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Regression method comparison and model development 
 
In organic chemistry applications, multivariate linear regression (MLR) models relate an output 
(e.g., ∆∆G‡) to a molecular structure described by input features (e.g., Sterimol values, NBO 
charges, IR vibrations, etc.). A successful model fits the entire scope of empirical data (good and 
bad values). While model fitting over a data range is essential for 1. determining mechanistically 
relevant parameters and 2. drawing mechanistic conclusions, this approach can lessen the 
importance of the borderline cases. These are defined as near or on the experimentalist’s threshold 
to perform a follow-up experiment and are often more scrutinized in reaction and catalyst design 
campaigns. In such endeavours, accurately predicting a ∆∆G‡ value at the extremes is less 
important than determining if a reaction will be successful or not, and the associated probability 
with each outcome. Thus, the scenario begins to mimic a classification task that may be handled 
better by another generalized linear regression method – logistic regression.  
 
To perform multivariate logistic regression (MLoR) analysis, outputs must be classified as 
successes or failures depending on a user defined threshold. Near equal sized categories and 
realistic values  are important considerations when deciding this value (see below).1 In contrast to 
MLR which attempts to predict a value given the parameters, MLoR only attempts to determine 
how the log(odds) of success change with the linear equation. Consequently, a probability of a 
given item being a success or failure can then be obtained by the equation: 
 

𝑃 =
1

1 + exp(−𝛽) 

 
where b represents the general linear equation. An example of the resulting logistic function can 
be visualized in Figure S1B.  
 

 

Figure S1. Comparison of MLR (left) and MLoR (right) models describing the chiral phosphoric 
acid catalyzed nucleophilic addition to E – imines.  

log(odds) = 0.31 + 1.71CI + 0.56PEOE5 + 0.89B5PG + 0.49LL - 0.82LUMO 
+ 2.49Lcat - 1.03iPOas + 1.52sin(AREA)

∆∆G≠ = 1.69 + 0.49CI + 0.21PEOE5 + 0.20B5PG + 0.11LL - 0.19LUMO 
+ 0.50Lcat - 0.38iPOas + 0.17sin(AREA)

A. B.
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In the context of this study, the main advantage of logistic regression is that it treats all successful 
and non-successful reactions the same. As such, the focus of the input-output relationship is 
positioned on the region that separates successful reactions from non-successful. This is in 
significant contrast to MLR which emphasises the high-low data range. Thus, this workflow is 
better suited to find reactivity cliffs or commonalities that are present in all successful reactions.  
 
The workflow is designed to be a simple but useful extension of the well-established MLR 
modeling process with MLoR at the final readout step. Thus, our statistical model building 
procedure utilizes some scripts and functions previously developed.2 Following the construction 
of a MLR model as described in detail previously,2–4 reactions are coded as 0’s and 1’s (binary 
response value) to label them as successes or failures. Using this data along with the parameters 
deemed significant by MLR analysis, MLoR models can be created. These were generated in 
MATLAB_R2021a with built-in functions (mnrfit) for the logistic regression.5 
 
Generated models were evaluated using Brier score,6 a scoring rule that measures the accuracy of 
the assigned probabilities via the formula: 
 

𝐵𝑆 =
1
𝑁/

(𝑓1 − 𝑜1)3
4

156

 

 
where 𝑓1 is the assigned probability and 𝑜1 is the classified outcome (i.e., 0 or 1 for successful or 
non-successful results). This scoring rule is analogous to the commonly used mean square error. 
 
MLR assumes that the output value (e.g. DDG‡) is a linear function of the parameters whereas 
MLoR assumes the response is Bernoulli distributed given the parameters. Consequently, the 
absolute parameter coefficients cannot be directly compared as they have fundamentally different 
meanings (how each parameter changes the log(odds) of success or the predicted DDG‡). Thus, to 
allow for easy comparison between relative parameter weights (i.e. which parameters are 
most/least important in each model), mean normalization was performed on the absolute values of 
the coefficients according to the formula: 
 

𝑥8 =
𝑥 −𝑚𝑒𝑎𝑛(𝑥)
𝑟𝑎𝑛𝑔𝑒(𝑥)  
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Data curation 
Relevant data were manually extracted from the following sources: 

(1) Reid, J. P.; Sigman, M. S. Holistic Prediction of Enantioselectivity in Asymmetric 
Catalysis. Nature 2019, 571 (7765), 343–348. https://doi.org/10.1038/s41586-019-1384-z. 

(2) Reid, J. P.; Proctor, R. S. J.; Sigman, M. S.; Phipps, R. J. Predictive Multivariate Linear 
Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of 
Diazines. J. Am. Chem. Soc. 2019, 141 (48), 19178–19185. 
https://doi.org/10.1021/jacs.9b11658. 

(3) Li, J.; Grosslight, S.; Miller, S. J.; Sigman, M. S.; Toste, F. D. Site-Selective Acylation of 
Natural Products with BINOL-Derived Phosphoric Acids. ACS Catal. 2019, 9 (11), 9794–
9799. https://doi.org/10.1021/acscatal.9b03535. 

(4) Connecting and Analyzing Enantioselective Bifunctional Hydrogen Bond Donor Catalysis 
Using Data Science Tools. J. Am. Chem. Soc. 2020, 142 (38), 16382–16391. 
https://doi.org/10.1021/jacs.0c06905 

(5) Ravasco, J. M. J. M.; Coelho, J. A. S. Predictive Multivariate Models for Bioorthogonal 
Inverse-Electron Demand Diels–Alder Reactions. J. Am. Chem. Soc. 2020, 142 (9), 4235–
4241. https://doi.org/10.1021/jacs.9b11948. 

(6) Reid, J. P.; Hu, M.; Ito, S.; Huang, B.; Hong, C. M.; Xiang, H.; Sigman, M. S.; Toste, F. 
D. Strategies for Remote Enantiocontrol in Chiral Gold( iii ) Complexes Applied to 
Catalytic Enantioselective γ,δ-Diels–Alder Reactions. Chem. Sci. 2020, 11 (25), 6450–
6456. https://doi.org/10.1039/D0SC00497A. 

(7) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. A Data-Intensive Approach to 
Mechanistic Elucidation Applied to Chiral Anion Catalysis. Science 2015, 347 (6223), 
737–743. https://doi.org/10.1126/science.1261043. 

(8) Orlandi, M.; Escudero-Casao, M.; Licini, G. Nucleophilicity Prediction via Multivariate 
Linear Regression Analysis. J. Org. Chem. 2021, 86 (4), 3555–3564. 
https://doi.org/10.1021/acs.joc.0c02952. 

 
All parameters and numerical prediction results can be found in the supplementary excel sheet. 
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Extra Case Studies Explained 
 
Bifunctional Hydrogen Bond Donor Catalysis 
An 8-parameter MLR model was reported describing bifunctional hydrogen bond donor catalysis 
(ref 4 from the above list). To first validate the MLoR model, 150 reactions were pseudorandomly 
split into 50:50 training set:validation set, the model trained and evaluated. The low validation set 
Brier score (BS = 0.04) indicates the probabilities assigned are close to the actual values. To use 
the MLoR model as a mechanistic probe, the model was then retrained on the full 150 reaction 
training set and the coefficients compared to the MLR model.  
 

 
Though direct comparisons between absolute values of coefficients cannot be made, relative 
weights can be compared. To this end, two main points can be drawn when comparing both 
mathematical equations. First, both equations emphasize the NBOX term as the most important 
parameter, owing to the importance of the nucleophile heteroatom in determining 
enantioselectivity. Second, the MLoR model weights the nucleophile B5 term much more heavily 
than the respective MLR model. Interestingly, the authors do find that there is a minimum steric 
size of nucleophile required for high enantioselectivity, though this observation was obtained 
through graphical analysis in the original report. Thus, the MLoR model presents a quantitative 
way of finding such reactivity bins. In practice, this would give a hint as to what parameters to 
vary first in reaction design campaigns before fine tuning other parameters. 
 
Inverse Electron Demand Diels-Alder Reactions 
 
The same protocol described above was applied to a comprehensive MLR model describing the 
rate of inverse-electron demand Diels-Alder reactions (ref 5 from the above list). After partitioning 
the data into a 50:50 ts:vs split, the low validation set brier score (BS = 0.08) indicated that the 
model had predicting skill. Built on the full training set, the following equation was obtained and 
compared to the MLR model: 
 

 
For this case study, the same terms were emphasized in both MLR and MLoR models. Taken 
together, both models conclude that the most direct path to increase reaction rate is through 
increasing ring strain by either tightening the angle between dienophile trans-substituents or 
weakening the dienophile C-C bond. As both models reached the same conclusion, this case study 
ultimately demonstrates that the logistic model can be used to build further confidence in results 
obtained from MLR. Further, this case study shows that the MLoR application is not limited to 
enantioselectivity cases and can be generalized to other scenarios in which MLR is applicable. 

∆∆G≠ = 1.40 - 0.06PEOE1 + 0.11Pol + 0.57NBOX + 0.23B5avg + 0.31iNH + 0.11NBON 
- 0.35NBOH - 0.25B1

log(odds) = -0.43 + 0.03PEOE1 + 0.53Pol + 3.64NBOX + 2.31B5avg + 1.42iNH 
- 0.63NBON - 2.69NBOH - 1.08B1
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Catalytic Enantioselective γ,δ-Diels–Alder Reactions 
 
Following the same protocol on a MLR model describing catalytic enantioselective γ,δ-Diels–
Alder reactions (ref 6 from the above list), a MLoR model was built and validated (validation set 
BS =  0.1) before generating the following equation with all reactions in the training set: 

 
From high-level DFT calculations in the original report, the authors find that stacking interactions 
between the substrate and catalyst are important in stabilizing the major transition state for the 
optimal catalyst system. Though both the MLR and logistic regression model place the most 
emphasis on the catalyst L term, the MLoR model more heavily weights the interaction energy 
term, Eint, when compared to the MLR model. Thus, this case study again supports that MLoR can 
be used as a mechanistic probe to find important interactions in well performing reactions. 
 
Predicting Mayr Nucleophilicities from Structural Parameters 
The change in parameter weighting can perhaps be visualized most intuitively when interrogating 
a system that is much more well defined than NCIs in catalysis. To this end, Orlandi and coworkers 
reported a MLR model that can predict a given molecules nucleophilicity from structural 
parameters (ref 8 from the above list). Both the MLR and logistic regression models identify the 
protonation energy as the most important parameter for predicting a given molecules 
nucleophilicity.  
 
N = - 2.84EPA + 1.93SNu - 1.63Sint + 0.20SH - 0.07ε + 0.38eHOMO + 0.98q + 0.18B1 - 0.17%V 
 
log(odds) = - 3.32 - 11.5EPA + 7.75SNu - 8.04Sint - 0.70SH - 1.12ε + 5.17eHOMO + 2.85q + 1.03B1 - 0.43%V 
 
The interpretation of such terms varies depending on the model. For instance, the MLR model 
relationship essentially states increasing the protonation energy is associated with higher 
nucleophilicities. In contrast, the logistic regression model would be stating that for a nucleophile 
to be a good nucleophile (N>17 in this case), it should have a high protonation energy (i.e., be 
anionic). This simple yet important distinction is key when trying to interpret complex MLR 
questions where the parameter meanings may be more obscure. Specifically, situations in reaction 
and catalyst development wherein modulating a parameter that fine tunes an outcome is less 
important than first ensuring that key design features are satisfied. 
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Finding Appropriate Thresholds for MLoR Analysis 
 
A key aspect of utilizing MLoR for chemical systems with continuous outputs (e.g. 
enantioselectivity) is finding an appropriate threshold between ‘successes’ and ‘failures’. As 
logistic regression is formally a tool for classification, one must choose a threshold that leads to a 
relatively balanced training set due to the noted limitations of classification algorithms in 
classifying events sparsely represented in the training set.1 On the other hand, applications would 
be minimal if the set threshold is far below what would be of interest when describing a chemical 
system. To illustrate how threshold choice affects the output, we performed MLoR analysis of the 
CPA catalyzed Minisci reaction (ref 2 from the above list) at three different threshold values. The 
training/validation sets were held constant for all three analyses.  
 
Setting the threshold value at 50% ee for successes leads to the most balanced training set (47% 
of training set classified as ‘successes’), and the classification performance of the MLR model 
reflects this (training set BS = 0.08, validation set BS = 0.02) (Figure S2).  

 
Though this threshold leads to great predictions, the significance of a 50% ee reaction in this 
scenario is minimal. In other words, finding reactions above 50% ee is not an overly interesting 
endeavour when developing and expanding this reaction, and consequently the insights gained via 
such models would be of little value, despite how accurate they are.   
 
In contrast, setting the threshold to 80% ee would be of interest to practitioners, however this 
threshold also leads to quite an imbalanced dataset (15% of training set classified as ‘successes’). 
Evidently, despite a perfect training set classification, the validation set classification performance 

A. B.

Figure S2. Training set (A) and prediction set (B) obtained for the CPA catalyzed Minisci reaction 
with a success threshold of 50% ee. The equation for this model is:  

log(odds) = -0.22 - 2.52 iPOas  + 0.55 NBOC2 + 1.58 NBORAE + 1.39 NBONhet - 2.00 LRAE + 1.85 
B1Nhet 
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of the MLR model suggests that the model is not adequately describing the system and is overfit 
to predict the few successful training set reactions (training set BS = 0, validation set BS = 0.61). 
Visual inspection of the validation set classification more clearly shows the lack of prediction 
power with this threshold value as the model incorrectly assigns absolute probabilities to various 
reactions (Figure S3). 
 
 
 

   
In general, we found that having ~30% of the training set as ‘successes’ led to the best balance of 
classification and chemical significance. For this system, setting the threshold to 70% ee leads to 
both adequate classification (training set BS = 0.08, validation set BS = 0.07) as seen in Figure S4 
and chemically relevant insights.  
 
 
The thresholds set in this study were limited to clean integer values on significant borders where 
applicable (e.g. thresholds were set at 85% ee or 90% ee and not intermediate values such as 87% 
ee).  

A. B.

Figure S3. Training set (A) and prediction set (B) obtained for the CPA catalyzed Minisci reaction 
with a success threshold of 90% ee. The equation for this model is:  

log(odds) = -175 - 31 iPOas  + 27.6 NBOC2 – 7.27 NBORAE + 72.8 NBONhet – 241 LRAE + 77.2 B1Nhet 
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A. B.

Figure S4. Training set (A) and prediction set (B) obtained for the CPA catalyzed Minisci reaction 
with a success threshold of 70% ee. The equation for this model is:  

log(odds) = -2.64 - 2.33 iPOas  + 1.52 NBOC2 + 1.96 NBORAE + 1.90 NBONhet – 1.61 LRAE + 3.14 
B1Nhet 
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Radar Plots 
 

  

Figure S5. Radar plot comparing MLR and MLoR coefficients for the chiral phosphoric acid 
catalyzed nucleophilic addition to imines. 

Figure S6. Radar plot comparing MLR and MLoR coefficients for the chiral phosphoric acid 
catalyzed Minisci reaction. 
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Figure S7. Radar plot comparing MLR and MLoR coefficients for the chiral phosphoric acid 
catalyzed site-selective acylation. 


