 / \mathrm{fid} \end{aligned}$
2 Title	$\begin{aligned} & \text { wcl190524-C m- } \\ & \text { OMe. 10. fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMS0
7 Temperature	292. 9
8 Pulse Sequence	zgpg30
$9 \begin{aligned} & \text { Number of } \\ & \text { Scans }\end{aligned}$	10000
10 Receiver Gain	211.9
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	2. 0000
12 Pulse Width	10.0000
13 Acquisition Time	1. 3631
14 Acquisition	$\begin{aligned} & 2019-05-26 \mathrm{~T} 04: \\ & 55: 00 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2019-05-26 \mathrm{~T} 04: \\ & 55: 28 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \begin{array}{l} \text { Spectrum } \\ \text { Quality } \end{array} \end{gathered}$	0.000
18 Spectrometer Frequency	100.62
19 Spectral Width	24038.5
20 Lowest Frequency	-2049.4
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536




LIOL 'b9I —

Figure S10. Expanded ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$ ) of 2d.

Parameter	Value
1 Data File Name	$\begin{aligned} & \mathrm{D}: / 4-\mathrm{tBu}-\mathrm{H} / \\ & \text { fid } \end{aligned}$
2 Title	$\begin{aligned} & \text { wc190429-H. } \\ & \text { 10. fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMSO
7 Temperature	292.0
8 Pulse Sequence	z830
9 Number of Scans	128
10 Receiver Gain	168.1
11 Relaxation Delay	1. 0000
12 Pulse Width	10.0000
13 Acquisition Time	4. 0894
14 Acquisition Date	$\begin{aligned} & 2019-04-30 \mathrm{~T} 08: \\ & 18: 00 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2019-04-30 \mathrm{~T} 08: \\ & 18: 18 \end{aligned}$
16 Purity	$100.00 \%$
$\begin{aligned} & 17 \text { Spectrum } \\ & \text { Quality } \end{aligned}$	0.000
18 Spectrometer Frequency	400. 13
19 Spectral Width	8012.8
20 Lowest Frequency	-1447.9
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

$0000^{\circ} 0$



$\qquad$
$\left.\begin{array}{l}9899^{2} \\ 209 \\ \hline Z\end{array}\right\rangle$


Figure S11. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$ ) of $\mathbf{2 e}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \mathrm{D}: / \text { 4-tBu/ } \\ & 10 / \mathrm{fid} \end{aligned}$
2 Title	duishudingji.   10.fid
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMS0
7 Temperature	292.8
8 Pulse Sequence	zgpg30
9 Number of Scans	10000
10 Receiver Gain	211.9
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	2. 0000
12 Pulse Width	10.0000
13 Acquisition Time	1. 3631
14 Acquisition	$\begin{aligned} & 2019-04-28 \mathrm{~T} 13: \\ & 51: 00 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2019-04-28 \mathrm{~T} 13: \\ & 51: 26 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \begin{array}{c} \text { Spectrum } \\ \text { Quality } \end{array} \\ \hline \end{gathered}$	0.000
18 Spectrometer Frequency	100.62
19 Spectral Width	24038. 5
20 Lowest Frequency	-1998.6
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536



82I2 EbI-


9899 ' 8 L -


6892 'レレT
$992 b^{\prime} \mathrm{Vbl}$
086s 'tbr
$2098{ }^{1} \mathrm{VL}$

ELbO Gbl LIZI 'GbT

V60V'Gbl
GLGb' Gbl -

$8 \varepsilon 6 L$ ' $\mathrm{GVI}>$

GLEI $\angle b 1-$

9999 ${ }^{\circ} \mathrm{LV}$ -

V669 LbI -

0 IG8 'vGI -

VELE bar -

Figure S13. Expanded ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$ ) of $\mathbf{2 e}$.

Parameter	Value
1 Data File Name	D:/ 4-Ph/ fid
2 Title	H. 10. fid
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMSO
7 Temperature	294.9
8 Pulse Sequence	z830
9 Number of Scans	128
10 Receiver Gain	168.1
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
	4. 0894
$\begin{aligned} & 14 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & \text { 2019-04-11T19: } \\ & 44: 00 \end{aligned}$
```15 Modification```	$\begin{aligned} & \text { 2019-04-11T19: } \\ & 44: 44 \end{aligned}$
16 Purity	100.00\%
$\begin{aligned} & 17 \text { Spectrum } \\ & \text { Quality } \end{aligned}$	0.000
Frequency 18 Spectrometer Frequency	400.13
19 Spectral Width	8012.8
20 Lowest Frequency	-1450.6
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

0000 '0-

Parameter	Value
1 Data File Name	$\begin{aligned} & \mathrm{D}: / \mathrm{4} / \mathrm{Ph} / / \\ & 10 / \mathrm{fid} \end{aligned}$
2 Title	wc190412
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	DMSO
7 Temperature	295.8
8 Pulse Sequence	zgpg30
9 Number of Scans	10000
10 Receiver Gain	211.9
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	2. 0000
12 Pulse Width	10. 0000
13 Acquisition Time	1. 3631
14 Acquisition Date	$\begin{aligned} & 2019-04-14 \mathrm{~T} 11: \\ & 31: 00 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2019-04-14 \mathrm{~T} 11: \\ & 31: 50 \end{aligned}$
16 Purity	100.00\%
17 Spectrum Quality	0.000
18 Spectrometer Frequency	100.62
19 Spectral Width	24038.5
20 Lowest Frequency	-2001.5
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536

200

Figure S16. Expanded ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CS}_{2} /$ DMSO- d_{6}) of $\mathbf{2 f}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \mathrm{D}: / 4-\mathrm{Cl} / 1 / \\ & \text { fid } \end{aligned}$
2 Title	$\begin{aligned} & \text { lqs0524-4-Cl. } \\ & \text { l. fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl3
7 Temperature	298.2
8 Pulse Sequence	z830
$9 \begin{aligned} & \text { Number of } \\ & \text { Scans } \end{aligned}$	128
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
13 Acquisition Time	3. 2768
14 Acquisition Date	$\begin{aligned} & 2021-05-24 \mathrm{~T} 22: \\ & 31: 56 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2021-05-24 \mathrm{~T} 22: \\ & 31: 32 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	500.16
19 Spectral Width	10000. 0
20 Lowest Frequency	-1954.8
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

$0000^{\circ} 0$

Parameter	Value
1 Data File Name	D:/ 3-Cl fid
2 Title	3-Cl. 2. fid
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl 3
7 Temperature	298.2
8 Pulse Sequence	z830
9 Number of Scans	128
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
13 Acquisition Time	3. 2768
$\begin{aligned} & 14 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & \text { 2021-05-26T09: } \\ & 10: 15 \end{aligned}$
15 Modification Date	$\begin{aligned} & \text { 2021-05-26T09: } \\ & 09: 42 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	500.16
19 Spectral Width	10000.0
20 Lowest Frequency	-1941.0
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

[000 0 -

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$

Parameter	Value
1 Data File Name	D:/ $4-\mathrm{Br} / \mathrm{fid}$
2 Title	$\begin{aligned} & \text { wcl90314-H. } \\ & \text { 10. fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmr
5 Instrument	spect
6 Solvent	DMS0
7 Temperature	294.6
8 Pulse Sequence	zg30
9 Number of Scans	128
10 Receiver Gain	189.4
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
13 Acquisition Time	4. 0894
14 Acquisition Date	$\begin{aligned} & 2019-03-15 \mathrm{~T} 08: \\ & 41: 00 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2019-03-15 \mathrm{~T} 08: \\ & 41: 28 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	400. 13
19 Spectral Width	8012.8
20 Lowest Frequency	-1451.1
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

$0000^{\circ} 0$ -
$88 L L^{\prime} Z-$

$\stackrel{\sim}{N}$

\qquad

I 00

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$) of $\mathbf{2 k}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { D: } / \text { 4-F/ 4-F- } \\ & \text { C/ fid } \end{aligned}$
2 Title	$\begin{aligned} & \text { lqs-20201006. } 2 \\ & \text { fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	AvanceNEO
6 Solvent	DMSO
7 Temperature	294.8
8 Pulse Sequence	zgpg30
$9 \begin{aligned} & \text { Number of } \\ & \text { Scans } \end{aligned}$	9000
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	2. 0000
12 Pulse Width	10.0000
$\begin{aligned} & 13 \text { Acquisition } \\ & \text { Time } \end{aligned}$	1. 0879
14 Acquisition Date	$\begin{aligned} & 2020-11-08 \mathrm{~T} 06: \\ & 52: 58 \end{aligned}$
	$\begin{aligned} & 2020-11-08 \mathrm{~T} 06: \\ & 52: 32 \end{aligned}$
16 Purity	100.00\%
$\begin{aligned} & 17 \text { Spectrum } \\ & \text { Quality } \end{aligned}$	0.000
18 Spectrometer Frequency	125.78
19 Spectral Width	30120.5
20 Lowest Frequency	-2600. 7
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536

2000 '0-

2018 '99

Figure S23. Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$) of $\mathbf{2 k}$.

	Parameter	Value
1	Data File Name	$\begin{aligned} & \text { D:/ 3-F/ } 1 / \\ & \text { fid } \end{aligned}$
2	Title	$\begin{aligned} & \text { lqs20210206-3- } \\ & \text { f.1.fid } \end{aligned}$
3	Origin	Bruker BioSpin GmbH
4	Owner	nmrsu
5	Instrument	AvanceNE0
6	Solvent	DMS0
7	Temperature	295.7
8	Pulse Sequence	z830
9	Number of Scans	128
	Receiver Gain	101.0
	Relaxation Delay	1. 0000
	Pulse Width	10.0000
	Acquisition Time	3. 2768
	Acquisition Date	$\begin{aligned} & 2021-02-07 \mathrm{~T} 00: \\ & 06: 17 \end{aligned}$
	Modification Date	$\begin{aligned} & \text { 2021-02-07T00: } \\ & 05: 56 \end{aligned}$
	Purity	100.00\%
	Spectrum Quality	0.000
	Spectrometer Frequency	500.16
	Spectral Width	10000.0
	Lowest Frequency	-1804.6
	Nucleus	1H
	Acquired Size	32768
	Spectral Size	65536

0000 :

Figure S26. Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$) of $\mathbf{2 1}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { D:/ lqs2-F/ } 1 / \\ & \text { fid } \end{aligned}$
2 Title	lqs2-F. 1. fid
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl3
7 Temperature	299.3
8 Pulse Sequence	z830
9 Number of Scans	128
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1.0000
12 Pulse Width	10. 0000
13 Acquisition Time	3. 2768
14 Acquisition Date	$\begin{aligned} & 2021-06-19 \mathrm{~T} 23: \\ & 02: 55 \end{aligned}$
15 Modification Date	$\begin{aligned} & \text { 2021-06-19T23: } \\ & 01: 32 \end{aligned}$
16 Purity	100.00 \%
$\begin{gathered} 17 \begin{array}{c} \text { Spectrum } \\ \text { Quality } \end{array} \end{gathered}$	0.000
18 Spectrometer Frequency	500.16
19 Spectral Width	10000.0
20 Lowest Frequency	-1955.0
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

2000 '0-

Parameter	Value
1 Data File Name	$\mathrm{D}: / \mathrm{lqs2-F} /$ 4/ fid
2 Title	lqs2-F. 4. fid
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl3
7 Temperature	299.4
8 Pulse Sequence	zgpg30
$\begin{aligned} & 9 \text { Number of } \\ & \text { Scans } \end{aligned}$	8600
10 Receiver Gain	101.0
11 Relaxation Delay	2. 0000
12 Pulse Width	10.0000
13 Acquisition Time	1. 0879
14 Acquisition Date	$\begin{aligned} & 2021-06-28 \mathrm{~T} 06: \\ & 44: 47 \end{aligned}$
	$\begin{aligned} & 2021-06-28 \mathrm{~T} 06: \\ & 44: 38 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	125.78
19 Spectral Width	30120.5
20 Lowest Frequency	-2505. 1
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536

[000 '0-

(
Figure S29. Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 m}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { D:/ } 3,4-2 F / 1 / \\ & \text { fid } \end{aligned}$
2 Title	$\begin{aligned} & \text { lqs20210403-3, } \\ & 4-2 \mathrm{~F} . \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl3
7 Temperature	296.6
8 Pulse Sequence	z830
$9 \begin{aligned} & \text { Number of } \\ & \text { Scans } \end{aligned}$	128
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10. 0000
13 Acquisition Time	3. 2768
$\begin{aligned} & 14 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & 2021-04-04 \mathrm{~T} 00: \\ & 08: 30 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2021-04-04 \mathrm{~T} 00: \\ & 08: 24 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	500.16
19 Spectral Width	10000.0
20 Lowest Frequency	-1937.1
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

0000 :

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { D:/ } 3,4-2 \mathrm{~F} / 2 / \\ & \text { fid } \end{aligned}$
2 Title	lqs3, 4-2F. . fid
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl 3
7 Temperature	297.8
8 Pulse Sequence	zgpg30
$9 \begin{aligned} & \text { Number of } \\ & \text { Scans } \end{aligned}$	8400
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	2. 0000
12 Pulse Width	10.0000
13 Acquisition Time	1. 0879
$\begin{aligned} & 14 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & \text { 2021-04-04T07: } \\ & 30: 17 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2021-04-04 \mathrm{~T} 07: \\ & 30: 08 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	125.78
19 Spectral Width	30120.5
20 Lowest Frequency	-2504.8
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536

Figure S31. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 n}$.

Figure S32. Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 n}$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 0}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \mathrm{D}: / \mathrm{nmr} / \\ & \mathrm{lqs} 3,5-2 \mathrm{~F} / 3 / 3 \end{aligned}$
2 Title	$\begin{aligned} & \text { lqs3, 5-2F. } \\ & \text { 3. fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	Avance
6 Solvent	CDCl3
7 Temperature	299.6
8 Pulse Sequence	zgpg30
9 Number of Scans	8600
10 Receiver Gain	101.0
11 Relaxation Delay	2. 0000
12 Pulse Width	10.0000
13 Acquisition Time	1. 0879
14 Acquisition Date	$\begin{aligned} & 2021-06-27 \mathrm{~T} 06: \\ & 02: 43 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2021-06-27 \mathrm{~T} 06: \\ & 02: 42 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \text { Spectrum } \\ \text { Quality } \end{gathered}$	0.000
18 Spectrometer Frequency	125. 78
19 Spectral Width	30120.5
20 Lowest Frequency	-2504. 5
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	65536

8000 '0-

[^0]
Figure S35. Expanded ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 0}$.

	Parameter	Value
1	Data File Name	$\begin{aligned} & \mathrm{D}: / 4-\mathrm{CO} \mathrm{Me} / \\ & 1 / \mathrm{fid} \end{aligned}$
2	Title	$\begin{aligned} & \text { lqs-4-co2me. } \\ & \text { l.fid } \end{aligned}$
3	Origin	Bruker BioSpin GmbH
4	Owner	nmrsu
5	Instrument	Avance
6	Solvent	CDCl 3
7	Temperature	298.1
8	Pulse Sequence	z830
9	Number of Scans	128
10	Receiver Gain	101.0
11	Relaxation Delay	1. 0000
12	Pulse Width	10.0000
13	Acquisition Time	3. 2768
	Acquisition Date	$\begin{aligned} & \text { 2021-06-09T23: } \\ & 07: 51 \end{aligned}$
15	Modification Date	$\begin{aligned} & \text { 2021-06-09T23: } \\ & 07: 26 \end{aligned}$
16	Purity	100.00\%
17	Spectrum Quality	0.000
18	Spectrometer Frequency	500.16
19	Spectral Width	10000.0
20	Lowest Frequency	-1937.5
21	Nucleus	1H
22	Acquired Size	32768
23	Spectral Size	65536

| 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

Figure S36. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of 2p.

Figure S37. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 q}$.

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { D:/4-pyri/ 1/ } \\ & \text { fid } \end{aligned}$
2 Title	$\begin{aligned} & \text { lqs-4- } \\ & \text { pyri-3. l.fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	AvanceNE0
6 Solvent	CDCl 3
7 Temperature	299. 1
8 Pulse Sequence	z830
$\begin{aligned} & 9 \text { Number of } \\ & \text { Scans } \end{aligned}$	128
10 Receiver Gain	101.0
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
13 Acquisition Time	3. 2768
$\begin{aligned} & 14 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & 2022-03-11102: \\ & 23: 17 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2022-03-11 \mathrm{~T} 02: \\ & 22: 40 \end{aligned}$
16 Purity	100.00\%
17 Spectrum	0.000
18 Spectrometer Frequency	500.16
19 Spectral Width	10000.0
20 Lowest Frequency	-1941. 4
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

2000 '

Parameter	Value	
1	Data File Name 2	Ditle $/ 1-2 . j d f$
3	Comment	lqs20220314-C single pulse decoupled
		gated NOE

1000 0-

Figure S39. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of 2r.
(

20000 -

Parameter	Value
1 Data File Name	D:/ TFA-H/ fid
2 Title	$\begin{aligned} & \text { lqs-1119-1. } 10 . \\ & \text { fid } \end{aligned}$
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Instrument	spect
6 Solvent	CD2Cl2
7 Temperature	0.0
8 Pulse Sequence	z830
9 Number of Scans	128
10 Receiver Gain	168.1
$\begin{aligned} & 11 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1. 0000
12 Pulse Width	10.0000
13 Acquisition	4. 0894
14 Acquisition Date	$\begin{aligned} & 2020-11-19 \mathrm{~T} 22: \\ & 10: 00 \end{aligned}$
15 Modification Date	$\begin{aligned} & 2020-11-19 \mathrm{~T} 22: \\ & 10: 40 \end{aligned}$
16 Purity	100.00\%
$\begin{gathered} 17 \begin{array}{c} \text { Spectrum } \\ \text { Quality } \end{array} \\ \hline \end{gathered}$	0.000
18 Spectrometer Frequency	400. 13
19 Spectral Width	8012.8
20 Lowest Frequency	-1321.4
21 Nucleus	1H
22 Acquired Size	32768
23 Spectral Size	65536

$\longrightarrow \longrightarrow$

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { D: } / 1031-\mathrm{TFA}- \\ & \text { C. } \mathrm{jdf} \end{aligned}$
2 Title	lqs1031
3 Comment	single pulse decoupled gated NOE
4 Instrument	ECA
5 Solvent	TETRACHLOROETH AN
6 Temperature	19.2
7 Pulse Sequence	carbon. jxp
8 Experiment	1D
9 Probe	3450
10 Number of Scans	10000
11 Receiver Gain	50.0
12 Relaxation Delay	2. 0000
13 Pulse Width	3. 6000
14Acquisition Time	0. 6921
$\begin{aligned} & 15 \text { Acquisition } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & 2021-10-31 \mathrm{~T} 01: \\ & 21: 31 \end{aligned}$
16 Modification Date	$\begin{aligned} & \text { 2021-11-01T09: } \\ & 04: 36 \end{aligned}$
17 Class	
18 Spectrometer Frequency	150.91
19 Spectral Width	37876.8
20 Lowest Frequency	-4037. 7
21 Nucleus	13C
22 Acquired Size	32768
23 Spectral Size	32768
24 Digital Resolution	1.16

Figure S42. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 2: 1 \mathrm{CDCl}_{2} \mathrm{CDCl}_{2} / \mathrm{CS}_{2}$) of 3a.

[^1]Figure S43. Expanded ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 2: 1 \mathrm{CDCl}_{2} \mathrm{CDCl}_{2} / \mathrm{CS}_{2}$) of 3a.

9. UV-vis Spectra of Compounds 2d-f, 2k-o, 2 r and 3a

Figure S45. UV-vis absorption of compound 2d.

Figure S46. UV-vis absorption of compound 2 e .

Figure S48. UV-vis absorption of compound $\mathbf{2 k}$.

Figure S49. UV-vis absorption of compound 21.

Figure S50. UV-vis absorption of compound $\mathbf{2 m}$.

Figure S51. UV-vis absorption of compound 2n. Figure S52. UV-vis absorption of compound 20.

Figure S53. UV-vis absorption of compound 2r.

Figure S54. UV-vis absorption of compound 3a

[^0]: Figure S34. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 1: 1 \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) of $\mathbf{2 0}$.

[^1]:

