Supplementary Information

TCT- Mediated Click Chemistry for the Synthesis of Nitrogen-Containing

Functionalities: Conversion of Carboxylic Acids to Carbamides, Carbamates,

 Carbamothioates, Amides and Amines.Riyaz Ahmed, ${ }^{\text {a,b }}$ Ria Gupta, ${ }^{\text {a,b }}$ Zaheen Akhter, ${ }^{\text {a,b }}$ Mukesh Kumar ${ }^{\text {a,b }}$ and Parvinder Pal Singh ${ }^{\text {a,b,* }}$ ${ }^{a}$ Natural Product \& Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
${ }^{b}$ Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad-201002, India.

S. No.	Contents	Page No.
1	General information	S2
2	General procedure for one pot conversion of carboxylic acid to carbamides 3a-3ao.	S3
3	Spectral data of compounds 3a-3ao.	S3-S15
4	General procedure for one pot conversion of carboxylic acid to carbamates $\mathbf{4 a}-\mathbf{4 n}$.	S16
5	Spectral data of compounds 4a-4n.	S16-S20
6	Procedure for one pot conversion of carboxylic acid to amides 5.	S20-S21
7	Spectral data of compounds 5.	S21
8	Procedure for one pot conversion of carboxylic acid to monosubstituted carbamides 6.	S21-S22
9	Spectral data of compounds 6.	S22
10	General procedure for one pot conversion of carboxylic acid to amines 7a-7e.	S22
11	Spectral data of compounds 7a-7e.	S22-S23
12	General procedure for late stage functionalization of natural products and drugs 8a-8e.	S24
13	Spectral data of compounds 8a-8e.	S24-S26
14	Procedure for gram scale reaction.	S26
15	Spectral copies of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT of 3a-3ao.	S27-S114
16	Spectral copies of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR, DEPT of 4a-4n.	S114-S142
17	Spectral copies of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{DEPT}$ of 5.	S143-S144
18	Spectral copies of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT of 6.	S144-S146
19	Spectral copies of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT of 7a-7e.	S146-S154
20	Spectral copies of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT of 8a-8e.	S155-S165
21	Controlled experiments.	S165-S170
22	References.	S171-S172

EXPERIMENTAL SECTION

General Information

All reactions are carried out in round bottom flask in open atmosphere and reaction mixture was monitored by thin-layer chromatography (TLC). TLC pre-coated silica gel 60 F254 $(20 \times 20 \mathrm{~cm})$. TLC plates are visualized by exposing UV light. Organic solvents are evaporated on rotary evaporator and all the compounds are purified on flash Column chromatography (230-400 mesh size). Mass spectra are obtained using an Agilent 6540 accurate mass Q-TOF LC/MS (135 eV) spectrometer, using electrospray ionization (ESI). ${ }^{1} \mathrm{H}$ NMR spectra are recorded on 400 and 500 MHz NMR instruments. Chemical data for protons are reported in parts per million (ppm , scale) downfield from tetramethylsilane as referenced to the residual proton in the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 7.26,1.56 \mathrm{CDCl}_{3}\right.$ moisture and 1.25 grease peak, DMSO-d ${ }^{6}: \delta 2.51$, 3.33 DMSO-d ${ }^{6}$ moisture or other solvents as mentioned). All the NMR spectras are processed with MestReNova software. The coupling constant (J) are in Hz. ESI-MS and HRMS spectra are recorded on LC-Q-TOF machines. Note: All the care has been taken while performing the reaction, as sodium azide is highly toxic and can react to form potentially explosive compounds. Azides form strong complexes with haemoglobin, and consequently block oxygen transport in the blood.

General Procedure for one pot conversion of carboxylic acid to carbamides (3a-3aj), (Table 1, Scheme 1 and Scheme 2).

A solution of carboxylic acid $\mathbf{1}(100 \mathrm{mg}, 0.500-0.819 \mathrm{mmol})$ and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}$ (20 ml) was mixed with N -methylmorpholine (NMM) (1.4 equiv.) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture NaN_{3} (1.4 equiv.) and DMAP ($10 \mathrm{~mol} \%$) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Now, the nitrogen based nucleophile (1.4 equiv.) was added and the reaction mixture was subjected to reflux at $80^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offered the required products (3a-3ao).

Experimental data:

1,3-Diphenylurea (3a): ${ }^{1}$

($100 \mathrm{mg}, 0.819 \mathrm{mmol}$ of benzoic acid); TLC (Hexane/EtOAc, 6:4) R_{f} $=0.4$; Yield 92%; white solid; m.p $236-239{ }^{\circ} \mathrm{C} .: ~ ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$, acquired at $60^{\circ} \mathrm{C}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 153.0, 140.1, 129.2, 122.2, 118.6. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O} 213.1028[\mathrm{M}+\mathrm{H}]^{+}$, found 213.1033.

1-(4-Methoxyphenyl)-3-phenylurea (3b): ${ }^{2}$

(100 mg, 0.657 mmol of 4-methoxybenzoic acid);TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.4$; Yield 92%; white solid; m.p.186-190 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at 60 $\left.{ }^{\circ} \mathrm{C}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz ,

DMSO-d ${ }^{6}$) δ 156.4, 154.6, 141.7, 134.6, 130.6, 123.5, 122.0, 120.0, 115.9, 57.1. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} 243.1134[\mathrm{M}+\mathrm{H}]^{+}$, found 243.1140.

1-(4-Cyanophenyl)-3-phenylurea (3c): ${ }^{3}$

($100 \mathrm{mg}, \quad 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 90%; white solid; m.p. 200-222 ${ }^{\circ} \mathrm{C}$: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $60^{\circ} \mathrm{C}$) δ 9.15 (s, 1H), 8.80 (s, 1H), 7.76 (dd, $J=27.2,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.55$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (t, $J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{6}{ }^{6}$) $\delta 153.9,146.1,141.0$, 135.1, 130.7, 124.2, 121.1, 120.4, 119.9, 105.1. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}$ $238.0980[\mathrm{M}+\mathrm{H}]^{+}$, found 238.0987.

1-(4-Chlorophenyl)-3-phenylurea (3d): ${ }^{4}$

(100 mg, 0.645 mmol of 4-chlorobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.6$; Yield 89%; white solid; m.p. 239$240{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.57$ (s, 1H), 8.46 (s , 1H), 7.24 (m, 4H), $7.09-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.72$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSOd^{6}) δ 152.9, 140.0, 139.2, 129.1, 125.8, 122.4, 120.1, 118.7. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OCl} 247.0638[\mathrm{M}+\mathrm{H}]^{+}$, found 247.0646.

1-(4-Methoxyphenyl)-3-(4-(trifluoromethoxy)phenyl)urea (3e):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.3$; Yield 90%; white solid; m.p. 327-330 ${ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $\left.60^{\circ} \mathrm{C}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.70 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (s, 3H). ${ }^{19}$ F NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}$) $\delta-57.36$ (s). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 156.5$, $154.5,144.3,141.0,134.3,123.4,122.1,122.1(\mathrm{q}, J=256.54 \mathrm{~Hz}), 121.1,115.8,57.0$. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3} 327.0957[\mathrm{M}+\mathrm{H}]^{+}$, found 327.0965.

1-(4-Cyanophenyl)-3-(4-(trifluoromethoxy)phenyl)urea (3f):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.3$; Yield 91%; white solid; m.p. 272-278 ${ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $\left.60{ }^{\circ} \mathrm{C}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO-d ${ }^{6}$) $\delta-52.52$ (s). ${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 153.9,145.9,144.9$ (d, $J=2$ Hz), 140.3, 135.1, 123.5, 122.0 (d, J = 256.54 Hz), 121.7, 120.0, 105.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~F}_{3} 322.0803[\mathrm{M}+\mathrm{H}]^{+}$, found 322.0814.

1-(4-(tert-Butyl)phenyl)-3-(4-methoxyphenyl)urea (3g):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{\mathrm{f}}=0.5$; Yield 89\% ; white solid; m.p. 239-241 ${ }^{\circ} \mathrm{C}$: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 8.48$ (s, 1H), 8.42 (s, 1H), 7.36 (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.28 (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 154.9, 153.3, 144.4, 137.7, 133.3, 125.8, 120.4, 118.4, 114.4, 55.6, 34.3, 31.7. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} 299.1760[\mathrm{M}+\mathrm{H}]^{+}$, found 299.1770.

1-(4-(tert-Butyl)phenyl)-3-(4-cyanopheny ${ }^{\circ}$) urea (3h):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.5$; Yield 93%; white solid; m.p. 283-285 C: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $\left.60{ }^{\circ} \mathrm{C}\right) \delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.61 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 (s, 9 H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 154.0, 146.7, 146.1, 138.2, 135.1, 127.3, 121.2, 120.3, 119.8, 105.0, 35.7, 33.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O} 294.1606[\mathrm{M}+\mathrm{H}]^{+}$, found 294.1616.

1-(4-Methoxyphenethyl)-3-(4-methoxyphenyl)urea (3i): ${ }^{5}$

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 88\% ;
white solid; m.p. 245-249 ${ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d ${ }^{6}$, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H})$, 7.82 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.4 \mathrm{~Hz}$, 2H), 3.82 (s, 3H), 3.74 (s, 3H), 3.46 (s, 2H), 2.80 (s, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ $167.5,163.3,159.5,133.3,131.4,130.7,128.7,115.6,115.3,57.1,56.8,42.9,36.2$. MS m/z $[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ 301.1552; found, 301.17.

1-(4-Cyanophenyl)-3-(4-methoxyphenethyl)urea (3j):

 ($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 91%; white solid; m.p. 287-290 ${ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd^{6}, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSOd^{6}) $\delta 158.2,155.0,145.4,133.6,131.6,130.1,119.9,117.9,114.3,102.8,55.4,41.3,35.1$. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} 296.1399[\mathrm{M}+\mathrm{H}]^{+}$, found 296.1409.

1-(3,5-Difluorobenzyl)-3-(4-methoxyphenyl)urea (3k):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.4$; Yield 92%; white solid; m.p. 215-218 ${ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d^{6}, acquired at $\left.60^{\circ} \mathrm{C}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.10 (t, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=12 \mathrm{~Hz} 1 \mathrm{H}), 4.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 165.5-165.4(\mathrm{~d}, ~ J=13.13 \mathrm{~Hz}), 163.1-162.9(\mathrm{~d}, J=16.16 \mathrm{~Hz}), 157.4,156.0$, $147.7-147.5$ (t, $J=8.08 \mathrm{~Hz}, 16.16 \mathrm{~Hz}$), 135.2, 121.6, 115.7, 111.8-111.6 (m), 104.0-103.5 (t, $J=$ 26.26 Hz), 57.0, 44.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2} 293.1102[\mathrm{M}+\mathrm{H}]^{+}$, found 293.1112.

1-(4-Cyanophenyl)-3-(3,5-difluorobenzyl)urea (31):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.4$; Yield 90%; white solid;
m.p. 257-260 ${ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 9.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.99 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.52 (d, $J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 165.6,164.1-164.0(\mathrm{~d}, J=13.13 \mathrm{~Hz}), 161.6-161.5$ $(\mathrm{d}, J=13.13 \mathrm{~Hz}), 144.5-144.4(\mathrm{t}, J=9.09 \mathrm{~Hz}), 138.4,132.9,128.6,118.7,114.2,110.8-$ 110.5(m), 103.0-102.5(t, $J=25.25)$, 42.6. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OF}_{2} 288.0948$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 288.0962.

1-(4-Methoxyphenyl)-3-(4-methylbenzyl)urea (3m): ${ }^{6}$

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.4$; Yield 85%; white solid; m.p. 212-216 ${ }^{\circ} \mathrm{C}:{ }^{\text {; }}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 8.86$ (t, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.13 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.00 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 2.27 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d ${ }^{6}$) $\delta 166.1,162.0,137.2,136.1,129.5,129.2,127.6$, 127.0, 113.9, 55.7, 42.7, 21.1. MS m/z [M+H] ${ }^{+}$, calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ 271.3400; found, 271.34.

1-(4-Cyanophenyl)-3-(4-methylbenzyl)urea (3n):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.4$; Yield 87%; white solid; m.p. 254-259 ${ }^{\circ} \mathrm{C}$: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $\left.60^{\circ} \mathrm{C}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J$ $=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $\left.{ }^{6}\right) \delta$ 155.0, 145.3, 137.3, 136.3, 133.6, 129.3, 127.6, 119.9, 117.9, 102.8, 42.9, 21.1. MS m/z ([M+H] ${ }^{+}$, calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{1}$ 266.1293; found, 266.13.

1-(6-fluoropyridin-3-yl)-3-(4-methoxyphenyl)urea (3o):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.5$; Yield 85%; white solid; m.p. 294-299 ${ }^{\circ} \mathrm{C}:{ }^{; 1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.83$ (s, 1H),
$8.64(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=8.8,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{6}{ }^{6}$) $\delta 159.5,157.2$, 155.1, 153.2, 137.1, 136.9, 135.4, 135.3, 132.8, 132.3, 132.2, 120.8, 114.4, 109.7, 109.3, 55.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~F} 262.0992[\mathrm{M}+\mathrm{H}]^{+}$, found 262.0995

1-(4-Cyanophenyl)-3-(6-fluoropyridin-3-yl)urea (3p):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 89%; white solid; m.p. 292-297 ${ }^{\circ} \mathrm{C}$: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 9.16$ (s, 1H), 8.89 (s, 1H), 8.16 (s, 1H), 7.94 (m, 1H), 7.57 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 159.9, 157.6, 152.6, 144.3, 137.7-137.5 (d, $J=15.15 \mathrm{~Hz}$), 134.6-134.5 (d, $J=5.05 \mathrm{~Hz}$), 133.6, 132.8-132.7 (d, $J=7.07 \mathrm{~Hz}$), 119.6, 118.6, 109.7, 109.3, 104.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OF} 257.0839[\mathrm{M}+\mathrm{H}]^{+}$, found 257.0847.

1-(4-Methoxyphenyl)-3-pentylurea (3q): ${ }^{7}$

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 8:2) $\mathrm{R}_{f}=0.6$; Yield 86%; white solid; m.p. 293-297 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, acquired at $60{ }^{\circ} \mathrm{C}$) δ 7.16 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.13$ (t, $J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H), 3.16 (dd, $J=13.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.43 (dd, $J=14.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.30-$ $1.22(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,132.8,125.5,115.9$, 78.7, 78.4, 78.1, 56.9, 41.7, 31.2, 30.4, 23.7, 15.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ $237.1603[\mathrm{M}+\mathrm{H}]^{+}$, found 237.1610.

1-(4-Cyanophenyl)-3-pentylurea (3r):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 8:2) $\mathrm{R}_{f}=0.5$; Yield 91%; white solid; m.p. $94{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.98$ (s, 1H), 7.69 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13$ (dd, $J=12.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=6.9$
$\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 155.0,145.4,133.6,119.9,117.8,102.6,29.7,29.0$, 22.3, 14.4. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O} 232.1450[\mathrm{M}+\mathrm{H}]^{+}$found 232.1458.

1-Hexadecyl-3-(4-methoxyphenyl)urea (3s):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 8:2) $\mathrm{R}_{f}=0.7$; Yield 89%; white solid; m.p.132- $137{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, acquired at 60 $\left.{ }^{\circ} \mathrm{C}\right) \delta 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.92 (s, 1H), 3.83 (s, 3H), 3.42 (dd, $J=12.9,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.27$ (m, 26H), $0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,162.2,128.5,127.3,113.7,55.3$, 40.0, 31.9, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 27.0, 22.6, 14.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} 391.3325[\mathrm{M}+\mathrm{H}]^{+}$, found 391.3326.

1-(4-Cyanophenyl)-3-hexadecylurea (3t):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 8:2) $\mathrm{R}_{f}=0.6$; Yield 86%; white solid; m.p.: 132-137 ${ }^{\circ} \mathrm{C}^{;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, acquired at $60^{\circ} \mathrm{C}$) δ 8.35 (s, 1H), 7.51 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.84 (s, 1H), 3.20 (dd, $J=12.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 26 \mathrm{H}), 0.88(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 155.3, 144.6, 132.9, 117.7, 103.4, 39.7, 31.81, 30.0, 29.5, 29.5, 29.2, 26.8, 22.5, 14.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O} 386.3171[\mathrm{M}+\mathrm{H}]^{+}$, found 386.3173.

1-(tert-Butyl)-3-(4-methoxyphenyl)urea (3u): ${ }^{8}$

(100 mg, 0.657 mmol of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.6$; Yield 85%; white solid; m.p.203$208{ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 7.91$ (s, 1H), 7.24 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.76$ (s, 1H), 3.69 (s, 3H), 1.29 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{6}$) $\delta 155.2,154.2,134.2,119.6$, 114.3, 55.5, 49.8, 29.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} 223.1447$ [M+H] ${ }^{+}$, found 223.1452.

1-(tert-Butyl)-3-(4-cyanophenyl)urea (3v):

$(100 \mathrm{mg}, \quad 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.5$; Yield 88%; white solid; m.p.139$144{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.72$ (s, 1H), 7.61 (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 154.1,145.4,133.5,119.9,117.6,102.5,50.1,29.2$. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O} 218.1293[\mathrm{M}+\mathrm{H}]^{+}$, found 218.1297.

1-Cyclobutyl-3-(4-methoxyphenyl)urea (3w):

(100 mg, 0.657 mmol of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.6$; Yield 84%; white solid; m.p.172$175{ }^{\circ} \mathrm{C}: ~{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d^{6}, acquired at $60^{\circ} \mathrm{C}$) $\delta 7.98$ (s, 1H), 7.26 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.19$ (s, 1H), $4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6) δ 156.2, 155.8, 135.4, 121.3, 115.7, 57.0, 46.4, 33.0, 16.2. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} 221.1290[\mathrm{M}+\mathrm{H}]^{+}$, found 221.1293.

1-(4-Cyanophenyl)-3-cyclobutylurea (3x):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{\mathrm{f}}=0.5$; Yield 86%; white solid; m.p. 142$145{ }^{\circ} \mathrm{C}$: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d^{6}, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 8.75$ (s, 1H), 7.62 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ (d, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=15.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.83(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64$ (m, 2H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{-}{ }^{6}$) δ 155.4, 146.7, 134.9, 121.2, 119.3, 104.3, 46.4, 32.6, 16.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O} 216.1137$ [M+H] ${ }^{+}$, found 216.1141.

1-Cyclopropyl-3-(4-methoxyphenyl)urea (3y): ${ }^{9}$

(100 mg, 0.657 mmol of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 89%; white solid; m.p.183$187{ }^{0} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.12$ (s, 1H), 7.32 (d, J
$=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 0.64$ (m, 2H), $0.42-0.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 158.1, 155.9, 135.3, 121.6, 115.7, 57.0, 24.2, 8.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} 207.1134[\mathrm{M}+\mathrm{H}]^{+}$, found 207.1135.

1-(4-Cyanophenyl)-3-cyclopropylurea (3z):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 91%; white solid; m.p. $133-138{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$, acquired at $60^{\circ} \mathrm{C}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{dt}, J=10.1$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.65(\mathrm{~m}, 2 \mathrm{H}), 0.44-0.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 157.3, 146.6, 134.9, 121.2, 119.5, 104.4, 24.2, 8.2. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O} 202.0980$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 202.0988.

. N -(4-Methoxyphenyl)piperazine-1-carboxamide (3aa): ${ }^{10}$

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (DCM/MeOH, 8:2) $\mathrm{R}_{f}=0.6$; Yield 80%; white solid; m.p. 225$230{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- ${ }^{6}$) $\delta 7.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (s, 3H), 3.41 (s, 4H), 3.22 (s, 2H), 2.69 (s, 4H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 169.5,160.6,129.4,128.1,114.0,55.6$, 45.4, aliphatic carbon peak correspond to piperzyl moiety get suppressed; HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na} 258.1218[\mathrm{M}+\mathrm{H}]^{+}$, found 258.1228.

N-(4-Cyanophenyl)piperazine-1-carboxamide (3ab):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (DCM/MeOH, 8:2) $\mathrm{R}_{f}=0.4$; Yield 77%; white solid; m.p. 270$275{ }^{\circ} \mathrm{C}: ~{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), 7.57 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56 (s, 2H), 3.17 (s, 2H), 2.75 (s, 2H), 2.63 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6) δ 141.0, 133.0, 128.1, 118.8, 112.4, 48.6, 46.0, 45.5, 43.0. $\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{1}$ 231.1246; found, 231.13.

4-((4-Methoxyphenyl)carbamoyl)piperazine-1-carboxylate (3ac): ${ }^{11}$

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 6:4) $\mathrm{R}_{f}=0.7$; Yield 76%; white solid; m.p. $260264{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 7.39$ (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 3.46 (s, 3H), 3.40 (s, 2H), 3.37 (s, 3H), 1.41 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- ${ }^{6}$) δ 169.6, 160.7, 154.2, 129.5, 128.0, 114.0, 79.6, 55.6, aliphatic carbon peak correspond to piperzyl moiety not appeared, 28.4,. $\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}$ 336.1923; found, 336.20.

N-(4-Cyanophenyl)-4-methylpiperazine-1-carboxamide (3ad):

$(100 \mathrm{mg}, \quad 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 78%; white solid; m.p. 210$215{ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 8.85$ (s, 1H), 7.65 (d, $J=5.5 \mathrm{~Hz}, 4 \mathrm{H}$), 3.46 (s, 4H), 2.33 (s, 4H), 2.21 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 156.1, 147.1, 134.6, 121.2, 120.8, 104.8, 56.3, 47.5, 45.6. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O} 245.1402[\mathrm{M}+\mathrm{H}]^{+}$, found 245.1408.

4-Cyclopropyl- N -(4-methoxyphenyl)piperazine-1-carboxamide (3ae):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 77%; white solid; m.p. $213{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}$) $\delta 7.13$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.57 (s, 3H), 3.18 (d, J $=22.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.29(\mathrm{dd}, J=4.8,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.22-0.17(\mathrm{~m}, 2 \mathrm{H}), 0.12-$ 0.07 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- ${ }^{6}$) $\delta 169.4,160.6,129.4,128.2,114.0,55.6,53.1$, 38.3, aliphatic carbon peak correspond to piperzyl moiety get suppressed, $6.1 ; \mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ 276.1712; found, 276.18.

N-(4-Cyanophenyl)-4-cyclopropylpiperazine-1-carboxamide (3af):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 73%; white solid; m.p.

253-257 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.59 (s, 2H), $3.35(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.43$ (dd, $J=6.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.38-0.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.7,140.9,133.0$, 128.2, 118.8, 112.5, 53.2, 52.7, 47.3, 38.3, 6.1. MS m/z (M+H) : calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{1}$ 271.1559; found, 271.16.

4-Cyclopropyl- N -(4-methoxyphenyl)piperazine-1-carboxamide (3ag):

(100 mg, 0.819 mmol of benzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 78%; white solid; m.p. $253-257{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO-d}{ }^{6}$) $\delta 7.13$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.75 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.57$ (s, 3H), 3.18 (d, $J=22.7 \mathrm{~Hz}, 4 \mathrm{H}$), 2.29 (dd, $J=4.8$, $2.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.22-0.17(\mathrm{~m}, 2 \mathrm{H}), 0.12-0.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 155.4,140.8,128.7,122.2,120.1,53.1,44.0,38.5,6.0$. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{ONa} 268.1426[\mathrm{M}+\mathrm{H}]^{+}$, found 268.1433.

1-phenyl-3-(o-tolyl)urea (3ah):

$100 \mathrm{mg}, 0.735 \mathrm{mmol}$ of 2-methylbenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 84%; white solid; m.p. 233-237 ${ }^{\circ} \mathrm{C}$: ${ }^{; 1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (dd, $J=12.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (dd, $J=16.2,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 153.1,140.3,137.9,130.6$, 129.3, 127.8, 126.6, 123.0, 122.1, 121.4, 118.4, 18.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ $227.1184[\mathrm{M}+\mathrm{H}]^{+}$, found 227.1181.

1-phenyl-3-(m-tolyl)urea (3ai):

$100 \mathrm{mg}, 0.735 \mathrm{mmol}$ of 3-methylbenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 87%; white solid; m.p. 230$235{ }^{\circ} \mathrm{C}$: ${ }^{; 1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.68$ (s, 1H), $8.62(\mathrm{~s}, 1 \mathrm{H})$, 7.50 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (s, 1H), 7.29 (t, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}$), 7.17 $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101

MHz, DMSO-d ${ }^{6}$) δ 153.0, 140.2, 140.1, 138.4, 129.2, 129.0, 123.0, 122.2, 119.1, 118.6, 115.8, 40.5, 40.3, 40.1, 39.9, 39.7, 39.5, 39.2, 21.6. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O} 227.1184$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 227.1186.

1-(5-chloro-2-methoxyphenyl)-3-phenylurea(3aj):

$100 \mathrm{mg}, 0.537 \mathrm{mmol}$ of 5-chloro-2-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 79%; white solid; m.p. 252$257{ }^{\circ} \mathrm{C}$: ${ }^{; 1} \mathrm{H}$ NMR (400 MHz, DMSO- ${ }^{6}$) $\delta 9.42$ (s, 1H), 8.43 (s, 1H), 8.29 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (t, $J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 152.7,146.7$, 139.9, 130.5, 129.3, 124.8, 122.4, 121.2, 118.5, 117.8, 112.3, 56.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl} 277.0744[\mathrm{M}+\mathrm{H}]^{+}$, found 277.0747.

1-Phenyl-3-undecylurea (3ak) ${ }^{12}$:

($100 \mathrm{mg}, 0.500 \mathrm{mg}$ of dodecanoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 91%; white solid; m.p. 160-165 ${ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.67$ (m, $2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0$, 129.1, 124.6, 119.2, 41.1, 31.9, 29.6, 29.5, 29.3, 26.7, 22.7, 14.1. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O} 291.2436[\mathrm{M}+\mathrm{H}]^{+}$, found 291.2446.

1-(3-bromo-4-methylphenyl)-3-undecylurea (3al):

($100 \mathrm{mg}, 0.500 \mathrm{mg}$ of dodecanoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 91%; white solid; m.p. $160-165{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.87$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.18$ (m, 2H), $6.10(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ (s, 3H), $1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 16 \mathrm{H}), 0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 174.8,171.7,138.9,131.5,131.1,124.1,122.5,118.5,36.8,34.1,31.8,29.58$,
29.56, 29.4, 29.36, 29.33, 29.2, 29.17, 29.11, 25.5, 24.9, 22.6, 22.0, 14.3. MS m/z [M+H] ${ }^{+}$, calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OBr}$ 383.16; found, 383.35.

(E)-1-Phenyl-3-styrylurea (3am): ${ }^{13}$

($100 \mathrm{mg}, 0.675 \mathrm{mmol}$ of cinnamic acid); TLC (Hexane/EtOAc, $7: 3) \mathrm{R}_{f}=0.4$; Yield 83%; white solid; m.p. $230-234{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 8.69(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.37$ (m, 6H), 6.99 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, \mathrm{J}=8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.94 (d, $J=14.6 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{6}$) $\delta 153.8,141.3,139.1$, 130.6, 130.4, 127.2, 126.7, 126.5, 123.9, 120.3, 109.8. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ $239.1184[\mathrm{M}+\mathrm{H}]^{+}$, found 239.1194.

(E)-1-Hexadecyl-3-styrylurea (3an): ${ }^{14}$

(100 mg, 0.675 mmol of cinnamic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 76%; white solid; m.p. $235-238{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, acquired at $\left.60^{\circ} \mathrm{C}\right) \delta$ 7.55 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (dd, $J=6.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 - 7.22 (m, 3H), 6.38 (d, $J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.02 (s, 1H), 3.30 (dd, $J=13.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.48 (m, 2H), 1.17 (m, 26H), 0.80 (t, $J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.9,140.7,134.9,129.5,128.7,127.7,120.8$, 39.8, 31.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.3, 29.3, 27.0, 22.7, 14.1. MS m/z [M+H] ${ }^{+}$, calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{1}$ 387.3375; found, 387.34.

(E)-1-(Pyrimidin-2-yl)-3-styrylurea (3ao):

(100mg, 0.675 mmol of cinnamic acid); TLC (Hexane/EtOAc,
7:3) $\mathrm{R}_{f}=0.4$; Yield 83%; white solid; m.p. $270-273{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 11.21$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 10.30 (s, 1H), 8.66 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=14.7,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 158.6, 158.1, 151.9, 137.1, 129.1, 126.4, 125.4, 124.0, 115.6, 111.7. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O} 241.1089[\mathrm{M}+\mathrm{H}]^{+}$, found 241.1099.

General Procedure for one pot conversion of carboxylic acid to carbamates and carbamothioates (4a-4n), (Scheme 3).

A solution of carboxylic acid 1 (0.500-0.819 mmol) and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}$ (20 ml) was mixed with N -methylmorpholine (NMM) (1.4 equiv.) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture NaN_{3} (1.4 equiv.) and DMAP (10 mol\%) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Now, the oxygen or sulphur based nucleophile (1.4 equiv.) was added and the reaction mixture was subjected to reflux at $80^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offerd the required products (4a-4n).

Phenyl (4-cyanophenyl)carbamate (4a): ${ }^{\mathbf{1 5}}$

($100 \mathrm{mg}, \quad 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 62%; white solid; m.p. 197$200{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 10.78$ (s, 1H), 7.79 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6) $\delta 153.4,152.2,144.1,133.9,133.7,119.6,118.8$, 113.9, 104.2. $\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ 239.0821; found, 239.09.

4-(Trifluoromethoxy)phenyl (4-methoxyphenyl)carbamate (4b):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 68%; white solid; m.p. 200-205 ${ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, acquired at $60^{\circ} \mathrm{C}$) $\delta 7.36$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (m, 4H), 6.92 (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.80 (s, 1H), 3.83 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 156.6,151.5,149.0$,
146.4, 130.1, 122.8, 121.9, 120.9, 120.4 (d, $J=257.55 \mathrm{~Hz}$), 114.4, 55.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~F}_{3} 328.0797$ [M+H] ${ }^{+}$, found 328.0804.

4-(Trifluoromethoxy)phenyl (4-cyanophenyl)carbamate (4c):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4 -cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 65%; white solid; m.p. 245-250 ${ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 10.82$ (s, 1H), 7.78 - 7.67 (m, 4H), 7.41 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}^{6}$) $\delta 156.9,152.2,144.1,140.9,133.7,122.8,118.8,118.7$ (q, $J=233.31 \mathrm{~Hz}$), 116.6, 104.3. $\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} 323.0644$; found, 323.08.

4-Isopropylphenyl (4-methoxyphenyl)carbamate (4d):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 65%; white solid; m.p. $185-190{ }^{\circ} \mathrm{C}: ~{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- ${ }^{6}$, acquired at $\left.60{ }^{\circ} \mathrm{C}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 1.25$ (s, 3H), 1.23 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 155.7,152.5,149.1,145.8,132.2,127.5$, 122.1, 120.5, 114.5, 55.5, 33.4, 24.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} 286.1443$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 286.1454.

Butyl (4-methoxyphenyl)carbamate (4e): ${ }^{\mathbf{1 6}}$

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 70%; white solid; m.p. 47-50 ${ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 9.21$ (s, 1H), 7.27 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.67 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.89(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2H), 3.51 (s, 3H), $1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{dt}, J=9.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 155.1, 154.3, 132.8, 120.1, 114.1, 64.1, 55.3, 31.1, 19.1, 13.8. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3} 224.1287$ [M+H] ${ }^{+}$, found 224.1286.

Butyl (4-cyanophenyl)carbamate (4f): ${ }^{17}$

($100 \mathrm{mg}, \quad 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 67\% ; white solid; m.p. ; 55$60{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 10.09$ (s, 1H), 7.69 (d, J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.61-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 153.7, 144.1, 133.5, 119.5, 118.4, 104.4, 64.7, 30.8, 18.9, 13.8. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} 219.1134[\mathrm{M}+\mathrm{H}]^{+}$, found 219.1134.

Isopropyl (4-cyanophenyl)carbamate (4g): ${ }^{\mathbf{1 7}}$

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 65%; white solid; m.p.: ; 120$125{ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.15 (dt, $J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 164.4,134.5,133.1,130.1,118.5,115.7,69.6,21.9 . \mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ 205.0977; found, 205.10.

S-Phenyl (4-methoxyphenyl)carbamothioate (4h): ${ }^{18}$

 ($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 82%; white solid; m.p.160-165 ${ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 7.57$ (m, 2H), 7.42 (s, 1H), $7.39-7.36$ (m, 3H), 7.24 (d, J = 9.0 $\mathrm{Hz}, 2 \mathrm{H}$), $6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9,131.1$, 130.8, 129.7, 115.6, 56.9. . HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S} 260.0745[\mathrm{M}+\mathrm{H}]^{+}$, found 260.0757.

S-Phenyl (4-cyanophenyl)carbamothioate (4i):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 85%; white solid; m.p.200$205{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 11.00$ (s, 1H), 7.78 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58-7.52$ (m, 2H), 7.47 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) δ 153.4, 136.2, 133.9, 133.7, 129.9,
128.0, 127.6, 118.8, 113.9, 96.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS} 255.0592[\mathrm{M}+\mathrm{H}]^{+}$, found 255.0604.

S-Dodecyl (4-methoxyphenyl)carbamothioate (4j):

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 92%; white solid; m.p.200-205 ${ }^{\circ} \mathrm{C}:{ }^{;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (s, 3H), $3.02-2.85$ (m, 2H), $1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 114.2,55.4,31.9,30.3,30.2,29.6,29.6,29.6,29.5,29.3,29.1,28.8,22.7,14.1$. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S} 352.2310[\mathrm{M}+\mathrm{H}]^{+}$, found 352.2317.

S-Dodecyl (4-cyanophenyl)carbamothioate (4k):

(100 mg, 0.680 mmol of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 89%; white solid; m.p.200$205{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 10.72$ (s, 1H), 7.74 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (t, $J=7.2 \mathrm{~Hz}$, 2H), $1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~m}, 16 \mathrm{H}), 0.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 166.3,143.4,133.7,119.1,105.3,31.7,30.2,29.5,29.5,29.4,29.3,29.2$, 28.9, 28.5, 22.5, 14.3. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OS} 347.2157[\mathrm{M}+\mathrm{H}]^{+}$, found 347.2159 .

S-Hexadecyl (4-methoxyphenyl)carbamothioate (41):

 (100 mg, 0.657 mmol of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 92%; white solid; m.p.233-237 ${ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (d, $J=8.6$ Hz, 2H), 7.03 (s, 1H), 6.85 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), 2.95 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.62$ $(\mathrm{m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 24 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 114.2, 55.4, 31.9, 30.3, 29.7, 29.6, 29.6, 29.6, 29.5, 29.38, 29.1, 28.8, 22.7, 14.1. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{~S} 408.2936[\mathrm{M}+\mathrm{H}]^{+}$, found 408.2938 .

Phenyl (E)-styrylcarbamate (4m):

($100 \mathrm{mg}, 0.675 \mathrm{mmol}$ of cinnamic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 64%; white solid; m.p.157- $160{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 10.34$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-$ 7.41 (m, 2H), 7.35 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 6.18$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{6}{ }^{6}$) $\delta 157.7,136.8,129.9,129.8,129.1,126.5$, 126.0, 125.5, 125.1, 122.2, 119.2, 115.6. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2} 240.1025$ [$\mathrm{M}+\mathrm{H}]^{+}$, found 240.1030.

S-Hexadecyl (E)-styrylcarbamothioate (4n):

 (100 mg, 0.675 mmol of cinnamic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 84%; white solid; m.p.290-295 ${ }^{\circ} \mathrm{C}: ~ ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, acquired at $\left.60{ }^{\circ} \mathrm{C}\right) \delta 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}$, 2 H), 1.64 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.39 (s, 2H), 1.27 (m, 24H), 0.88 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.0,135.9,128.6,126.6,125.5,122.7,112.1,31.9,30.2,30.1,29.6,29.5,29.4,29.3$, 29.1, 28.7, 22.6, 14.0. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{NOS} 404.2987[\mathrm{M}+\mathrm{H}]^{+}$, found 404.2992.

Procedure for one pot conversion of carboxylic acid to amides (5), (Scheme 4).

A solution of carboxylic acid 1 (0.500-0.819 mmol) and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ was mixed with N -methylmorpholine (NMM) (, 1.4 equiv.) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture NaN_{3} (1.4 equiv.) and DMAP (10 mol\%) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Now, the carboxylic acid (1.4 equiv.) was added and the reaction mixture was subjected to reflux at $80{ }^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the
crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offerd the required products (5).

4-Methoxy-N-undecylbenzamide (5): ${ }^{19}$

($100 \mathrm{mg}, 0.500 \mathrm{mmol}$ of dodecanoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 54%; white solid; m.p. $250-260{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$) $\delta 7.93$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.02 (d, $J=8.5$ Hz, 2H), 3.85 (s, 3H), 2.20 (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.52 (m, 2H), 1.25 (m, 16 H), 0.87 (t, $J=8 \mathrm{~Hz} 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{6}$) $\delta 174.9,167.5,163.2,131.8,123.7$, 114.1, 55.8, 34.1, 31.8, 29.5, 29.4, 29.3, 29.2, 29.1, 25.0, 22.6, 14.3. MS m/z [M+H] ${ }^{+}$, calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{2}$ 306.2433; found, 306.24.

Procedure for one pot conversion of carboxylic acid to mono-substituted carbamides (6), (Scheme 4).

A solution of carboxylic acid $\mathbf{1}(0.500-0.819 \mathrm{mmol})$ and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ was mixed with N -methylmorpholine (NMM) (1.4 equiv.) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture NaN_{3} (1.4 equiv.) and DMAP ($10 \mathrm{~mol} \%$) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Now, the aq. $\mathrm{NH}_{4} \mathrm{OH}$ (1.4 equiv.) was added and the reaction mixture was subjected to reflux at $80{ }^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offerd the required products (6).

1-(4-Cyanophenyl)urea (6): ${ }^{20}$

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc,
7:3) $\mathrm{R}_{f}=0.4$; Yield 57%; white solid; m.p. 206-209 ${ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6,) $\delta 8.19$ (s, 1H), 6.81 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.74
(d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 166.9,138.7,132.8,128.7$, 118.8, 114.1 . HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O} 162.0667$ [M+H]+, found 162.0670.

General Procedure for one pot conversion of carboxylic acid to amines (7a-7e), (Scheme 4).
A solution of carboxylic acid 1 (0.500-0.819 mmol) and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml}$) was mixed with N -methylmorpholine (NMM) (1.4 equiv.) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture NaN_{3} (11.4 equiv.) and DMAP (10 mol\%) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Now, $\mathrm{H}_{2} \mathrm{O}$ (1.4 equiv.) was added and the reaction mixture was subjected to reflux at $80^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offerd the required products (7a-7e).

4-Aminobenzonitrile (7a) ${ }^{\mathbf{2 1}}$:

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 95%; white solid; m.p.83-85 ${ }^{\circ} \mathrm{C}: ~{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 7.26$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.51 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.95 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}$) δ 153.4, 133.8, 121.1, 114.0, 96.2. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} 119.0609$ [M+H]+, found 119.0603.

4-Chloroaniline (7b) ${ }^{\mathbf{2 2}}$:

(100 mg, 0.645 mmol of 4-chlorobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.6$; Yield 92%; white solid; m.p. $70-75{ }^{\circ} \mathrm{C}$: ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 8.81$ (s, 1H), 7.58 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d^{6}) δ 152.8, 139.0, 129.0, 126.0, 120.3. MS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$: calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}$ 128.0267; found, 128.02.

Aniline (7c) ${ }^{23}$:

($100 \mathrm{mg}, 0.819 \mathrm{mmol}$ of benzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.7$; Yield 93\% ;; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.04$ (m, 2H), 6.61 (m, 2H), 6.54 (td, $J=7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 149.0$, 129.3, 116.2, 114.4. MS m/z (M+H) ${ }^{+}$: calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}$ 94.0657; found, 94.06.

4-Methoxyaniline (7d) ${ }^{23}$:

($100 \mathrm{mg}, 0.657 \mathrm{mmol}$ of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 94%; white solid; m.p. $55-60{ }^{\circ} \mathrm{C}:{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 6.68(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, 3.64 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ 151.2, 142.7, 115.5, 114.9, 55.6. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO} 124.0762[\mathrm{M}+\mathrm{H}]+$, found 124.0762.

Undecan-1-amine (7e): ${ }^{24}$

($100 \mathrm{mg}, 0.500 \mathrm{mmol}$ of dodecanoic acid); TLC (Hexane/EtOAc, 8:2) R_{f} $=0.8$; Yield 87%; white solid; m.p. $15-20{ }^{0} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{6}$) $\delta 2.16(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~m}, 16 \mathrm{H}), 0.83(\mathrm{t}$, $J=8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 40.8,31.9,30.0,29.6,29.5,29.4,29.3,29.2,29.1$, 26.9, 24.8, 22.7, 14.1. MS m/z (M+H) ${ }^{+}$: calcd for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{~N} 172.2065$; found, 172.21.

General Procedure for late stage functionalization of natural products and drugs (8a-8e), (Scheme 5).

A solution of carboxylic acid 1 (0.500-0.819 mmol) and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml}$) was mixed with N -methylmorpholine (NMM) (1.4 equiv.) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture NaN_{3} (1.4 equiv.) and DMAP (10 mol\%) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Now, the natural products (podophyllotoxin, euginol, diosgenin, geraniol) and drug (fluvoxamine) (1.4 equiv.) was added and the reaction mixture was subjected to reflux at $80^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ
formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offerd the required products (8a-8e).

8-Oxо-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-5-yl (4-cyanophenyl)carbamate (8a):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 68%; white solid; m.p.323-327 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (s, $1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{dd}, J=5.8,1.2 \mathrm{~Hz}$, 2 H), 5.93 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.63 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (dd, $J=9.2$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.9,153.2,152.5,148.1,147.6,142.1,136.9,135.1,133.3,132.2$, 128.2, 118.9, 118.5, 109.7, 108.1, 106.9, 106.1, 101.6, 74.8, 71.3, 60.7, 56.0, 45.2, 43.6, 38.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na} 581.1536$ [M+Na]+, found 581.1536.

4-Allyl-2-methoxyphenyl (4-cyanophenyl)carbamate (8b):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 65%; white solid; m.p.285-290 ${ }^{\circ} \mathrm{C}$: ${ }^{1}{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d ${ }^{6}$, acquired at $60^{\circ} \mathrm{C}$) $\delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H), 6.99 (s, 1H), 6.81 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.01 (td, $J=16.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dd, $J=25.3$, $13.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 151.7$, 151.6, 143.7, 139.3, 137.8, 137.7, 133.8, 123.4, 120.7, 119.4, 118.8, 116.4, 113.5, 105.2, 56.2, 39.8. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} 309.1239$ [M+H]+, found 309.1248.

5',6a,9-Trimethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-

icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl(4methoxyphenyl)carbamate (8c):

(100 mg, 0.657 mmol of 4-methoxybenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 59%; white solid; m.p.325-330 ${ }^{\circ} \mathrm{C}: ~{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, ~ J$ $=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.41$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.66-4.55$ (m, 1H), 4.44 (dd, $J=14.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (s, 3H), $3.54-$ $3.46(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=13.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.00 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.92-1.85$ (m, 2H), $1.82-1.78$ (m, 1H), 1.74 (s, 1H), 1.70 (d, $J=4.6$ Hz, 1H), 1.67 - 1.57 (m, 6H), 1.55 - 1.44 (m, 4H), 1.22 (m, 7H), 1.06 (s, 3H), 1.00 (d, J = 6.9 $\mathrm{Hz}, 3 \mathrm{H}$), 0.81 (d, J = $4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 155.8, 153.4, 139.6, 131.1, $122.4,120.4,114.2,109.3,80.8,66.8,62.0,56.4,55.5,49.9,41.6,40.2,39.7,38.4,36.9,36.7$, 32.0, 31.8, 31.4, 30.3, 29.7, 28.8, 28.0, 20.8, 19.3, 17.1, 16.3, 14.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{NO}_{5} 564.3689[\mathrm{M}+\mathrm{H}]+$, found 564.3689.

(E)-1-(4-Cyanophenyl)-3-(2-(((5-methoxy-1-(4-

(trifluoromethyl)phenyl)pentylidene)amino)oxy)ethyl)urea (8d):

($100 \mathrm{mg}, 0.680 \mathrm{mmol}$ of 4-cyanobenzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 77%; white solid; m.p.120-123 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d ${ }^{6}$, acquired at $60{ }^{\circ} \mathrm{C}$) $\delta 9.01$ (s, 1H), 7.86 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, $J=7.7$ Hz, 2H), 7.61 (dt, $J=8.7,7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 6.38 (t, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.26 (s, 2H), 3.50 (s, 2H), 3.27 (s, 2H), 3.17 (s, 3H), 2.81 (s, 2H), 1.52 (s, 4H). ${ }^{19}$ F NMR (376 MHz, DMSO-d ${ }^{6}$) $\delta-61.37 .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }^{6}$) $\delta 157.7,155.1,145.3,139.5,133.51,127.3,127.2$ (q, $J=31.31$ Hz), 125.79-125.76 (d, $J=3.03 \mathrm{~Hz}$), 119.8, 117.9, 103.0, 73.3, 71.8, 58.1, 39.3, 29.3, 25.8, 23.1. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{3} 463.1957$ [M+H]+, found 463.1961.

(E)-3,7-Dimethylocta-2,6-dien-1-yl phenylcarbamate (8e): ${ }^{25}$

($100 \mathrm{mg}, 0.819 \mathrm{mmol}$ of benzoic acid); TLC (Hexane/EtOAc, 7:3) $\mathrm{R}_{f}=0.4$; Yield 61%; white solid; m.p. $80-85{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.96(\mathrm{~m}$, $4 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,142.6,138.0$, 131.9, 129.0, 123.7, 123.3, 118.6, 118.4, 62.0, 39.5, 26.3, 25.7, 22.7, 17.7, 16.5. HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na} 296.1626[\mathrm{M}+\mathrm{H}]+$, found 296.1634.

General Procedure for gram scale reaction

A solution of benzoic acid 1a ($5 \mathrm{~g}, 40.98 \mathrm{mmol}$) and trichlorotriazine (TCT) ($2.48 \mathrm{~g}, 13.52 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (50 ml) was mixed with N-methylmorpholine (NMM) (5.79 g , 57.37 mmol) at room temperature and stirred for 30 minutes and monitored on TLC for the consumption of TCT. To the reaction mixture $\mathrm{NaN}_{3}(3.9 \mathrm{~g}, 57.37 \mathrm{mmol})$ and DMAP (10 mol\%) were added and reaction mixture stirred for 4-5 hrs at room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Then, the aniline
 ($5.3 \mathrm{~g}, 57.37 \mathrm{mmol}$) was added and the reaction mixture was subjected to reflux at $80^{\circ} \mathrm{C}$ in an oil bath, facilitating Curtius rearrangement leading to the in situ formation of isocyanate and click coupling. The product formation was monitored by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to offered the required product 3a (yield 7.4 g, 86 \%).

Spectral copies of synthesized compounds

${ }^{1} \mathbf{H}-N M R$ of $\mathbf{1 , 3}$-diphenylurea (3a)

${ }^{13} \mathrm{C}$-NMR of $\mathbf{1 , 3}$-diphenylurea (3a)

DEPT of 1,3-diphenylurea (3a)

HRMS (ESI-TOF) of compound (3a)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1}$ H-NMR of 1-(4-methoxyphenyl)-3-phenylurea (3b)

${ }^{13}$ C-NMR of 1-(4-methoxyphenyl)-3-phenylurea (3b)

DEPT of 1-(4-methoxyphenyl)-3-phenylurea (3b)

$\stackrel{\underset{\sim}{0}}{\sim}$

HRMS (ESI-TOF) of compound (3b)

Elemental Composition Report

Single Mass Analysis

Tolerance $=3.0 \mathrm{PPM}$ /
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
10 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Minimum:

$$
\begin{array}{llll}
\text { Manimum: } & & & -1.5 \\
\text { Maximum: } & 2.0 & 3.0 & 50.0
\end{array}
$$

$$
\begin{array}{llllllll}
\text { Mass } & \text { Calc. Mass mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\
243.1140 & 243.1134 & 0.6 & 2.5 & 8.5 & 4 A
\end{array}
$$

$$
\begin{array}{llllllllll}
243.1140 & 243.1134 & 0.6 & 2.5 & 8.5 & 44.9 & \text { Norm } & \text { Conf(\%) Formula } \\
& & & & & & & \text { n/a } & \text { n/a } & \text { C14 H15 N2 O2 }
\end{array}
$$

${ }^{1} \mathrm{H}$-NMR of 1-(4-cyanophenyl)-3-phenylurea (3c)

${ }^{13} \mathrm{C}$-NMR of 1 -(4-cyanophenyl)-3-phenylurea (3c)

DEPT of 1-(4-cyanophenyl)-3-phenylurea (3c)

Abstract

HRMS (ESI-TOF) of compound (3c)

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=3.0 \mathrm{PPM} / / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
28 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)

${ }^{1}$ H-NMR of 1-(4-chlorophenyl)-3-phenylurea (3d) No $\stackrel{\text { ® }}{\sim}$

${ }^{13}$ C-NMR of 1-(4-chlorophenyl)-3-phenylurea (3d)

DEPT of 1-(4-chlorophenyl)-3-phenylurea (3d)

$\stackrel{\sim}{\circ}{ }_{\circ}^{\infty} \underset{\sim}{\sim} \ldots$
$\underset{\sim}{\circ} \underset{\sim}{0} \underset{\sim}{\circ}$

HRMS (ESI-TOF) of compound (3d)

${ }^{1}$ H-NMR of 1-(4-methoxyphenyl)-3-(4-(trifluoromethoxy)phenyl)urea (3e)

${ }^{19}$ F-NMR of 1-(4-methoxyphenyl)-3-(4-(trifluoromethoxy)phenyl)urea (3e) $\stackrel{0}{\sim}$

${ }^{13}$ C-NMR of 1-(4-methoxyphenyl)-3-(4-(trifluoromethoxy)phenyl)urea (3e)

\%	
号	
1/	1,1 cir

DEPT of 1-(4-methoxyphenyl)-3-(4-(trifluoromethoxy)phenyl)urea (3e)
$\xrightarrow[\substack{8 \\ 1 \\ 1}]{\substack{0}}$

HRMS (ESI-TOF) of compound (3e)

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
49 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:

${ }^{1} \mathrm{H}$-NMR of-3-(4-(1-(4-cyanophenyl trifluoromethoxy)phenyl)urea (3f)

${ }^{19}$ F-NMR of-3-(4-(1-(4-cyanophenyl trifluoromethoxy)phenyl)urea (3f)

${ }^{13}$ C-NMR of-3-(4-(1-(4-cyanophenyl trifluoromethoxy)phenyl)urea (3f)

DEPT of-3-(4-(1-(4-cyanophenyl trifluoromethoxy)phenyl)urea (3f)

${ }^{1} \mathrm{H}$-NMR of 1-(4-(tert-butyl)phenyl)-3-(4-methoxyphenyl)urea (3g)

${ }^{13}$ C-NMR of 1-(4-(tert-butyl)phenyl)-3-(4-methoxyphenyl)urea (3g)

\%	
过	

DEPT of 1-(4-(tert-butyl)phenyl)-3-(4-methoxyphenyl)urea (3g)

HRMS of 1-(4-(tert-butyl)phenyl)-3-(4-methoxyphenyl)urea (3g)

${ }^{1} \mathrm{H}$-NMR of 1-(4-(tert-butyl)phenyl)-3-(4-cyanophenyl)urea (3h)

DEPT of 1-(4-(tert-butyl)phenyl)-3-(4-cyanophenyl)urea (3h)

HRMS of 1-(4-(tert-butyl)phenyl)-3-(4-cyanophenyl)urea (3h)

${ }^{1} \mathrm{H}$-NMR of 1-(4-methoxyphenethyl)-3-(4-methoxyphenyl)urea (3i)
N~N~N

mмmmin

${ }^{13}$ C-NMR of 1-(4-methoxyphenethyl)-3-(4-methoxyphenyl)urea (3i)

楕登

DEPT of 1-(4-methoxyphenethyl)-3-(4-methoxyphenyl)urea (3i)

が

${ }^{1} \mathrm{H}$-NMR of 1-(4-cyanophenyl)-3-(4-methoxyphenethyl)urea (3j)

${ }^{13}$ C-NMR of 1-(4-cyanophenyl)-3-(4-methoxyphenethyl)urea (3j)

DEPT of 1-(4-cyanophenyl)-3-(4-methoxyphenethyl)urea (3j)

HRMS (ESI-TOF) of compound (3j)

Elemental Composition Report

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1} \mathrm{H}$-NMR of 1-(3,5-difluorobenzyl)-3-(4-methoxyphenyl)urea (3k)

${ }^{19}$ F-NMR of 1-(3,5-difluorobenzyl)-3-(4-methoxyphenyl)urea (3k)
$\stackrel{\stackrel{\rightharpoonup}{i}}{\stackrel{\rightharpoonup}{1}}$

${ }^{13}$ C-NMR of 1-(3,5-difluorobenzyl)-3-(4-methoxyphenyl)urea (3k)

DEPT of 1-(3,5-difluorobenzyl)-3-(4-methoxyphenyl)urea (3k)

	$\stackrel{\sim}{0}$

HRMS (ESI-TOF) of compound (3k)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons
28 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass) Elements Used:
$\begin{array}{lllll}\text { C: } 0-15 & \text { H: 0-200 } & \text { N: 0-2 } & \text { O: 0-2 } & \text { F: 0-2 }\end{array}$
F-146
200921_17 38 (0.758) Cm (38:39)

QMI DIVISION, CSIR-IIIM JAMMU Xevo G2-XS QTOF YFC2015

${ }^{1}$ H-NMR of 1-(4-cyanophenyl)-3-(3,5-difluorobenzyl)urea (31)

mion	 	N゙シ	m

${ }^{19}$ F-NMR of 1-(4-cyanophenyl)-3-(3,5-difluorobenzyl)urea (3l)
$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{\rightharpoonup}{1}}$

${ }^{13}$ C-NMR of 1-(4-cyanophenyl)-3-(3,5-difluorobenzyl)urea (3l)

DEPT of 1-(4-cyanophenyl)-3-(3,5-difluorobenzyl)urea (31)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

HRMS of 1-(4-cyanophenyl)-3-(3,5-difluorobenzyl)urea (3l)

Elemental Composition Report

Siñgle Mass Analysis

Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
28 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:

C: $0-15$	H: 0-200	N: 0-3	O: 0-1	F: 0-2

3L
QMI DIVISION, CSIR-IIIM JAMMU Xevo G2-XS QTOF YFC2015
310122_078(0.172) Cm (8)

${ }^{1} \mathrm{H}$-NMR of 1-(4-methoxyphenyl)-3-(4-methylbenzyl)urea (3m)

$$
\underbrace{\infty}_{\substack{\infty \\ \infty \\ \sim}}
$$

${ }^{13}$ C-NMR of 1-(4-methoxyphenyl)-3-(4-methylbenzyl)urea (3m)

DEPT of 1-(4-methoxyphenyl)-3-(4-methylbenzyl)urea (3m)

¢	$\stackrel{\infty}{\sim}$
\%	$\underset{\sim}{\text { ¢ }}$

${ }^{1}$ H-NMR of 1-(4-cyanophenyl)-3-(4-methylbenzyl)urea (3n)

${ }^{13}$ C-NMR of 1-(4-cyanophenyl)-3-(4-methylbenzyl)urea (3n)

DEPT of 1-(4-cyanophenyl)-3-(4-methylbenzyl)urea (3n)

Mass spectra of 1-(4-cyanophenyl)-3-(4-methylbenzyl)urea (3n)

Sample Information				
Sample Name	$: 3 \mathrm{~N}$	Sample ID		
Tray\#	$: 1$	Vial\#		$: 78$
Injection Volume	$: 0.5$	Data File		$:$ 28-JAN-22-50.lcd
Method File	$:$ MASS SCANNN	13APRIL2021.lcm	Processed by	$:$ System Administrator
Date Processed	$: 1 / 28 / 2022$	5:39:17 PM		

MS Spectrum
BG Mode:None \$Endif\$ Segment 1 - Event 1
Product Ion Scan Precursor:266.0000 CE:-10.0

BG Mode:None \$Endif\$ Segment 1 - Event 2
Product Ion Scan Precursor:265.0000 CE:10.0

${ }^{1} \mathrm{H}$-NMR of 1-(6-fluoropyridin-3-yl)-3-(4-methoxyphenyl)urea (3o)

${ }^{19}$ F-NMR of 1-(6-fluoropyridin-3-yl)-3-(4-methoxyphenyl)urea (3o)

${ }^{13}$ C-NMR of 1-(6-fluoropyridin-3-yl)-3-(4-methoxyphenyl)urea (3o)

DEPT of 1-(6-fluoropyridin-3-yl)-3-(4-methoxyphenyl)urea (3o)

HRMS of 1-(6-fluoropyridin-3-yl)-3-(4-methoxyphenyl)urea (3o)

Elemęntal Composition Report

Single Mass Analysis
Tolerance $=50.0 \mathrm{PPM} / \mathrm{DBE}: \mathrm{min}=-1.5, \mathrm{max}=50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

Monoisotopic Mass, Even Electron Ions
25 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:
C: 0-13 H: 0-100 N: 0-3 \quad O: 0-2 \quad F: 0-1
F-4 QMI DIVISION, CSIR-IIIM JAMMU 08-Apr-2022

${ }^{1}$ H-NMR of 1-(4-cyanophenyl)-3-(6-fluoropyridin-3-yl)urea (3p)

$$
\stackrel{\text { O}}{\infty}
$$

${ }^{19}$ F－NMR of 1－（4－cyanophenyl）－3－（6－fluoropyridin－3－yl）urea（3p）

8

${ }^{13}$ C－NMR of 1－（4－cyanophenyl）－3－（6－fluoropyridin－3－yl）urea（3p）

q星守名面面

DEPT of 1-(4-cyanophenyl)-3-(6-fluoropyridin-3-yl)urea (3p)

${ }^{1}$ H-NMR of 1-(4-methoxyphenyl)-3-pentylurea (3q)

${ }^{13}$ C-NMR of 1-(4-methoxyphenyl)-3-pentylurea (3q)

$\begin{aligned} & \text { ö } \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \text { à } \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{0} \end{aligned}$		以员	$\begin{aligned} & 8 \\ & \hline 8 \end{aligned}$	$\stackrel{\infty}{\underset{f}{f}}$		

DEPT of 1-(4-methoxyphenyl)-3-pentylurea (3q)

HRMS (ESI-TOF) of compound (3q)

Elemental Composition Report

Single Mass Analysis
Tolerance $=3.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
10 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)

${ }^{1} \mathrm{H}$-NMR of 1-(4-cyanophenyl)-3-pentylurea (3r)

${ }^{13} \mathrm{C}$-NMR of 1-(4-cyanophenyl)-3-pentylurea (3r)

DEPT of 1-(4-cyanophenyl)-3-pentylurea (3r)

HRMS of 1-(4-cyanophenyl)-3-pentylurea (3r)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
14 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:

$$
\begin{array}{lllllllll}
\begin{array}{l}
\text { Minimum: } \\
\text { Maximum: }
\end{array} & & & & -1.5 \\
& & 2.0 & 5.0 & 50.0 & & & & \\
\text { Mass } & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\
232.1458 & 232.1450 & 0.8 & 3.4 & 6.5 & 41.8 & \text { n/a } & \text { n/a } & \text { C13 H18 N3 } 0
\end{array}
$$

${ }^{1} \mathrm{H}$-NMR of 1-hexadecyl-3-(4-methoxyphenyl)urea (3s)

${ }^{13}$ C-NMR of 1-hexadecyl-3-(4-methoxyphenyl)urea (3s)

DEPT of 1-hexadecyl-3-(4-methoxyphenyl)urea (3s)

HRMS of 1-hexadecyl-3-(4-methoxyphenyl)urea (3s)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
10 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass) Elements Used:

${ }^{1} \mathrm{H}$-NMR of 1-(4-cyanophenyl)-3-hexadecylurea (3t)

${ }^{13} \mathrm{C}$-NMR of 1-(4-cyanophenyl)-3-hexadecylurea (3t)
$\stackrel{\infty}{0}$

DEPT of 1-(4-cyanophenyl)-3-hexadecylurea (3t)

Al

HRMS (ESI-TOF) of compound (3t)

${ }^{1}$ H-NMR of 1-(tert-butyl)-3-(4-methoxyphenyl)urea (3u)

${ }^{13}$ C-NMR of 1-(tert-butyl)-3-(4-methoxyphenyl)urea (3u)

$\stackrel{m}{\stackrel{m}{\underset{\sim}{p}}}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

DEPT of 1-(tert-butyl)-3-(4-methoxyphenyl)urea (3u)

HRMS (ESI-TOF) of compound (3u)

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
10 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:
Elements Used:
$\begin{array}{llll}\text { C: } 0-12 & \mathrm{H}: 0-200 & \mathrm{~N}: 0-2 & \mathrm{O}: 0-2\end{array}$

Minimum: Maximum:				-1.5				
		2.0	3.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(\%) Formula	
223.1452	223.1447	0.5	2.2	4.5	41.8	n/a	n/a	C12 H19 N2
O2								

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 1-(tert-butyl)-3-(4-cyanophenyl)urea (3v)

${ }^{13}$ C-NMR of 1-(tert-butyl)-3-(4-cyanophenyl)urea (3v)

DEPT of 1-(tert-butyl)-3-(4-cyanophenyl)urea (3v)

220	210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	2	10
											$\mathrm{fl}_{1}(\mathrm{ppm})$	100	90	80	70	60	50	40	30	20	10

HRMS (ESI-TOF) of compound (3v)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
9 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:
sed:
$\begin{array}{llll}\text { C: 0-12 } & \text { H: } 0-200 & \text { N: 0-3 } & \text { O: } 0-1\end{array}$
Z-9
220921_26 11 (0.242) Cm (11:12)
QMI DIVISION, CSIR-IIIM JAMMU
Xevo G2-XS QTOF YFC2015

Minimum:

Maximum:
Mass
218.1297 Calc. Mass mDa
162.0667
${ }^{1}$ H-NMR of 1-cyclobutyl-3-(4-methoxyphenyl)urea (3w)

${ }^{13}$ C-NMR of 1-cyclobutyl-3-(4-methoxyphenyl)urea (3w)
No

$\stackrel{\sim}{N}$
$\stackrel{\sim}{\bullet}$
$\stackrel{1}{2}$

DEPT of 1-cyclobutyl-3-(4-methoxyphenyl)urea (3w)

HRMS (ESI-TOF) of compound (3w)

Elemental Composition Report
Page 1
Single Mass Analysis
Tolerance $=3.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off .
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1} \mathrm{H}$-NMR of 1 -(4-cyanophenyl)-3-cyclobutylurea (3x)

${ }^{13}$ C-NMR of 1-(4-cyanophenyl)-3-cyclobutylurea (3x)

DEPT of 1-(4-cyanophenyl)-3-cyclobutylurea (3x)

HRMS (ESI-TOF) of compound (3x)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1}$ H－NMR of 1－cyclopropyl－3－（4－methoxyphenyl）urea（3y）

${ }^{13}$ C－NMR of 1－cyclopropyl－3－（4－methoxyphenyl）urea（3y）

	$\begin{gathered} \stackrel{m}{\omega} \\ \stackrel{m}{\oplus} \\ \hline \end{gathered}$			へ⿵冂䒑山向まずずす	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$

DEPT of 1-cyclopropyl-3-(4-methoxyphenyl)urea (3y)

HRMS (ESI-TOF) of compound (3y)

Elemental Composition Report

Single Mass Analysis
Tolerance $=5.0$ PPM $/ /$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons
10 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)

QMI DIVISION, CSIR-IIIM JAMMU
Xevo G2-XS QTOF YFC2015

Minimum:
Maximum:
Mass
$\begin{array}{lllll}207.1135 & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } \\ & 207.1134 & 0.1 & 0.5 & 5.5\end{array}$

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
${ }^{1}$ H-NMR of 1-(4-cyanophenyl)-3-cyclopropylurea (3z)
$\stackrel{+}{\infty} \xrightarrow[\sim]{\infty} \stackrel{\vec{o}}{\infty}$
Miminn in in in in in in in in $1 \underbrace{m}$

道

${ }^{13}$ C-NMR of 1-(4-cyanophenyl)-3-cyclopropylurea (3z)

$\stackrel{m}{\stackrel{m}{n}}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\circ}{i} \end{aligned}$			$\stackrel{\text { O}}{\stackrel{0}{0}}$	

DEPT of 1-(4-cyanophenyl)-3-cyclopropylurea (3z)

HRMS of 1-(4-cyanophenyl)-3-cyclopropylurea (3z)

${ }^{1} \mathrm{H}$-NMR of \mathbf{N}-(4-methoxyphenyl)piperazine-1-carboxamide (3aa)

$\underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim}$
$\stackrel{\underset{1}{0}}{\stackrel{O}{i}}$

${ }^{13} \mathrm{C}$-NMR of N -(4-methoxyphenyl)piperazine-1-carboxamide (3aa)

DEPT of N-(4-methoxyphenyl)piperazine-1-carboxamide (3aa)

HRMS of of \boldsymbol{N}-(4-methoxyphenyl)piperazine-1-carboxamide (3aa)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1} \mathrm{H}$-NMR of N -(4-cyanophenyl)piperazine-1-carboxamide (3ab)

${ }^{13}$ C-NMR of N -(4-cyanophenyl)piperazine-1-carboxamide (3ab)

DEPT of \boldsymbol{N}-(4-cyanophenyl)piperazine-1-carboxamide (3ab)

Mass spectra of N-(4-cyanophenyl)piperazine-1-carboxamide (3ab)

Sample Information				
Sample Name	: F 263	Sample ID		
Tray\#	:1	Vial\#		: 70
Injection Volume	: 0.5	Data File		: 28-JAN-22-58.led
Method File	: MASS SCANNN	13APRIL2021.lcm	Processed by	: System Administrato
Date Processed	: 1/28/2022 6:11:18			

MS Spectrum
BG Mode:None \$EndIf\$ Segment 1 - Event 1
Product Ion Scan Precursor:231.0000 CE:-5.0

BG Mode:None \$EndIf\$ Segment 1 - Event 2
Product Ion Scan Precursor:229.0000 CE:5.0

${ }^{1}$ H-NMR of tert-butyl 4-((4-methoxyphenyl)carbamoyl)piperazine-1-carboxylate (3ac)

$\vec{~}$

I

${ }^{13}$ C-NMR of tert-butyl 4-((4-methoxyphenyl)carbamoyl)piperazine-1-carboxylate (3ac)

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { N} 0 \underset{O}{0} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \text { ọ } \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & 9_{0}^{0} 8 \\ & \stackrel{0}{4} \underset{7}{7} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\sigma}}{\underset{i}{\mid}}$	$\underset{\substack{ \pm \\ \hline \\ \hline}}{ }$	$\stackrel{8}{08}$	

DEPT of tert-butyl 4-((4-methoxyphenyl)carbamoyl)piperazine-1-carboxylate (3ac)

${ }^{1} \mathrm{H}$-NMR of N -(4-cyanophenyl)-4-methylpiperazine-1-carboxamide (3ad)

${ }^{13}$ C-NMR of N-(4-cyanophenyl)-4-methylpiperazine-1-carboxamide (3ad)

DEPT of N-(4-cyanophenyl)-4-methylpiperazine-1-carboxamide (3ad)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

HRMS (ESI-TOF) of compound (3ad)

Elemental Composition Report

${ }^{1} \mathrm{H}$-NMR of 4-cyclopropyl- N -(4-methoxyphenyl)piperazine-1-carboxamide (3ae)

${ }^{13} \mathrm{C}$-NMR of 4-cyclopropyl-N-(4-methoxyphenyl)piperazine-1-carboxamide (3ae)

DEPT of 4-cyclopropyl- N -(4-methoxyphenyl)piperazine-1-carboxamide (3ae)

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{0} \\
i
\end{array}
\end{aligned}
$$

Mass spectra of 4-cyclopropyl-N-(4-methoxyphenyl)piperazine-1-carboxamide (3ae)

<Chromatogram>

${ }^{1} \mathrm{H}$-NMR of \boldsymbol{N}-(4-cyanophenyl)-4-cyclopropylpiperazine-1-carboxamide (3af)

${ }^{13}$ C-NMR of N -(4-cyanophenyl)-4-cyclopropylpiperazine-1-carboxamide (3af)

DEPT of N-(4-cyanophenyl)-4-cyclopropylpiperazine-1-carboxamide (3af)

Mass spectra of N-(4-cyanophenyl)-4-cyclopropylpiperazine-1-carboxamide (3af)

BG Mode:Calc \$Endif\$ Segment 1 - Event 2

${ }^{1} \mathrm{H}$-NMR of 4-cyclopropyl-N-phenylpiperazine-1-carboxamide (3ag)

${ }^{13}$ C-NMR of 4-cyclopropyl-N-phenylpiperazine-1-carboxamide (3ag)

	1	1	1	1	1	1	1	1	1	1	1 1	1	1			1	1	1			1	T
220	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10	0

DEPT of 4-cyclopropyl-N-phenylpiperazine-1-carboxamide (3ag)

HRMS of 4-cyclopropyl-N-phenylpiperazine-1-carboxamide (3ag)

${ }^{1} \mathrm{H}$-NMR of 1-phenyl-3-(o-tolyl)urea (3ah)

${ }^{13}$ C-NMR of 1-phenyl-3-(o-tolyl)urea (3ah)

 figifinion

DEPT of 1-phenyl-3-(o-tolyl)urea (3ah)

HRMS of 1-phenyl-3-(o-tolyl)urea (3ah)

${ }^{1} \mathrm{H}$-NMR of 1-phenyl-3-(m-tolyl)urea (3ai)

©
$\underset{\sim}{\underset{1}{\text { q. }}} \underset{\sim}{\text { ® }}$

${ }^{13}$ C-NMR of 1-phenyl-3-(m-tolyl)urea (3ai)

DEPT of 1-phenyl-3-(m-tolyl)urea (3ai)

$\stackrel{\stackrel{8}{7}}{\stackrel{1}{7}}$

HRMS of 1-phenyl-3-(m-tolyl)urea (3ai)

${ }^{1}$ H-NMR of 1-(5-chloro-2-methoxyphenyl)-3-phenylurea (3aj)

$$
\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{m}
$$

${ }^{13}$ C-NMR of of 1-(5-chloro-2-methoxyphenyl)-3-phenylurea (3aj)

[^0]
DEPT of 1-(5-chloro-2-methoxyphenyl)-3-phenylurea (3aj)

HRMS of 1-(5-chloro-2-methoxyphenyl)-3-phenylurea (3aj)

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0 \mathrm{PPM}$, DBE: $\min =-1.5, \max =500$
Element prediction: Off
Number of isotope peaks used for i -FIT $=3$
Monoisotopic Mass, Even Electron Ions
19 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:

| C: $0-14$ | H: 0-100 | N: 0-2 | O: 0-2 | Cl: 0-1 |
| :--- | :--- | :--- | :--- | :--- |l

${ }^{1} \mathrm{H}$-NMR of 1-phenyl-3-undecylurea (3ak)

${ }^{13}$ C-NMR of 1-phenyl-3-undecylurea (3ak)

$\begin{aligned} & \stackrel{\rightharpoonup}{O} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{2} \end{aligned}$		$\underset{N}{\infty}$	$\stackrel{\otimes}{\square}$	

[^1]
DEPT of 1-phenyl-3-undecylurea (3ak)

$\stackrel{\square}{\square}$	\propto	\% 8 i̛m
¢	7	mix
11		1

HRMS of 1-phenyl-3-undecylurea (3ak)

${ }^{1} \mathrm{H}$-NMR of 1-(3-bromo-4-methylphenyl)-3-undecylurea (3al)

${ }^{13} \mathrm{C}$-NMR of 1-(3-bromo-4-methylphenyl)-3-undecylurea (3al)

DEPT of 1-(3-bromo-4-methylphenyl)-3-undecylurea (3al)

Mass spectra of 1-(3-bromo-4-methylphenyl)-3-undecylurea (3al)

BG Mode:Averaged 0.017-0.524(2-32)\$EndIf\$ Segment 1 - Event 2 .

${ }^{1}$ H-NMR of (E)-1-phenyl-3-styrylurea (3am)
$\stackrel{N}{m}$

${ }^{13}$ C-NMR of (E)-1-phenyl-3-styrylurea (3am)

```
lllom
```


DEPT of (E)-1-phenyl-3-styrylurea (3am)

HRMS of (E)-1-phenyl-3-styrylurea (3am)

${ }^{1}$ H-NMR of (E)-1-hexadecyl-3-styrylurea (3an)

${ }^{13}$ C-NMR of (E)-1-hexadecyl-3-styrylurea (3an)

DEPT of of (E)-1-hexadecyl-3-styrylurea (3an)

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$-NMR of (E)-1-(pyrimidin-2-yl)-3-styrylurea (3ao)
$\stackrel{\text { Nor }}{\underset{7}{7}}$
人
$\stackrel{セ}{\sim} \underset{\sim}{\sim}$

${ }^{13}$ C-NMR of (E)-1-(pyrimidin-2-yl)-3-styrylurea (3ao)

DEPT of (E)-1-(pyrimidin-2-yl)-3-styrylurea (3ao)

HRMS of (E)-1-(pyrimidin-2-yl)-3-styrylurea (3ao)

${ }^{1} \mathbf{H}$-NMR of phenyl (4-cyanophenyl)carbamate (4a)

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

${ }^{13} \mathrm{C}$-NMR of phenyl (4-cyanophenyl)carbamate (4a)

DEPT of phenyl (4-cyanophenyl)carbamate (4a)

$\underset{\sim}{m}$	∞
$\underset{\sim}{m}$	$\stackrel{\infty}{m}$
$\underset{\sim}{m}$	$\stackrel{\infty}{\infty}$
$=$	$\underset{\sim}{m}$

そ~8
qug

${ }^{1} \mathbf{H}$－NMR of 4－（trifluoromethoxy）phenyl（4－methoxyphenyl）carbamate（4b）

$$
\begin{aligned}
& \text { べ入〉y }
\end{aligned}
$$

$\stackrel{\infty}{\infty} \stackrel{n}{1}$

${ }^{13}$ C－NMR of 4－（trifluoromethoxy）phenyl（4－methoxyphenyl）carbamate（4b）

DEPT of 4-(trifluoromethoxy)phenyl (4-methoxyphenyl)carbamate (4b)

HRMS (ESI-TOF) of compound (4b)

Elemental Composition Report

Page 1

${ }^{1} \mathrm{H}$-NMR of 4-(trifluoromethoxy)phenyl (4-cyanophenyl)carbamate (4c)

${ }^{19}$ F-NMR of 4-(trifluoromethoxy)phenyl (4-cyanophenyl)carbamate (4c) $\stackrel{\sim}{\stackrel{1}{\sim}}$
 |
${ }^{13}$ C－NMR of 4－（trifluoromethoxy）phenyl（4－cyanophenyl）carbamate（4c）

上	あ			ষmN
$\stackrel{\square}{\square}$	$\xrightarrow{\circ}$		N	\％f f
\because	『	ごコ		

DEPT of 4－（trifluoromethoxy）phenyl（4－cyanophenyl）carbamate（4c）

Mass spectra of 4-(trifluoromethoxy)phenyl (4-cyanophenyl)carbamate (4c)

- Labmandutions Analysis Report

<Sample Information>

Sample Name	4C
Sample ID	
Data Filename	28-JAN-22-57.Icd
Method Filename	MASS SCANNN 13APRIL2021.Icm
Batch Filename	$\vdots 28.01 .2022 .1 c b$
Vial \#	$1-85$
Injection Volume	0.5 uL
Date Acquired	$11 / 28 / 2022$ 6:00:46 PM
Date Processed	$: 1 / 28 / 2022$ 6:01:47 PM

Sample Type : Unknown

Acquired by : System Administrator Processed by : System Administrator
<Chromatogram>

${ }^{1} \mathrm{H}$-NMR of 4-isopropylphenyl (4-methoxyphenyl)carbamate (4d)

$\stackrel{n}{\sim}$

${ }^{13} \mathrm{C}$-NMR of 4-isopropylphenyl (4-methoxyphenyl)carbamate (4d)

DEPT of 4-isopropylphenyl (4-methoxyphenyl)carbamate (4d)

HRMS of 4-isopropylphenyl (4-methoxyphenyl)carbamate (4d)

Eleinental Composition Report

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
53 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: 0-17 } & \mathrm{H}: 0-200 & \mathrm{~N}: 0-1 & \mathrm{O}: 0-3 & \mathrm{Cl}: ~ & 0-2 \\ \text { QMI DIVISION, CSIR-IIIM JAMMU }\end{array}$
FINT W

100

\%
308.1273

${ }^{1} \mathrm{H}$-NMR of butyl (4-methoxyphenyl)carbamate (4e)

${ }^{13}$ C-NMR of butyl (4-methoxyphenyl)carbamate (4e)

DEPT of butyl (4-methoxyphenyl)carbamate (4e)

HRMS of butyl (4-methoxyphenyl)carbamate (4e)

${ }^{1}$ H-NMR of butyl (4-cyanophenyl)carbamate (4f)

${ }^{13}$ C-NMR of butyl (4-cyanophenyl)carbamate (4f)

	1	1	1	1	1	1	1	1	1	$1{ }^{1}$	1		1	1		1	1	1		
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

DEPT of butyl (4-cyanophenyl)carbamate (4f)

HRMS (ESI-TOF) of compound (4f)

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1} \mathrm{H}$-NMR of isopropyl (4-cyanophenyl)carbamate (4g)

${ }^{13}$ C-NMR of isopropyl (4-cyanophenyl)carbamate (4g)

DEPT of isopropyl (4-cyanophenyl)carbamate (4g)

${ }^{1}$ H-NMR of S-phenyl (4-methoxyphenyl)carbamothioate (4h)

${ }^{13} \mathrm{C}$-NMR of S-phenyl (4-methoxyphenyl)carbamothioate (4h)

DEPT of S-phenyl (4-methoxyphenyl)carbamothioate (4h)

HRMS of S-phenyl (4-methoxyphenyl)carbamothioate (4h)

${ }^{1} \mathrm{H}$-NMR of S-phenyl (4-cyanophenyl)carbamothioate (4i)

${ }^{13}$ C-NMR of S-phenyl (4-cyanophenyl)carbamothioate (4i)

DEPT of S-phenyl (4-cyanophenyl)carbamothioate (4i)

$$
\begin{aligned}
& \stackrel{m}{m} \underset{\sim}{\infty} \underset{\sim}{0} \stackrel{0}{\sim} \stackrel{\infty}{\sim}
\end{aligned}
$$

HRMS of S-phenyl (4-cyanophenyl)carbamothioate (4i)

${ }^{1}$ H-NMR of S-dodecyl (4-methoxyphenyl)carbamothioate (4j)

${ }^{13} \mathrm{C}$-NMR of S-dodecyl (4-methoxyphenyl)carbamothioate (4j)

DEPT of S-dodecyl (4-methoxyphenyl)carbamothioate (4j)

$\stackrel{\sim}{\stackrel{m}{\underset{1}{\square}}}$

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

HRMS (ESI-TOF) of compound (4 j)

Elemental Composition Report

Single Mass Analysis

Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
13 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)

C: 0-20	H: 0-200	N: 0-1	O: 0-2	S: 0-1

F-158
291021_11 14 (0.293) Cm (14:16)

QMI DIVISION. CSIR-IIIM JAMMU
291021_11 14 (0.293) Cm (14:16)
Xevo G2-XS QTOF YFC2015

${ }^{1} \mathrm{H}$-NMR of S-dodecyl (4-cyanophenyl)carbamothioate (4k)

${ }^{13}$ C-NMR of S-dodecyl (4-cyanophenyl)carbamothioate (4k)

DEPT of S-dodecyl (4-cyanophenyl)carbamothioate (4k)

1	1	1			1		1			1	1	1	1		1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ (\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10

HRMS (ESI-TOF) of compound (4k)

Elemental Composition Report

Monoisotopic Mass, Even Electron Ions
13 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:
C. $0-20$
$\begin{array}{lllll}\text { C: } 0-20 & \text { H: 0-200 } & \text { N: 0-2 } & \text { O: } 0-1 & \text { S: } 0-1\end{array}$
281021_16 7 (0.155) Cm (7:8)
QMI DIVISION, CSIR-IIIM JAMMU Xevo G2-XS QTOF YFC2015

	0	200	250	300	350	400	450	500	550	
Minimum:				300						
Maximum:				-1.5						
		2.0	3.0	50.0						
$\begin{aligned} & \text { Mass } \\ & 347.2159 \end{aligned}$	$\begin{aligned} & \text { Calc. Mass } \\ & 347.2157 \end{aligned}$					Norm n/a	$\begin{aligned} & \text { Conf (\%) } \\ & \mathrm{n} / \mathrm{a} \end{aligned}$	Formula		
		$\begin{aligned} & \text { mol } \\ & 0.2 \end{aligned}$	$\begin{aligned} & \text { PPM } \\ & 0.6 \end{aligned}$	DBE	i-FIT					
				6.5	36.1					

${ }^{1} \mathrm{H}$-NMR of S-hexadecyl (4-methoxyphenyl)carbamothioate (4l)

${ }^{13}$ C-NMR of S-hexadecyl (4-methoxyphenyl)carbamothioate (41)

DEPT of S-hexadecyl (4-methoxyphenyl)carbamothioate (41)

HRMS (ESI-TOF) of compound (4l)

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM $/ \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
13 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:

${ }^{1} \mathrm{H}$-NMR of phenyl (E)-styrylcarbamate (4m)

${ }^{13}$ C-NMR of phenyl (E)-styrylcarbamate (4m)

DEPT of phenyl (E)-styrylcarbamate (4m)

HRMS of phenyl (E)-styrylcarbamate (4m)

Elemental Composition Repor

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

Monoisotopic Mass, Even Electron Ions
9 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used

C: 0-15	H: 0-200	N: 0-1	O: 0-2

ACM 41	QMI DIVISION. CSIR-IIIM JAMMU	$28-J a n-2022$
	Xevo G2-XS QTOF YFC2015	12.30 .55
$280122 _228(0.172)$ Cm (8)	$1:$ TOF MS ES+	
$1.42 \mathrm{e}+006$		

${ }^{1} \mathrm{H}$-NMR of S-hexadecyl (E)-styrylcarbamothioate (4n)

${ }^{13}$ C-NMR of S-hexadecyl (E)-styrylcarbamothioate (4n)

DEPT of S-hexadecyl (E)-styrylcarbamothioate (4n)

HRMS (ESI-TOF) of compound (4n)

Elemental Composition Report
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1} \mathrm{H}$-NMR of 4-methoxy-N-undecylbenzamide (5)

${ }^{13} \mathrm{C}$-NMR of 4-methoxy-N-undecylbenzamide (5)

DEPT of 4-methoxy-N-undecylbenzamide (5)

$\stackrel{\circ}{\text { ® }}$	$\stackrel{\square}{\square}$
	\%
I	

${ }^{1} \mathrm{H}$-NMR of 1 -(4-cyanophenyl)urea (6)

${ }^{13} \mathrm{C}$-NMR of $\mathbf{1}$-(4-cyanophenyl)urea (6)

DEPT of 1-(4-cyanophenyl)urea (6)

$$
\begin{aligned}
& \stackrel{\infty}{\infty} \underset{\sim}{\sim} \\
& \stackrel{\sim}{\sim} \\
& \stackrel{\sim}{\sim}
\end{aligned}
$$

HRMS (ESI-TOF) of compound (6)

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
9 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass)
Elements Used:

C: 0-8	$\mathrm{H}: 0-200$	$\mathrm{~N}: 0-3$	$\mathrm{O}: 0-1$

F-183 QMI DIVISION, CSIR-IIIM JAMMU
210921_20 12 (0.259) Cm (12)
Xevo G2-XS QTOF YFC2015

${ }^{1} \mathrm{H}$-NMR of $\mathbf{4}$-aminobenzonitrile (7a)

${ }^{13}$ C-NMR of 4-aminobenzonitrile (7a)

DEPT of 4-aminobenzonitrile (7a)

HRMS (ESI-TOF) of compound (7a)

Elemental Composition Report

Single Mass Analysis
Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

${ }^{1} \mathrm{H}$-NMR of 4-chloroaniline (7b)

DEPT of 4-chloroaniline (7b)

$$
\begin{array}{ll}
\stackrel{0}{\mathrm{o}} & \stackrel{m}{\hat{0}} \\
\underset{\sim}{1} & \stackrel{1}{1}
\end{array}
$$

${ }^{1} \mathrm{H}$-NMR of aniline (7c)

${ }^{13} \mathrm{C}$-NMR of aniline (7c)

DEPT of aniline (7c)

${ }^{1} \mathrm{H}$-NMR of 4-methoxyaniline (7d)

$$
\begin{aligned}
& \text { - } 0
\end{aligned}
$$

${ }^{13}$ C-NMR of 4-methoxyaniline (7d)
-151.22
-142.73
n 8
ñ
$\underset{\sim}{7}-1$

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
120	210	200	190	180	170	160	150	140	130	120	$\stackrel{110}{\mathrm{f} 1(\mathrm{ppm})}$	100	90	80	70	60	50	40	30	20	10

DEPT of 4-methoxyaniline (7d)

\begin{abstract}

HRMS of 4-methoxyaniline (7d)

${ }^{1} \mathrm{H}$-NMR of undecan-1-amine (7e)

${ }^{13} \mathrm{C}$-NMR of undecan-1-amine (7e)

DEPT of undecan-1-amine (7e)

${ }^{1} \mathrm{H}$-NMR
of
8-oxo-9-(3,4,5-trimethoxyphenyl)-5,5a,6,8,8a,9-hexahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-5-yl (4-cyanophenyl)carbamate (8a)

hexahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-5-yl (4-cyanophenyl)carbamate (8a)

Elemental Composition Report
Single Mass Analysis
Tolerance $=3.0 \mathrm{PPM} /$ Page 1
Element prediction: Off $\min =-1.5, \max =50.0$
Number of isotope peaks used for i-FIT $=3$

Monoisotopic Mass, Even Electron Ions
71 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass) Elements Used:
$\begin{array}{lllll}\text { C: } 0-30 & H: 0-200 & N: 0-2 & 0 & 0-9\end{array} \quad \mathrm{Na}: 0-1$
F-194
QMI DIVISION, CSIR-IIIM JAMMU
200921_10 17 (0.363) Cm (17) Xevo G2-XS QTOF YFC2015

Minimum:
Maximum:
Mass
$\begin{array}{llllllll} & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula }\end{array}$

${ }^{1}$ H-NMR of 4-allyl-2-methoxyphenyl (4-cyanophenyl)carbamate (8b)

$\stackrel{\text { in }}{\stackrel{\circ}{0}}$

$$
\underset{\sim}{\text { Bigng iqn }}
$$

${ }^{13}$ C-NMR of 4-allyl-2-methoxyphenyl (4-cyanophenyl)carbamate (8b)

		1	1					1	10,		1	1		1	1	1			
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

DEPT of 4-allyl-2-methoxyphenyl (4-cyanophenyl)carbamate (8b)

HRMS of 4-allyl-2-methoxyphenyl (4-cyanophenyl)carbamate (8b)

${ }^{1} H-N M R \quad$ of $\quad 5^{\prime}, 6 a, 9-t r i m e t h y l-1,3,3 ', 4,4 ', 5,5 ', 6,6 a, 6 b, 6 ', 7,8,8 a, 8 b, 9,11 a, 12,12 a, 12 b-~$ icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl methoxyphenyl)carbamate (8c)

${ }^{13}$ C-NMR of $\quad{ }^{\prime}, 6 a, 9-t r i m e t h y l-1,3,3 ', 4,4 ', 5,5 ', 6,6 a, 6 b, 6 ', 7,8,8 a, 8 b, 9,11 a, 12,12 a, 12 b-~$ icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl methoxyphenyl)carbamate (8c)

DEPT
of
5',6a,9-trimethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl methoxyphenyl)carbamate (8c)

HRMS of $\mathbf{5}^{\prime}, 6 a, 9-$ trimethyl-1,3,3',4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl methoxyphenyl)carbamate (8c)

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
16 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass) Elements Used:
C: 0-35 H: 0-200 \quad N: 0-1 \quad O: 0-5

F-185 B	QMI DIVISION, CSIR-IIIM JAMMU
Xevo G2-XS QTOF YFC2015	

$\begin{array}{llllllllll}\text { Mass } & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\ 564.3689 & 564.3689 & 0.0 & 0.0 & 11.5 & 37.3 & \text { n/a } & \text { n/a } & \text { C } 35 \text { H50 N } 05\end{array}$
(E)-1-(4-cyanophenyl)-3-(2-(((5-methoxy-1-(4-

```
\({ }^{1} \mathrm{H}\)-NMR
of (trifluoromethyl)phenyl)pentylidene)amino)oxy)ethyl)urea (8d)
```

```
Minimum:
```

Minimum:
Maximum:
Maximum:

${ }^{19}$ F-NMR
of
(E)-1-(4-cyanophenyl)-3-(2-(((5-methoxy-1-(4(trifluoromethyl)phenyl)pentylidene)amino)oxy)ethyl)urea (8d)

${ }^{13}$ C-NMR
of
(E)-1-(4-cyanophenyl)-3-(2-(((5-methoxy-1-(4(trifluoromethyl)phenyl)pentylidene)amino)oxy)ethyl)urea (8d)

${ }^{1} \mathrm{H}$-NMR of (E)-3,7-dimethylocta-2,6-dien-1-yl phenylcarbamate (8e)

$$
\begin{aligned}
& \text { mপ No No }
\end{aligned}
$$

${ }^{13}$ C-NMR of (E)-3,7-dimethylocta-2,6-dien-1-yl phenylcarbamate (8e)

DEPT of (E)-3,7-dimethylocta-2,6-dien-1-yl phenylcarbamate (8e)

Controlled experiment (Scheme 7).

Exp. 1: A solution of benzoic acid 1a (100 $\mathrm{mg}, 0.819 \mathrm{mmol}$) and trichlorotriazine (TCT) (0.33 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}$ (20 ml) was mixed with N-methylmorpholine
(NMM) (1.4 equiv.) at room temperature and
 stirred for 30 minutes and monitored on TLC for the consumption of TCT. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to purify the intermediate. The intermediate was monitored subjected to GC-MS study, where the peak having at t_{R} of 9.790 min, correspond to benzoic anhydride ${ }^{26}\left(\mathbf{I}_{\mathbf{2}}\right)$. The intermediate was also analysed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMRS

Spectral data of benzoic anhydride (\mathbf{I}_{2}):

(100 mg, 0.819 mmol of benzoic acid); TLC (Hexane/EtOAc, 7:3) R_{f} $=0.4$; viscous, colourless : 'H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 162.4,134.6,130.5,128.9,128.8 ;$ HRMS (ESI+TOF) calcd. for: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na} 249.0528[\mathrm{M}+\mathrm{H}]^{+}$, found 249.0535

GCMS report of intermediate (I_{2}):

${ }^{1} \mathrm{H}$-NMR of benzoic anhydride (I_{2}):

${ }^{13} \mathrm{C}$-NMR of benzoic anhydride (I_{2}):

DEPT of benzoic anhydride (I_{2}):

HRMS REPORT of benzoic anhydride (\mathbf{I}_{2}):

Exp 2: In the next controlled experiment, to the isolated benzoic anhydride, NaN_{3} (1.4 equiv.) and DMAP (10 mol\%) were added and reaction mixture stirred for $4-5 \mathrm{hrs}$ at

Reaction and conditions: Condition ' b ' DMAP (cat. amount), NaN_{3} ($1.147 \mathrm{mmol}, 1.4$ equiv.), rt room temperature and observed for the formation of acyl azide 2 and consumption of benzoic acid by TLC. Reaction mixture was subjected to rota vapour to evaporate $\mathrm{CH}_{3} \mathrm{CN}$ and then extraction with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under pressure to obtain the crude product which was then purified by flash column chromatography using ethyl acetate and hexane to purify the intermediate. The intermediate was monitored subjected to GC-MS study, where the peak having at t_{R} of 6.027 min the mass peak indicating the formation of benzoyl azide ${ }^{27}$. The intermediate was also analysed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR.

GCMS report of intermediate (2):

\ll Target \gg
Line\#:4 R Time:6.025(Scan\#:406) MassPeaks:267
RawMode:Averaged 6.020-6.030(405-407) BasePeak:119.05(229756)
BGMode:Calc. fromPeak Group 1 -Event 1 Q3 Scan

Spectral data of benzoyl azide (2):

(100 mg of benzoic acid); TLC (Hexane/EtOAc, 9:1) $\mathrm{R}_{\mathrm{f}}=0.6$; colourless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}$) $\delta 7.97-7.95$ (m, 2H), 7.76 - 7.70 (m, $1 \mathrm{H}), 7.59$ - $7.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 153.00, 140.17, 129.24, 122.27, 118.66.

${ }^{1} \mathrm{H}$-NMR of benzoyl azide (2):

${ }^{13}$ C-NMR of benzoyl azide (2):

DEPT of benzoyl azide (2):
N®
N․

References:

1. Bao, J.; Kuik, D.; Tranmer, G. K., An efficient one-pot synthesis of $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted phenylureas and N -aryl carbamates using hydroxylamine-O-sulfonic acid. Tetrahedron 2018, 74, 5546-5553.
2. Kumar, A.; Kumar, N.; Sharma, R.; Bhargava, G.; Mahajan, D., Direct Conversion of Carboxylic Acids to Various Nitrogen-Containing Compounds in the One-Pot Exploiting Curtius Rearrangement. The Journal of Organic Chemistry 2019, 84, 11323-11334.
3. Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A., A General Method for the Synthesis of Unsymmetrically Substituted Ureas via Palladium-Catalyzed Amidation. Organic Letters 2009, 11, 947950.
4. Kulkarni, A. R.; Garai, S.; Thakur, G. A., Scalable, One-Pot, Microwave-Accelerated Tandem Synthesis of Unsymmetrical Urea Derivatives. The Journal of Organic Chemistry 2017, 82, 992-999.
5. Linclau, B.; Sing, A. K.; Curran, D. P., Organic-Fluorous Phase Switches: A Fluorous Amine Scavenger for Purification in Solution Phase Parallel Synthesis. The Journal of Organic Chemistry 1999, 64, 2835-2842.
6. Zhang, W.; Lu, Y., 96-Well Plate-to-Plate Gravity Fluorous Solid-Phase Extraction (F-SPE) for Solution-Phase Library Purification. Journal of Combinatorial Chemistry 2007, 9, 836-843.
7. Qin, C.; Su, Y.; Shen, T.; Shi, X.; Jiao, N., Splitting a Substrate into Three Parts: Gold-Catalyzed Nitrogenation of Alkynes by C®C and C®C Bond Cleavage. Angewandte Chemie International Edition 2016, 55, 350-354.
8. Groszek, G., A Convenient Method of Synthesis of Unsymmetrical Urea Derivatives. Organic Process Research \& Development 2002, 6, 759-761.
9. McCreanor, N. G.; Stanton, S.; Bower, J. F., Capture-Collapse Heterocyclization: 1,3-Diazepanes by $\mathrm{C}-\mathrm{N}$ Reductive Elimination from Rhodacyclopentanones. Journal of the American Chemical Society 2016, 138, 11465-11468.
10. Zhang, Y.; Xie, C.; Liu, Y.; Shang, F.; Shao, R.; Yu, J.; Wu, C.; Yao, X.; Liu, D.; Wang, Z., Synthesis, biological activities and docking studies of pleuromutilin derivatives with piperazinyl urea linkage. Journal of Enzyme Inhibition and Medicinal Chemistry 2021, 36, 764-775.
11. Dong, X.-W.; Zhang, J.-K.; Xu, L.; Che, J.-X.; Cheng, G.; Hu, X.-B.; Sheng, L.; Gao, A.-H.; Li, J.; Liu, T.; Hu, Y.-Z.; Zhou, Y.-B., Covalent docking modelling-based discovery of tripeptidyl epoxyketone proteasome inhibitors composed of aliphatic-heterocycles. European Journal of Medicinal Chemistry 2019, 164, 602-614.
12. Piana, F.; Case, D. H.; Ramalhete, S. M.; Pileio, G.; Facciotti, M.; Day, G. M.; Khimyak, Y. Z.; Angulo, J.; Brown, R. C. D.; Gale, P. A., Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR. Soft Matter 2016, 12, 4034-4043.
13. Chamni, S.; Zhang, J.; Zou, H., Benign synthesis of unsymmetrical arylurea derivatives using 3substituted dioxazolones as isocyanate surrogates. Green Chemistry Letters and Reviews 2020, 13, 246257.
14. Reuther, J. F.; Novak, B. M., Evidence of Entropy-Driven Bistability through 15N NMR Analysis of a Temperature- and Solvent-Induced, Chiroptical Switching Polycarbodiimide. Journal of the American Chemical Society 2013, 135, 19292-19303.
15. Okazaki, S.; Noguchi-Yachide, T.; Sakai, T.; Ishikawa, M.; Makishima, M.; Hashimoto, Y.; Yamaguchi, T., Discovery of N-(1-(3-(4-phenoxyphenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamides as novel acetyl-CoA carboxylase 2 (ACC2) inhibitors with peroxisome proliferator-activated receptor α / δ (PPARa/ס) dual agonistic activity. Bioorganic \& Medicinal Chemistry 2016, 24, 5258-5269.
16. Biswas, I. H.; Biswas, S.; Islam, M. S.; Riyajuddin, S.; Sarkar, P.; Ghosh, K.; Islam, S. M., Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO2 fixation. New Journal of Chemistry 2019, 43, 14643-14652.
17. Kumar, S. V.; Ma, D., Synthesis of N-(Hetero)aryl Carbamates via Cul/MNAO Catalyzed CrossCoupling of (Hetero)aryl Halides with Potassium Cyanate in Alcohols. The Journal of Organic Chemistry 2018, 83, 2706-2713.
18. Hou, F.; Du, X.-P.; Alduma, A. I.; Li, Z.-F.; Huo, C.-D.; Wang, X.-C.; Wu, X.-F.; Quan, Z.-J., Disulfide Promoted C-P Bond Cleavage of Phosphoramide: "P" Surrogates to Synthesize Phosphonates and Phosphinates. Advanced Synthesis \& Catalysis 2020, 362, 4755-4760.
19. Yan, Z.; Tian, W.; Zeng, F.; Dai, Y., 5H-3-oxa-Octafluoropentanesulfonyl fluoride: a novel and efficient condensing agent for esterification, amidation and anhydridization. Tetrahedron Letters 2009, 50, 2727-2729.
20. Boiocchi, M.; Fabbrizzi, L.; Garolfi, M.; Licchelli, M.; Mosca, L.; Zanini, C., Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal 2009, 15, 11288-11297.
21. Krishnan, S.; Patel, P. N.; Balasubramanian, K. K.; Chadha, A., Yeast supported gold nanoparticles: an efficient catalyst for the synthesis of commercially important aryl amines. New Journal of Chemistry 2021, 45, 1915-1923.
22. Abdullah, F. O.; Behrouzi, L.; Kaboudin, B., A novel synthesis of highly stable palladium nanoparticles and their application in the reduction of nitroaromatic compounds. Materials Research Express 2021, 8, 095002.
23. Gaikwad, N. B.; Bansod, S.; Mara, A.; Garise, R.; Srinivas, N.; Godugu, C.; Yaddanapudi, V. M., Design, synthesis, and biological evaluation of N -(4-substituted)-3-phenylisoxazolo[5,4-d]pyrimidin-4amine derivatives as apoptosis-inducing cytotoxic agents. Bioorganic \& Medicinal Chemistry Letters 2021, 49, 128294.
24. Haddenham, D.; Pasumansky, L.; DeSoto, J.; Eagon, S.; Singaram, B., Reductions of Aliphatic and Aromatic Nitriles to Primary Amines with Diisopropylaminoborane. The Journal of Organic Chemistry 2009, 74, 1964-1970.
25. Stock, C.; Brückner, R., Mild and High-Yielding Molybdenum(VI) Dichloride Dioxide-Catalyzed Formation of Mono-, Di-, Tri-, and Tetracarbamates from Alcohols and Aromatic or Aliphatic Isocyanates. Advanced Synthesis \& Catalysis 2012, 354, 2309-2330.
26. Deng, X.-Z.; Chen, Z.-Y.; Song, Y.; Xue, F.; Yamane, M.; Yue, Y.-N., Direct Access to $\alpha, \beta-$ Unsaturated Ketones via Rh/MgCl2-Mediated Acylation of Vinylsilanes. The Journal of Organic Chemistry 2021, 86, 12693-12704.
27. Basavaprabhu; Narendra, N.; Lamani, R. S.; Sureshbabu, V. V., T3P ${ }^{\circledR}$ (propylphosphonic anhydride) mediated conversion of carboxylic acids into acid azides and one-pot synthesis of ureidopeptides. Tetrahedron Letters 2010, 51, 3002-3005.

[^0]:

[^1]:

