Supporting Information

Synthesis of Functionalized 1-Aminoisoquinolines through Cascade Three-Component Reaction of ortho-Alkynylbenzaldehydes, 2H-Azirines, and Electrophiles

Reyhaneh Hosseinijei, † Hossein Zahedian Tejeneki, † Ali Nikbakht, † Frank Rominger, § Saeed Balalaie* †

† Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran, balalaie@kntu.ac.ir, Tel: +98-21-23064226, Fax: +98-21-22889403
§ Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg,

Table of Contents

General experimental methods: ... S2
Experimental procedures ... S2
General Procedure for Preparation of ortho-Alkynylbenzaldehydes .. S2
General Procedure for Preparation of ortho-Alkynylbenzaldoximes .. S2
General procedure for the synthesis of 1-(1,2-dibromoethyl) benzene derivatives: ... S3
General procedure for the synthesis of 2-phenyl-aza-methylenecyclopropene derivatives: .. S3
Synthesis of 2,3-diphenyl-2H-azirine: .. S4
Optimization of the Reaction Conditions: .. S4
General procedure for the synthesis of final products: .. S5
Typical procedure for the synthesis of 3a on 5 mmol scale: .. S6
Characterization of final products: .. S6
¹H NMR, ¹³C NMR and HRMS Spectra: .. S18
Crystallographic Data of Compound 3j: ... S64
General experimental methods:

1H and 13C NMR spectra were recorded at 300 or 400 MHz and 75 or 100 MHz. Chemical shifts are reported in parts per million (δ/ppm) relative to tetramethylsilane as an internal standard. Resonance patterns are reported with the notations s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are reported in hertz (Hz). For the Mass spectrometry, ion source temperature was 150-250°C. High-resolution ESI-mass spectra were performed with a resolution of 10,000. Melting points were measured using a melting point instrument and were uncorrected. Column chromatography was carried out using 70-230 mesh silica gels. Commercially available reagents were used without additional purification, unless otherwise stated. Sealed tubes were dried in oven for overnight and cooled at room temperature prior to use.

Experimental procedures

General Procedure for Preparation of ortho-Alkynylbenzaldehydes

To a solution of the 2-bromobenzaldehyde (S-1) (10 mmol, 1 equiv.), PdCl$_2$(PPh$_3$)$_2$ (2 mol%), and CuI (2 mol%) in Et$_3$N (50 mL), the appropriate acetylene (S-2) (1.2 equiv.) was added at room temperature under N$_2$ atmosphere. The reaction mixture was heated at 70 °C in an oil bath for 6-18 h, and monitored by TLC. After the reaction was completed, the mixture was cooled to room temperature, and filtered by celite, washed with acetone. The filtrate was concentrated under a vacuum. The residue was purified by column chromatography on silica gel to afford the ortho-alkynylbenzaldoxime (S-3) in almost 90% yield.

General Procedure for Preparation of ortho-Alkynylbenzaldoximes

To a solution of the ortho-alkynylbenzaldoxime (S-3) (1.5 equiv.), NH$_2$OH (1 equiv.) and NaOAc (2 equiv.) in MeCN, the reaction mixture was heated at room temperature for 6-18 h, and monitored by TLC. After the reaction was completed, the mixture was cooled to room temperature, and filtered by celite, washed with acetone. The filtrate was concentrated under a vacuum. The residue was purified by column chromatography on silica gel to afford the ortho-alkynylbenzaldoxime (1) in almost 90% yield.
A solution of 2-alkynylbenzaldehyde (S-3) (2.0 mmol, 1 equiv.), hydroxylamine hydrochloride (3 mmol, 1.5 equiv.), sodium acetate (4.0 mmol, 2.0 equiv.) in ACN (10 mL) was stirred at room temperature for 12 hours. The solvent was evaporated and then quenched with water (10 mL), extracted with EtOAc (2×30 mL), dried by anhydrate Na$_2$SO$_4$. Evaporation of the solvent followed by purification on silica gel provided the corresponding 2-alkynylbenzaldoxime 1 in good yields.

General procedure for the synthesis of 1-(1,2-dibromoethyl) benzene derivatives:

\[
\begin{align*}
\text{R} & \quad \text{Br}_2 \\
\text{Br} & \quad \text{CCl}_4, \text{rt} \\
\end{align*}
\]

Bromine (8.0 g, 0.05 mol) in 30 mL CCl$_4$ was added slowly to a stirred and cooled (15-20 °C) solution of styrene (0.05 mol) in 40 mL of CCl$_4$. After the addition was completed, the mixture was stirred for 2 h in 15-20 °C, and then the CCl$_4$ was removed *in vacuo*, remaining the residue of crystalline in high yield.

General procedure for the synthesis of 2-phenyl-aza-methylcyclopropene derivatives:

\[
\begin{align*}
\text{R} & \quad \text{NaN}_3 \\
\text{Br} & \quad \text{DMSO, rt} \\
\text{Br} & \quad \text{NaOH} \quad \text{H}_2\text{O, rt} \\
\text{N}_3 & \quad \text{Toluene, reflux, 4 h} \\
\end{align*}
\]

1-(1,2-dibromoethyl) benzene (46 mmol) was dissolved in 70 mL of dimethyl sulfoxide. A slow stream of N$_2$ was passed through the apparatus, sodium azide (4.9 g, 75 mmol) was slowly added into the solution and for 45 min afterward. The mixture became thick with precipitated azido bromide and was stirred for a further 13 h at 25 °C. The reaction mixture was treated with (2.0 g, 50 mmol) of sodium hydroxide in 2.0 mL of deionized water. Stirring was continued at 25 °C for 24 h. The mixture was poured into 200 mL of 2% sodium bicarbonate aqueous solution and extracted with CH$_2$Cl$_2$. The extracts were washed with deionized water, and the CH$_2$Cl$_2$ was removed *in vacuo*, and evaporated to yield crude 1-azidostyrene as red oil. The oil was passed through a column of silicon dioxide using petroleum ether as an eluent. The eluent was removed
in vacuo and the residual was dissolved in 100 mL of toluene. The solution refluxed for 4 h. Removal of the solvent and distillation of the crude product, afforded desired 2H-azirine.

Synthesis of 2,3-diphenyl-2H-azirine:

A mixture solvent of MeOH/H$_2$O (20:1) was added to a mixture of 2-Phenylacetophenone (1 eq.), NH$_2$OH·HCl (1.5 eq.) and sodium acetate (2 eq.) in a round bottom flask. The resulting solution was stirred at room temperature and monitored by TLC. After reaction completed, the solvent was removed in vacuo and added DCM. Then, the mixture was sequentially washed with sat. NaHCO$_3$ and brine. The Organic layer was dried over Na$_2$SO$_4$. Concentration led to 1,2-diphenylethan-1-one oxime, which was used directly for the next step.

To a solution of the crude oxime (1 eq.) in dry THF was added triethylamine (1.5 eq.) and methanesulfonyl chloride (1.5 eq.) sequentially at 0°C. The solution got cloudy after the addition of methanesulfonyl chloride. The resulting mixture was stirred for 1 h at rt, and DBU (1.5 eq.) was then added over 1 min. After stirred for additional 2 h, the reaction mixture was passed through a pad of silica gel, washing with Et$_2$O. The mixture was concentrated in vacuo and the residue was chromatographed to give the 2,3-diphenyl-2H-azirine.

Optimization of the Reaction Conditions

Optimization of the process commenced by subjecting the reaction to several solvents. It was observed that THF, compared with other solvents, offered a higher yield of the product (85%) (Table 1, entry 2). Moreover, although using other bases such as NaOAc, DABCO, and Na$_2$HPO$_4$ successfully afforded the expected product 3a; however, these bases failed to improve the yield of the reaction in comparison to NaHCO$_3$. Consequently, for the model reaction, NaHCO$_3$ was selected as the best base. Screening of different temperatures
revealed that ambient temperature within 1 h proved to be the optimum temperature condition for this reaction.

Table S1: Optimization of the Reaction Conditions for the synthesis of 3a

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>base</th>
<th>yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCE</td>
<td>NaHCO₃</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>NaHCO₃</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>DMF</td>
<td>NaHCO₃</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>Toluene</td>
<td>NaHCO₃</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>EtOH</td>
<td>NaHCO₃</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>CHCl₃</td>
<td>NaHCO₃</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>CH₃CN</td>
<td>NaHCO₃</td>
<td>43</td>
</tr>
<tr>
<td>8c</td>
<td>THF</td>
<td>NaHCO₃</td>
<td>71</td>
</tr>
<tr>
<td>9d</td>
<td>THF</td>
<td>NaHCO₃</td>
<td>54</td>
</tr>
<tr>
<td>10e</td>
<td>THF</td>
<td>NaHCO₃</td>
<td>79</td>
</tr>
<tr>
<td>11</td>
<td>THF</td>
<td>NaOAc</td>
<td>81</td>
</tr>
<tr>
<td>12</td>
<td>THF</td>
<td>DABCO</td>
<td>76</td>
</tr>
<tr>
<td>13</td>
<td>THF</td>
<td>NaH₂PO₄</td>
<td>79</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), Br₂ (1.1 eq.), solvent (3 mL), temp °C, 1 h.
bisolated yields. cthe reaction carried out in 40 °C.
dthe reaction carried out in 0 °C. ethe reaction carried out during 12 h.

General procedure for the synthesis of final products:

Br₂ or ICl (0.36 mmol, 1.2 eq.) was added to a mixture of ortho-alkynylbenzaldoxime 1 (0.30 mmol) and NaHCO₃ (0.45 mmol, 1.5 eq.) in THF (3.0 mL). After 30 min, 2H-azirine 2 (0.3 mmol, 1.0 eq.) was added, and the reaction was stirred at room temperature. After completion of the reaction as indicated by TLC, saturated aqueous NaS₂O₃ (10 mL) was added to the mixture and
extracted by EtOAc (10 ml). The organic layer was separated and dried by anhydrous Na₂SO₄. After filtration and evaporation of solvent, the residue was purified by column chromatography using hexane/EtOAc as eluent to afford the desired product 3.

Typical procedure for the synthesis of 3a on 5 mmol scale:

Br₂ (6.0 mmol, 1.2 eq.) was added to a mixture of ortho-alkynylbenzaldoxime 1 (5.0 mmol, 1.11 g) and NaHCO₃ (7.5 mmol, 630 mg) in THF (15 mL). After 30 min, 2H-azirine 2 (5.0 mmol, 586 mg) was added, and the reaction was stirred at room temperature. After completion of the reaction as indicated by TLC, saturated aqueous NaS₂O₃ (50 mL) was added to the mixture and extracted by EtOAc (50 ml). The organic layer was separated and dried by anhydrous Na₂SO₄. After filtration and evaporation of solvent, the residue was purified by column chromatography using hexane/EtOAc as eluent to afford the desired product 3a (1.50 g, 72% yield).

Characterization of final products:

3a: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-phenylethan-1-one

![Structure of 3a](image)

White solid, 160 mg (0.3 mmol, yield 85%), m.p.179-181 °C, Rₐ: 0.23 (Ethyl acetate : n-hexane / 1:2) ; ¹H {¹³C} NMR (300 MHz, CDCl₃) δ 8.27 (d, J = 8.6 Hz, 1H, H-Ar), 8.08 (d, J = 7.3 Hz, 2H, H-Ar), 8.02 (d, J = 8.3 Hz, 1H, H-Ar), 7.82- 7.69 (m, 3H, H-Ar), 7.67 – 7.55 (m, 2H, H-Ar), 7.55 – 7.39 (m, 5H, H-Ar), 6.66 (t, J = 3.9 Hz, 1H, NH), 5.09 (d, J = 3.9 Hz, 2H, CH₂). ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 196.0, 152.9, 150.0, 141.6, 136.5, 134.8, 134.0, 130.9, 130.1, 128.8, 128.4, 128.1, 127.9, 127.6, 126.7, 121.9, 118.6, 106.3, 48.5. HRMS (ESI): Calc. for C₂₃H₁₈N₂O₇Br [M+H]⁺ 417.0597, found 417.0596.

3b: 2-((4-bromo-3-(4-nitrophenyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one
Yellow solid, 93 mg (0.3 mmol, yield 67%), m.p. 158-160 °C, Rf: 0.63 (Ethyl acetate : n-hexane / 1:2); \(^1\)H {\(^{13}\)C} NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.31 (d, \(J = 8.9\) Hz, 2H, H-Ar), 8.27 (d, \(J = 7.8\) Hz, 1H, H-Ar), 8.13 – 8.00 (m, 3H, H-Ar), 7.92 (d, \(J = 8.3\) Hz, 2H, H-Ar), 7.80 (dd, \(J = 8.3, 6.9\) Hz, 1H, H-Ar), 7.65 (t, \(J = 7.1\) Hz, 1H, H-Ar), 7.55 (d, \(J = 6.6\) Hz, 1H, H-Ar), 7.52 (d, \(J = 7.4\) Hz, 1H, H-Ar), 6.72 (t, \(J = 3.9\) Hz, 1H, -NH), 5.05 (d, \(J = 3.9\) Hz, 2H, -CH\(_2\)). \(^{13}\)C {\(^1\)H} NMR (75 MHz, CDCl\(_3\)) \(\delta\) 195.6, 153.1, 147.9, 147.7, 147.2, 136.2, 134.7, 134.1, 131.2, 131.0, 128.9, 128.0, 127.7, 127.4, 122.9, 122.0, 119.0, 106.6, 48.3. HRMS (ESI): Calc. for C\(_{23}\)H\(_{17}\)N\(_3\)O\(_3\)\(_79\)Br [M+H]\(^+\) 462.0448, found 462.0449.

3c: 2-((4-bromo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 95 mg (0.3 mmol, yield 71%), m.p. 194-196 °C, Rf: 0.13 (Ethyl acetate : n-hexane / 1:2); \(^1\)H {\(^{13}\)C} NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.26 (dd, \(J = 8.4, 1.2\) Hz, 1H, H-Ar), 8.09 (d, \(J = 8.7\) Hz, 2H, H-Ar), 8.01 (d, \(J = 8.4\) Hz, 1H, H-Ar), 7.81 – 7.68 (m, 3H, H-Ar), 7.69 – 7.41 (m, 4H, H- Ar), 7.01 (d, \(J = 8.7\) Hz, 2H, H-Ar), 6.63 (t, \(J = 4.1\) Hz, 1H, NH), 5.09 (d, \(J = 4.1\) Hz, 2H, CH\(_2\)), 3.90 (s, 3H, OCH\(_3\)). \(^{13}\)C {\(^1\)H} NMR (75 MHz, CDCl\(_3\)) \(\delta\) 195.9, 159.4, 152.8, 149.5, 149.2, 136.6, 134.9, 134.0, 131.6, 131.3, 131.0, 128.8, 128.1, 127.5, 126.5, 121.9, 118.5, 113.1, 106.1, 55.3, 48.5. HRMS (ESI): Calc. for C\(_{24}\)H\(_{20}\)N\(_2\)O\(_2\)\(_79\)Br [M+Na]\(^+\) 469.0522, found 469.0527.

3d: 2-((4-bromo-3-(p-tolyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one
White solid, 89 mg (0.3 mmol, yield 69%), m.p. 123-125 °C, Rf: 0.03 (Ethyl acetate : n-hexane / 1:2); 1H {13C} NMR (300 MHz, CDCl$_3$) δ 8.26 (dd, $J = 8.2$, 0.9 Hz, 1H, H-Ar), 8.08 (dd, $J = 8.4$, 1.4 Hz, 2H, H-Ar), 8.02 (d, $J = 8.4$ Hz, 1H, H-Ar), 7.78 – 7.45 (m, 7H, H-Ar), 7.30 (d, $J = 7.8$ Hz, 2H, H-Ar), 6.65 (t, $J = 4.1$ Hz, 1H, -NH), 5.08 (d, $J = 4.1$ Hz, 2H, -CH$_2$), 2.47 (s, 3H, CH$_3$). 13C {1H} NMR (75 MHz, CDCl$_3$) δ 195.9, 152.8, 150.0, 138.8, 137.8, 136.5, 134.8, 133.9, 130.0, 129.9, 128.8, 128.1, 127.5, 126.6, 121.9, 118.5, 106.2, 48.5, 21.4. HRMS (ESI): Calc. for C$_{24}$H$_{20}$N$_2$O$_7$Br [M+H]$^+$ 437.0754, found 437.0759.

3e: 2-((4-bromo-3-(4-pentylphenyl) isoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 115 mg (0.3 mmol, yield 79%), m.p. 115-118 °C, Rf: 0.15 (Ethyl acetate : n-hexane / 1:2); 1H {13C} NMR (300 MHz, CDCl$_3$) δ 8.25 (d, $J = 8.4$ Hz, 1H, H-Ar), 8.07 (d, $J = 7.2$ Hz, 2H, H-Ar), 7.98 (d, $J = 8.4$ Hz, 1H, H-Ar), 7.79 – 7.69 (m, 3H, H-Ar), 7.63 (dd, $J = 8.6$, 6.4 Hz, 1H, H-Ar), 7.59 – 7.44 (m, 2H, H-Ar), 7.31 (d, $J = 7.8$ Hz, 2H, H-Ar), 6.69 (t, $J = 4.0$ Hz, 1H, -NH), 5.07 (d, $J = 4.0$ Hz, 2H, -CH$_2$), 2.73 (t, $J = 7.8$ Hz, 2H, CH$_2$-Aliphatic), 1.81 – 1.65 (m, 2H, H-Aliphatic), 1.58 – 1.28 (m, 4H, H-Aliphatic), 0.98 (t, $J = 6.4$ Hz, 3H, CH$_3$). 13C {1H} NMR (75 MHz, CDCl$_3$) δ 196.1, 152.8, 149.9, 142.8, 138.9, 136.5, 134.9, 133.9, 130.1, 129.9, 128.8, 128.1, 127.7, 127.5, 126.5, 121.9, 118.5, 106.2, 48.5, 35.9, 31.7, 31.1, 22.6, 14.1. HRMS (ESI): Calc. for C$_{28}$H$_{28}$N$_2$O$_7$Br [M+H]$^+$ 487.1380, found 487.1377.

3f: 2-((3-([1,1’-biphenyl]-4-yl)-4-bromoisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 87 mg (0.3 mmol, yield 59%), m.p. 216-218 °C, Rf: 0.28 (Ethyl acetate : n-hexane / 1:2); 1H 13C NMR (300 MHz, CDCl$_3$) δ 8.28 (d, $J = 8.3$ Hz, 1H, H-Ar), 8.10 (d, $J = 7.2$ Hz, 2H, H-Ar), 8.02 (d, $J = 8.2$ Hz, 1H, H-Ar), 7.89 (d, $J = 8.3$ Hz, 2H, H-Ar), 7.80 – 7.66 (m, 6H, H-Ar), 7.67 – 7.55 (m, 1H, H-Ar), 7.59 – 7.42 (m, 4H, H-Ar), 7.43 – 7.35 (m, 1H, H-Ar), 6.68 (t, $J = 4.1$ Hz, 1H, NH), 5.10 (d, $J = 4.1$ Hz, 2H, CH$_2$). 13C 1H NMR (75 MHz, CDCl$_3$) δ 195.9, 152.9, 149.5, 140.9, 140.7, 140.5, 136.5, 134.9, 134.0, 133.9, 130.6, 130.4, 128.8, 128.1, 128.0, 127.6, 127.3, 127.1, 126.7, 126.5, 126.3, 122.0, 118.7, 106.3, 48.5. HRMS (ESI): Calc. for C$_{29}$H$_{22}$N$_2$O$_7$Br [M+H]$^+$ 493.0909, found 493.0900.

3g: 2-((4-bromo-3-cyclopropylisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 140 mg (0.3 mmol, yield 97%), m.p. 200-203 °C, Rf: 0.73 (Ethyl acetate : n-hexane / 1:2); 1H 13C NMR (300 MHz, CDCl$_3$) δ 8.19 – 7.97 (m, 3H, H-Ar), 7.85 (d, $J = 8.4$ Hz, 1H, H-Ar), 7.71 – 7.58 (m, 2H, H-Ar), 7.54 (dd, $J = 8.4$, 6.8 Hz, 2H, H-Ar), 7.42 (dd, $J = 8.2$, 6.9, 1H, H-Ar), 6.42 (t, $J = 4.4$ Hz, 1H, NH), 4.93 (d, $J = 4.4$ Hz, 2H, CH$_2$), 2.72 – 2.61 (m, 1H, CH), 1.17 – 1.09 (m, 2H, CH- Aliphatic), 1.01 – 0.79 (m, 2H, CH- Aliphatic). 13C 1H NMR (75 MHz, CDCl$_3$) δ 195.8, 152.8, 151.3, 136.1, 134.9, 133.8, 130.6, 128.9, 127.9, 126.4, 125.4, 121.8, 118.1, 106.7, 48.1, 16.1, 8.9. HRMS (ESI): Calc. for C$_{24}$H$_{20}$N$_2$O$_7$Br [M+H]$^+$ 437.0754, found 437.0759.

3h: 2-((4-bromo-3-pentylisoquinolin-1-yl) amino)-1-phenylethan-1-one
Orange oil, 113 mg (0.3 mmol, yield 92%), Rf: 0.45 (Ethyl acetate : n-hexane / 1:2) ; 1H \{13C\} NMR (300 MHz, CDCl\textsubscript{3}) δ 88.25 – 8.06 (m, 3H, H-Ar), 7.93 (d, J = 8.3 Hz, 1H, H-Ar), 7.69 – 7.59 (m, 2H, H-Ar), 7.58 – 7.43 (m, 3H, H-Ar), 6.49 (t, J = 4.1 Hz, 1H, NH), 5.06 (d, J = 4.1 Hz, 2H, CH\textsubscript{2}), 2.98 (t, J = 7.8 Hz, 2H, CH\textsubscript{2}), 1.92 – 1.66 (m, 3H, H-Aliphatic), 1.52 – 1.30 (m, 5H, H-Aliphatic), 0.92 (t, J = 6.9 Hz, 3H, CH\textsubscript{3}). 13C \{1H\} NMR (75 MHz, CDCl\textsubscript{3}) δ 196.1, 154.5, 152.7, 152.3, 150.9, 150.9, 136.1, 135.0, 130.5, 128.8, 128.0, 125.7, 118.1, 107.0, 48.4, 37.8, 31.7, 28.3, 22.6, 14.0. HRMS (ESI): Calc. for C\textsubscript{22}H\textsubscript{24}N\textsubscript{2}O\textsubscript{7}Br [M+H+] 411.1067, found 411.1068.

3i: 2-((4-bromo-6-methyl-3-phenylisoquinolin-1-yl) amino)-1-phenylethan-1-one

White solid, 116 mg (0.3 mmol, yield 90%), m.p. 143-145 ºC, Rf: 0.38 (Ethyl acetate : n-hexane / 1:2); 1H \{13C\} NMR (300 MHz, CDCl\textsubscript{3}) δ 8.21 – 7.97 (m, 3H, H-Ar), 7.89 (d, J = 8.4 Hz, 1H, H-Ar), 7.83 – 7.68 (m, 2H, H-Ar), 7.66 – 7.57 (m, 1H, H-Ar), 7.55 – 7.43 (m, 5H, H-Ar), 7.38 (dd, J = 8.4, 1.7 Hz, 1H, H-Ar), 6.62 (t, J = 4.2 Hz, 1H, NH), 5.06 (d, J = 4.2 Hz, 2H, CH\textsubscript{2}), 2.58 (s, 3H, CH\textsubscript{3}). 13C \{1H\} NMR (75 MHz, CDCl\textsubscript{3}) δ 196.1, 152.8, 150.0, 141.7, 141.4, 136.6, 134.9, 130.2, 129.9, 128.6, 128.3, 127.6, 126.9, 126.7, 122.0, 121.7, 116.8, 106.0, 48.5, 22.1. HRMS (ESI): Calc. for C\textsubscript{24}H\textsubscript{20}N\textsubscript{2}O\textsubscript{7}Br [M+H+] 431.0754, found 431.0756.

3j: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1,2-diphenylethan-1-one
Pale yellow, 81 mg (0.3 mmol, yield 55%), recrystallization solvent: n-hexane/dichloromethane, m.p. 178-180 °C, Rf: 0.7 (Ethyl acetate : n-hexane / 1:2); ¹H {¹³C} NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.1 Hz, 1H, H-Ar), 8.00 – 7.92 (m, 2H, H-Ar), 7.90 (d, J = 8.3 Hz, 1H, H-Ar), 7.63 (t, J = 7.7 Hz, 1H), 7.54 – 7.36 (m, 6H, H-Ar), 7.32 – 7.10 (m, 8H, H-Ar), 6.84 (brs, 1H, NH), 6.79 (brs, 1H, CH- Aliphatic). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 197.7, 152.0, 137.5, 136.6, 135.0, 133.5, 131.1, 130.2, 129.1, 129.0, 128.9, 128.6, 128.3, 127.8, 127.6, 127.4, 126.7, 122.0, 118.6, 106.4, 60.5. HRMS (ESI): Calc. for C₂₉H₂₂N₂O₇Br [M+H]⁺ 493.0909, found 493.0909.

3k: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(4-chlorophenyl) ethan-1-one

White solid, 115 mg (0.3 mmol, yield 85%), m.p. 155-157 °C, Rf: 0.43 (Ethyl acetate : n-hexane / 1:2); ¹H {¹³C} NMR (300 MHz, CDCl₃) δ 8.26 (d, J = 8.4 Hz, 1H, H-Ar), 8.04 – 7.92 (m, 3H, H-Ar), 7.80 - 7.66 (m, 3H, H-Ar), 7.59 (t, J = 7.6 Hz, 1H, H-Ar), 7.52- 7.34 (m, 5H, H-Ar), 6.58 (t, J = 4.0 Hz, 1H, NH), 5.03 (d, J = 4.0 Hz, 2H, CH₂). ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 194.9, 152.7, 149.9, 141.5, 140.4, 136.4, 133.1, 130.1, 129.6, 129.2, 129.1, 128.0, 128.0, 127.7, 127.6, 118.5, 106.5, 48.4. HRMS (ESI): Calc. for C₂₉H₁₇ClN₂O₇Br [M+H]⁺ 451.0208, found 451.0201.

3l: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(4-nitrophenyl) ethan-1-one
Yellow solid, 124 mg (0.3 mmol, yield 90%), m.p. 148-150, Rf : 0.3 (Ethyl acetate : n-hexane / 1:2); \(^1\)H \(^{13}\)C NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.32 (d, \(J = 8.9\) Hz, 2H, H-Ar), 8.28 (d, \(J = 7.8\) Hz, 1H, H-Ar), 8.13 – 8.01 (m, 3H, H-Ar), 7.98 – 7.88 (m, 2H, H-Ar), 7.81 (s, 1H, H-Ar), 7.63 (d, \(J = 7.0\) Hz, 1H, H-Ar), 7.51 (d, \(J = 8.3\) Hz, 1H, H-Ar), 7.44 (d, \(J = 7.8\) Hz, 1H, H-Ar), 6.73 (d, \(J = 3.9\) Hz, 1H, NH), 5.21 (s, 2H, CH\(_2\)). \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl\(_3\)) \(\delta\) 195.9, 159.4, 152.8, 149.5, 136.6, 134.9, 134.0, 133.9, 131.3, 130.6, 128.8, 128.3, 128.1, 127.5, 126.5, 118.5, 106.1, 48.5. HRMS (ESI): Calc. for C\(_{23}\)H\(_{17}\)N\(_3\)O\(_3\)79 Br [M+H]\(^+\) 462.0448, found 462.0445.

3m: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, 101 mg (0.3 mmol, yield 78%), m.p. 143-145 °C Rf : 0.38 (Ethyl acetate : n-hexane / 1:2); \(^1\)H \(^{13}\)C NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.26 (dd, \(J = 8.4\), 1.1 Hz, 1H, H-Ar), 8.01 (d, \(J = 7.5\) Hz, 1H, H-Ar), 7.97 (d, \(J = 8.2\) Hz, 2H, H-Ar), 7.83 – 7.65 (m, 3H, H-Ar), 7.61 – 7.38 (m, 4H, H-Ar), 7.30 (d, \(J = 7.5\) Hz, 2H, H-Ar), 6.70 (t, \(J = 4.1\) Hz, 1H, NH), 5.04 (d, \(J = 4.1\) Hz, 2H, CH\(_2\)), 2.45 (s, 3H, CH\(_3\)). \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl\(_3\)) \(\delta\) 195.4, 152.9, 150.0, 144.9, 141.7, 136.4, 132.3, 130.2, 129.9, 129.5, 128.3, 128.0, 127.6, 126.6, 122.0, 121.8, 118.6, 106.2, 48.3, 21.8. HRMS (ESI): Calc. for C\(_{24}\)H\(_{20}\)N\(_2\)O\(_7\)9\(^{79}\)Br [M+H]\(^+\) 431.0754, found 431.0759.

3n: 2-((4-bromo-3-phenylisoquinolin-1-yl) amino)-1-(4-methoxyphenyl) ethan-1-one
White solid, 94 mg (0.3 mmol, yield 70%), m.p. 156-158 ºC, Rf: 0.35 (Ethyl acetate : n-hexane / 1:2); 1H 13C NMR (300 MHz, CDCl$_3$) δ 8.27 (dd, $J = 8.4$, 1.2 Hz, 1H, H-Ar), 8.10 (dd, $J = 7.1$, 1.4 Hz, 2H, H-Ar), 8.02 (d, $J = 8.2$ Hz, 1H, H-Ar), 7.81 – 7.70 (m, 3H, H-Ar), 7.68 – 7.48 (m, 4H, H-Ar), 7.02 (d, $J = 8.7$ Hz, 1H, H-Ar), 6.64 (t, $J = 4.1$ Hz, 1H, NH), 5.10 (d, $J = 4.1$ Hz, 2H, CH$_2$), 3.91 (s, 3H, OCH$_3$). 13C 1H NMR (75 MHz, CDCl$_3$) δ 195.0, 159.4, 152.6, 149.4, 140.3, 136.5, 133.9, 133.2, 131.6, 131.3, 129.5, 129.2, 129.1, 127.7, 121.9, 121.6, 118.4, 113.1, 112.9, 106.2, 55.3, 48.3. HRMS (ESI): Calc. for C$_{24}$H$_{20}$N$_2$O$_2$79Br [M+H]$^+$ 447.0703, found 447.0705.

3o: 2-((4-bromo-3-(p-tolyl) isoquinolin-1-yl) amino)-1-(4-chlorophenyl) ethan-1-one

White solid, 104 mg (0.3 mmol, yield 75%), m.p. 170-173 ºC, Rf: 0.43 (Ethyl acetate : n-hexane / 1:2); 1H 13C NMR (300 MHz, CDCl$_3$) δ 8.07 – 7.95 (m, 3H, H-Ar), 7.89 (d, $J = 8.4$ Hz, 1H, H-Ar), 7.73 (dd, $J = 7.9$, 1.7 Hz, 2H, H-Ar), 7.53 – 7.35 (m, 6H, H-Ar), 6.51 (t, $J = 4.2$ Hz, 1H, NH), 5.02 (d, $J = 4.2$ Hz, 2H, CH$_2$), 2.59 (s, 3H, CH$_3$). 13C 1H NMR (75 MHz, CDCl$_3$) δ 194.9, 152.7, 150.0, 141.7, 141.6, 140.4, 136.6, 133.2, 130.1, 129.8, 129.6, 129.2, 128.6, 128.0, 127.6, 127.0, 126.8, 122.0, 116.7, 106.2, 48.4, 22.1. HRMS (ESI): Calc. for C$_{24}$H$_{19}$ClN$_2$O$_2$79Br [M+H]$^+$ 465.0364, found 465.363.

3p: 2-((4-bromo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-(4-chlorophenyl) ethan-1-one
White solid, 133 mg (0.3 mmol, yield 92%), m.p. 140-142 ºC, Rf: 0.38 (Ethyl acetate : n-hexane / 1:2); ¹H {¹³C} NMR (300 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H, H-Ar), 7.96 (d, J = 8.5 Hz, 2H, H-Ar), 7.92 (d, J = 8.3 Hz, 1H, H-Ar), 7.80 – 7.61 (m, 3H, H-Ar), 7.52 (d, J = 8.0 Hz, 1H, H-Ar), 7.54 (d, J = 8.6 Hz, 2H, H-Ar), 6.99 (d, J = 8.7 Hz, 2H, H-Ar), 6.57 (t, J = 4.1 Hz, 1H, NH), 4.98 (d, J = 4.1 Hz, 2H, CH₂), 3.89 (s, 3H, OCH₃).

¹³C {¹H} NMR (75 MHz, CDCl₃) δ 195.0, 159.4, 152.6, 149.4, 140.3, 136.5, 133.9, 133.2, 131.6, 131.2, 129.5, 129.1, 127.5, 126.5, 121.9, 121.6, 118.3, 113.1, 112.9, 106.2, 55.3, 48.3. HRMS (ESI): Calc. for C₂₄H₁₉ClN₂O₂⁷⁹Br [M+H]⁺ 481.0313, found 481.0313.

3q: 2-((4-bromo-3-(p-tolyl) isoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

White solid, 120 mg (0.3 mmol, yield 90%), m.p. 208-210 ºC, Rf: 0.5 (Ethyl acetate : n-hexane / 1:2); ¹H {¹³C} NMR (300 MHz, CDCl₃) δ 8.05 – 7.93 (m, 1H, H-Ar), 7.97 (d, J = 8.3 Hz, 2H, H-Ar), 7.90 (d, J = 8.5 Hz, 1H, H-Ar), 7.78 (dd, J = 8.0, 1.7 Hz, 2H, H-Ar), 7.53 – 7.42 (m, 3H, H-Ar), 7.39 (dd, J = 8.5, 1.7 Hz, 1H, H-Ar), 7.30 (d, J = 8.0 Hz, 2H, H-Ar), 6.63 (t, J = 4.1 Hz, 1H, NH), 5.03 (d, J = 4.1 Hz, 2H, CH₂), 2.59 (s, 3H, CH₃), 2.44 (s, 3H, CH₃). ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 195.5, 152.8, 150.0, 144.9, 141.8, 141.4, 136.5, 132.3, 130.2, 129.9, 129.5, 128.5, 128.3, 127.6, 126.6, 126.5, 122.1, 121.8, 116.8, 105.9, 48.3, 22.0, 21.8. HRMS (ESI): Calc. for C₂₅H₂₂N₂O⁷⁹Br [M+H]⁺ 445.0910, found 445.0905.

3r: 2-((4-bromo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one
White solid, 135 mg (0.3 mmol, yield 98%), m.p. 126-128 °C, Rf: 0.38 (Ethyl acetate : n-hexane / 1:2); 1H 13C NMR (300 MHz, CDCl$_3$) δ 8.25 (dd, $J = 8.6, 1.1$ Hz, 1H, H-Ar), 8.03 – 7.88 (m, 3H, H-Ar), 7.58 (dd, $J = 8.3, 6.9$, 1H, H-Ar), 7.37 – 7.23 (m, 2H, H-Ar), 7.02 (d, $J = 8.8$ Hz, 1H, H-Ar), 6.64 (t, $J = 4.0$ Hz, 1H, NH), 5.06 (d, $J = 4.0$ Hz, 2H, CH$_2$), 3.90 (s, 3H, OCH$_3$), 2.44 (s, 3H, CH$_3$).

13C 1H NMR (75 MHz, CDCl$_3$) δ 195.4, 159.4, 152.8, 149.5, 144.9, 136.6, 134.0, 132.3, 131.6, 131.2, 129.5, 129.2, 128.3, 128.0, 118.5, 113.1, 112.9, 106.0, 48.3, 21.8. HRMS (ESI): Calc. for C$_{25}$H$_{22}$N$_2$O$_2$Br [M+H$^+$] 461.0859, found 461.0858.

4a: 1-(4-chlorophenyl)-2-((4-iodo-3-phenylisoquinolin-1-yl) amino) ethan-1-one

White solid, 105 mg (0.3 mmol, yield 70%), m.p. 152-154 °C, Rf: 0.48 (Ethyl acetate : n-hexane / 1:2); 1H 13C NMR (300 MHz, CDCl$_3$) δ 9.18 (s, 1H, H-Ar), 8.22 (d, $J = 8.5$ Hz, 1H, H-Ar), 8.14 (d, $J = 8.3$ Hz, 1H, H-Ar), 7.98 - 7.88 (m, 3H, H-Ar), 7.85 - 7.76 (m, 2H, H-Ar), 7.72 - 7.59 (m, 5H, H-Ar), 7.55 - 7.33 (m, 5H, H-Ar), 6.66 (t, $J = 4.3$ Hz, 1H, NH), 4.95 (d, $J = 4.3$ Hz, 2H, CH$_2$). 1H NMR (75 MHz, CDCl$_3$) δ 195.0, 157.0, 154.8, 153.6, 152.0, 144.5, 143.7, 140.3, 138.5, 133.1, 132.8, 132.3, 130.0, 129.8, 129.1, 128.0, 127.6, 121.8, 118.2, 83.8, 48.4. HRMS (ESI): Calc. for C$_{23}$H$_{17}$ClIN$_2$O [M+H$^+$] 499.0069, found 499.0060.

4b: 2-((4-iodo-3-phenylisoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one
White solid, 108 mg (0.3 mmol, yield 75%), m.p. 160-162 °C, Rf: 0.62 (Ethyl acetate : n-hexane / 1:2); \(^1\)H \{\(^{13}\)C\} NMR (300 MHz, CDCl\(_3\)) δ 8.17 (dd, \(J = 8.5, 1.2\) Hz, 1H, H-Ar), 7.96 (d, \(J = 8.4\) Hz, 1H, H-Ar), 7.95 (d, \(J = 8.2\) Hz, 2H, H-Ar), 7.75 – 7.71 (m, 1H, H-Ar), 7.70 – 7.64 (m, 2H, H-Ar), 7.60 – 7.55 (m, 1H, H-Ar), 7.54 – 7.43 (m, 3H, H-Ar), 7.28 (d, \(J = 8.0\) Hz, 2H, H-Ar), 6.73 (t, \(J = 4.0\) Hz, 1H, NH), 5.02 (d, \(J = 4.0\) Hz, 2H, CH\(_2\)), 2.44 (s, 3H, CH\(_3\)). \(^{13}\)C \{\(^1\)H\} NMR (75 MHz, CDCl\(_3\)) δ 195.4, 155.0, 153.7, 144.9, 144.6, 138.5, 132.8, 132.3, 131.3, 130.0, 129.5, 128.2, 127.9, 127.6, 126.8, 121.9, 118.4, 83.4, 48.4, 21.8. HRMS (ESI): Calc. for C\(_{24}\)H\(_{20}\)IN\(_2\)O \([M+H]^+\) 479.0615, found 479.0616.

4c: 1-(4-chlorophenyl)-2-((4-iodo-3-(4-methoxyphenyl) isoquinolin-1-yl)amino)ethan-1-one

White solid, 135 mg (0.3 mmol, yield 85%), m.p. 163-165 °C, Rf: 0.33 (Ethyl acetate : n-hexane / 1:2); \(^1\)H \{\(^{13}\)C\} NMR (300 MHz, CDCl\(_3\)) δ 8.16 (d, \(J = 8.5\) Hz, 1H, H-Ar), 8.00 (d, \(J = 8.5\) Hz, 2H, H-Ar), 7.93 (d, \(J = 8.3\) Hz, 1H, H-Ar), 7.71 (t, \(J = 7.1\) Hz, 1H, H-Ar), 7.65-7.54 (m, 3H, H-Ar), 7.50-7.43 (m, 2H, H-Ar), 7.02-6.94 (m, 2H, H-Ar), 6.59 (t, \(J = 3.9\) Hz, 1H, NH), 5.01 (d, \(J = 3.9\) Hz, 2H, CH\(_2\)), 3.90 (s, 3H, OCH\(_3\)). \(^{13}\)C \{\(^1\)H\} NMR (75 MHz, CDCl\(_3\)) δ 194.9, 159.3, 154.4, 153.5, 140.4, 138.7, 136.9, 133.1, 132.8, 131.5, 131.4, 129.5, 129.2, 126.8, 121.8, 118.2, 112.9, 83.7, 55.3, 48.4. HRMS (ESI): Calc. for C\(_{24}\)H\(_{19}\)ClIN\(_2\)O\(_2\) \([M+H]^+\) 529.0174, found 529.0173.

4d: 2-((4-iodo-3-(4-methoxyphenyl) isoquinolin-1-yl) amino)-1-(p-tolyl) ethan-1-one

516
White solid, 145 mg (0.3 mmol, yield 95%), m.p. 148-150 °C, R_f: 0.55 (Ethyl acetate : n-hexane / 1:2); \(^1\)H \(^{13}\)C NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.16 (dd, \(J = 8.5, 1.1\) Hz, 1H, H-Ar), 7.95 (dd, \(J = 8.1, 4.0\) Hz, 3H, H-Ar), 7.70 (t, \(J = 8.3\) Hz, 1H, H-Ar), 7.64 (d, \(J = 8.7\) Hz, 2H, H-Ar), 7.54 (t, \(J = 8.2\) Hz, 1H, H-Ar), 7.29 (d, \(J = 8.1\) Hz, 2H, H-Ar), 7.08 – 6.90 (m, 2H, H-Ar), 6.69 (t, \(J = 4.1\) Hz, 1H, NH), 5.02 (d, \(J = 4.1\) Hz, 2H, CH\(_2\)), 3.90 (s, 3H, OCH\(_3\)). \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl\(_3\)) \(\delta\) 195.4, 159.3, 154.5, 153.7, 144.9, 138.7, 137.1, 132.8, 132.3, 131.4, 131.3, 129.5, 128.1, 126.7, 121.9, 118.3, 112.9, 83.3, 55.3, 48.3, 21.8. HRMS (ESI): Calc. for C\(_{25}\)H\(_{22}\)IN\(_2\)O\(_2\) \([\text{M}+\text{H}]^+\) 509.0721, found 509.0720.

4e: 1-(4-chlorophenyl)-2-((3-cyclopropyl-4-iodoisoquinolin-1-yl) amino) ethan-1-one

White solid, 69 mg (0.3 mmol, yield 50%), m.p. 142-144 °C, R_f: 0.55 (Ethyl acetate : n-hexane / 1:2); \(^1\)H \(^{13}\)C NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.06 – 7.92 (m, 3H, H-Ar), 7.79 (dd, \(J = 8.4, 1.2\) Hz, 1H, H-Ar), 7.62 (td, \(J = 7.8, 1.2\) Hz, 1H, H-Ar), 7.51 (d, \(J = 8.6\) Hz, 2H, H-Ar), 7.43 (td, \(J = 7.6, 1.2\) Hz, 1H, H-Ar), 6.36 (t, \(J = 4.3\) Hz, 1H, NH), 4.90 (d, \(J = 4.3\) Hz, 2H, CH\(_2\)), 2.66 (tt, \(J = 8.1, 4.8\) Hz, 1H, CH), 1.06 (dt, \(J = 4.8, 2.9\) Hz, 2H, H-aliphatic), 0.98 – 0.76 (m, 2H, H-aliphatic). \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl\(_3\)) \(\delta\) 194.7, 154.9, 153.6, 140.4, 138.3, 133.1, 131.6, 131.1, 129.3, 129.2, 125.7, 121.8, 118.2, 84.5, 48.0, 20.9, 9.6. HRMS (ESI): Calc. for C\(_{20}\)H\(_{17}\)ClIN\(_2\)O \([\text{M}+\text{H}]^+\) 463.0069, found 463.0065.
1H NMR, 13C NMR and HRMS Spectra:

1H-NMR of compound (3a) (300 MHz, CDCl$_3$)

13C NMR of compound (3a) (300 MHz, CDCl$_3$)
13C-NMR of compound (3a) (75 MHz, CDCl$_3$)
1H-NMR of compound (3b) (300 MHz, CDCl$_3$)

13C-NMR of compound (3b) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3b)
\(^1\)H-NMR of compound (3c) (300 MHz, CDCl\(_3\))

\(^{13}\)C-NMR of compound (3c) (75 MHz, CDCl\(_3\))
HRMS-ESI (m/z) of (3c)
1H-NMR of compound (3d) (300 MHz, CDCl$_3$)

13C-NMR of compound (3d) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3d)
1H-NMR of compound (3e) (300 MHz, CDCl$_3$)

13C-NMR of compound (3e) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3e)
1H-NMR of compound (3f) (300 MHz, CDCl$_3$)

13C-NMR of compound (3f) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3f)
1H-NMR of compound (3g) (300 MHz, CDCl$_3$)

13C-NMR of compound (3g) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3g)
1H-NMR of compound (3h) (300 MHz, CDCl$_3$)

13C-NMR of compound (3h) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3h)
1H-NMR of compound (3i) (300 MHz, CDCl$_3$)

13C-NMR of compound (3i) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3i)
1H-NMR of compound (3j) (300 MHz, CDCl$_3$)

13C-NMR of compound (3j) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3j)
1H-NMR of compound (3k) (300 MHz, CDCl$_3$)

13C-NMR of compound (3K) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3k)
1H-NMR of compound (3l) (300 MHz, CDCl$_3$)

13C-NMR of compound (3l) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3I)
1H-NMR of compound (3m) (300 MHz, CDCl$_3$)

13C-NMR of compound (3m) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3m)
1H-NMR of compound (3n) (300 MHz, CDCl$_3$)

13C-NMR of compound (3n) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3n)
1H-NMR of compound (3o) (300 MHz, CDCl$_3$)

13C-NMR of compound (3o) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3o)
$\text{H-NMR of compound (3p) (300 MHz, CDCl}_3\text{)}$

$\text{C-NMR of compound (3p) (75 MHz, CDCl}_3\text{)}$
HRMS-ESI (m/z) of (3p)
1H-NMR of compound (3q) (300 MHz, CDCl$_3$)

13C-NMR of compound (3q) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3q)
1H-NMR of compound (3r) (300 MHz, CDCl$_3$)

13C-NMR of compound (3r) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (3r)
1H-NMR of compound (4a) (300 MHz, CDCl$_3$)

13C-NMR of compound (4a) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (4a)
1H-NMR of compound (4b) (300 MHz, CDCl$_3$)

13C-NMR of compound (4b) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (4b)
1H-NMR of compound (4c) (300 MHz, CDCl$_3$)

13C-NMR of compound (4c) (75 MHz, CDCl$_3$)
HRMS-ESI (m/z) of (4c)
1H-NMR of compound (4d) (300 MHz, CDCl$_3$)

13C-NMR of compound (4d) (75 MHz, CDCl$_3$)
1H-NMR of compound (4e) (300 MHz, CDCl$_3$)

13C-NMR of compound (4e) (75 MHz, CDCl$_3$)
Crystallographic Data of Compound 3j:

Thermal ellipsoid plot for compound (3j), displacement ellipsoids are drawn at the 50% probability level.

Table 1: Crystal data and structure refinement for 3j.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>3j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{29}H_{21}BrN_{2}O</td>
</tr>
<tr>
<td>Formula weight</td>
<td>493.39</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 22.7593(14) Å, α = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>b = 10.8788(7) Å, β =111.8321(10) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 19.9065(12) Å, γ = 90 deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>4575.2(5) Å³</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.43 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.82 mm⁻¹</td>
</tr>
<tr>
<td>Crystal shape</td>
<td>brick</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.132 x 0.105 x 0.089 mm³</td>
</tr>
<tr>
<td>Crystal colour</td>
<td>colourless</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.9 to 28.3 deg.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-30≤h≤30, -14≤k≤14, -26≤l≤26</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>26581</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5673 (R(int) = 0.0641)</td>
</tr>
<tr>
<td>Observed reflections</td>
<td>3829 (I > 2\sigma(I))</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.87 and 0.80</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>5673 / 0 / 302</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.02</td>
</tr>
<tr>
<td>Final R indices (I>2\sigma(I))</td>
<td>R1 = 0.046, wR2 = 0.086</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.04 and -1.11 eÅ^3</td>
</tr>
</tbody>
</table>

suggest for a short experimental part:

3j: colourless crystal (brick), dimensions 0.132 x 0.105 x 0.089 mm³, crystal system monoclinic, space group C2/c, Z=8, a=22.7593(14) Å, b=10.8788(7) Å, c=19.9065(12) Å, alpha=90 deg, beta=111.8321(10) deg, gamma=90 deg, V=4575.2(5) Å³, rho=1.433 g/cm³, T=200(2) K, Theta_max= 28.280 deg, radiation MoKa, lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 4.58 and a completeness of 99.9% to a resolution of 0.75 Å, 26581 reflections measured, 5673 unique (R(int)=0.0641), 3829 observed (I > 2\sigma(I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS based on the Laue symmetry of the reciprocal space, mu=1.82mm⁻¹, T_min=0.80, T_max=0.87, structure solved with SHELXT-2018/2 (Sheldrick 2015) and refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software, 302 parameters refined, hydrogen atoms were treated using appropriate riding models, except H3 at N3, which was refined isotropically, goodness of fit 1.02 for observed reflections, final residual values R1(F)=0.046, wR2(F²)=0.086 for observed reflections, residual electron density -1.11 to 1.04 eÅ⁻³. **CCDC 2130144** contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.¹

References: