Supporting Information

Electrochemical thiocyanation of barbituric acids

Oleg V. Bityukov,¹ Andrey S. Kirillov,¹ Pavel Yu. Serdyuchenko,^{1,3} Maria A. Kuznetsova,² Valentina N. Demidova,² Vera A. Vil',^{*1} Alexander O. Terent'ev^{*1}

 ¹ N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
 [phone +7 (499) 1356428; fax, +7 (499) 1355328, e-mail, alterex@yandex.ru]
 ² All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
 ³ D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation

Table of contents

General materials and methods	S2
The reaction setup	S4
Table S1. Detailed optimization of the reaction conditions	S6
Experimental Procedures for Table 1	S7
Experimental Procedures for Scheme 3	S9
The influence of the current density on 2a yield (top)	S9
The recovery of 2a (bottom).	S9
Experimental Procedure for Scheme 4	S10
Experimental Procedures for Scheme 5	S18
Experimental procedure for Figure 1	S21
Experimental procedures for Scheme 6	S22
Control ON/OFF experiment	S25
Bioassay of fungicidal activity	S26
References	S26
Copies of ¹ H NMR, ¹³ C NMR and HRMS spectra	S27

General materials and methods

¹H and ¹³C NMR spectra were recorded on Bruker AVANCE II 300 spectrometer (300.13 and 75.48 MHz, respectively) in CDCl₃. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ¹H (CDCl₃ δ =7.25 ppm), ¹³C (CDCl₃ δ =77.00 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet).

High resolution mass spectra (HR-MS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI). The measurements were performed in a positive ion mode (interface capillary voltage - 4500 V); mass range from m/z 50 to m/z 3000 Da; external calibration with Electrospray Calibrant Solution (Fluka). A syringe injection was used for all acetonitrile solutions (flow rate 3 μ L/min). Nitrogen was applied as a dry gas; interface temperature was set at 180 °C.

The TLC analysis was carried out on standard silica gel chromatography plates (DC-Fertigfolien ALUGRAM^R Xtra SIL G/UV₂₅₄). Column chromatography was performed using silica gel (0.060-0.200 mm, 60 A, CAS 7631-86-9, Acros).

Acetic acid, KSCN, NH₄SCN, CH₃CN, CH₃OH, THF, DMSO, petroleum ether (PE, 40/70), ethyl acetate (EA), *p*-TsOH·H₂O were purchased from commercial sources and was used as is.

Starting α -substituted barbituric acids **1** were prepared accordingly literature procedures.¹

Calculation of the amount of electric current

 $Q = I \cdot t$

Q — amount of passed electric current, C (Coulomb)

I — electric current, A

t — time, sec

Q = I · t = 0.32 · 15 · 60 = 288 C

$$N = \frac{Q}{F \cdot n_r}$$

N — number of electrons generated in the cell per 1 molecule of $\alpha\mbox{-substituted barbituric}$ acid, F/mol

Q — amount of passed electric current, C (Coulomb)

F — Faraday constant, F = 96485 $C \cdot mol^{-1}$

 n_r — amount of α -substituted barbituric acid, mol

N = 288 / (96485 · 0.001) = 2.98 F/mol ≈ 3.0 F/mol.

The reaction setup

Figure S1. Glassy carbon anode (4.5 cm²) and platinum plate cathode (4.5 cm²)

Figure S2. Undivided electrochemical cell equipped with glassy carbon anode (4.5 cm²) and platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply with the reaction mixture during electrolysis under constant current conditions.

Figure S3. Undivided electrochemical cell equipped with glassy carbon anode (4.5 cm^2) and platinum plate cathode (4.5 cm^2) with the reaction mixture at the beginning of the reaction.

Figure S4. Undivided electrochemical cell equipped with glassy carbon anode (4.5 cm^2) and platinum plate cathode (4.5 cm^2) with the reaction mixture at the end of the reaction.

Table S1. Detailed optimization of the reaction conditions.^a

$ \begin{array}{c} & & & \\ & &$								
1a 2a								
Entry	Electrolyte (molar ratio: mol per mol 1a)	Solvent	T, °C	janode, mA/cm²	Electricity passed, F/mol 1a	Yield 2a , % ^b		
1	NH ₄ SCN (2 eq.)	CH₃OH	50	9	3	10		
2	NH ₄ SCN (2 eq.)	THF	50	9	3	6		
3	NH ₄ SCN (2 eq.)	DMSO	50	9	3	trace		
4	NH ₄ SCN (2 eq)	CH₃CN	50	9	3	42		
5	KSCN (2 eq.)	CH₃CN	50	9	3	5		
6 ^c	NH ₄ SCN (2 eq.)	CH₃CN	50	9	3	39		
7	NH ₄ SCN (2 eq.)	CH₃CN	50	9	2	38		
8	NH ₄ SCN (2 eq.)	CH₃CN	50	9	4	41		
9	NH ₄ SCN (2 eq.)	CH₃CN	50	-	0	0		
10	NH ₄ SCN (2 eq.)	CH₃CN	20-25	9	3	53		
11	NH ₄ SCN (2 eq.)	CH₃CN	20-25	18	3	60		
12	NH ₄ SCN (2 eq.)	CH₃CN	20-25	27	3	46		
13	NH ₄ SCN (2 eq.)	CH₃CN	20-25	36	3	57		
14	NH ₄ SCN (2 eq.)	CH ₃ CN	20-25	44	3	58		
15	NH ₄ SCN (2 eq.)	CH₃CN	20-25	53	3	73		
16	NH ₄ SCN (2 eq.)	CH ₃ CN	20-25	62	3	83		
17	NH ₄ SCN (2 eq.)	CH ₃ CN	20-25	71	3	76		
18	NH ₄ SCN (4 eq.)	CH₃CN	20-25	71	3	80		
19 ^d	NH ₄ SCN (4 eq.)	CH ₃ CN	20-25	9	3	87		
20 ^d	NH ₄ SCN (4 eq.)	CH ₃ CN	20-25	18	3	68		
21 ^{<i>d</i>}	NH ₄ SCN (4 eq.)	CH₃CN	20-25	27	3	71		
22 ^d	NH ₄ SCN (4 eq.)	CH₃CN	20-25	36	3	78		
23 ^d	NH ₄ SCN (4 eq.)	CH ₃ CN	20-25	44	3	79		
24 ^d	NH ₄ SCN (4 eq.)	CH ₃ CN	20-25	53	3	83		
25 ^d	NH ₄ SCN (4 eq.)	CH ₃ CN	20-25	62	3	86		
26 ^d	NH₄SCN (4 eq.)	CH ₃ CN	20-25	71	3	95		
27 ^e	NH₄SCN (4 eq.)	CH₃CN	20-25	71	3	71		
28 ^f	NH₄SCN (4 eq.)	CH₃CN	20-25	71	3	66		
29 ^g	NH₄SCN (4 eq.)	CH₃CN	20-25	71	3	24		
30 ^h	NH₄SCN (4 eq.)	CH ₃ CN	20-25	71	3	75		

^a **Reaction conditions:** undivided cell, platinum plate cathode (4.5 cm²) and glassy carbon anode (4.5 cm²), constant current = 40-320 mA ($j_{anode} \approx 9-71 \text{ mA/cm}^2$), **1a** (1.0 mmol, 246.3 mg), supporting electrolyte (2.0-4.0 eq., 2.0-4.0 mmol), solvent (15.0 mL), 20-50 °C, air atmosphere. ^b Isolated yields. ^c Platinum plate (4.5 cm²) anode and

cathode. ^{*d*} Added AcOH (4.0 eq., 4.0 mmol, 240 mg). ^{*e*} Added AcOH (4.0 eq., 4.0 mmol, 240 mg), Glassy carbon anode and cathode. ^{*f*} Added HCOOH (4.0 eq., 4.0 mmol, 184 mg). ^{*g*} Added *p*-TsOH·H₂O (4.0 eq., 4 mmol, 760 mg). ^{*h*} Added AcOH (4.0 eq., 4.0 mmol, 240 mg), glassy carbon anode and steel cathode.

Experimental Procedures for Table 1. Optimization of the reaction conditions. Experimental Procedure for Table 1, entries 1-2, 4.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) and NH₄SCN (2 eq., 2.0 mmol, 152.2 mg) in the solvent (CH₃OH, THF or CH₃CN) (15 mL) was electrolyzed using constant current conditions I = 40 mA (*j*_{anode} = 9 mA/cm²) at 50 °C under magnetic stirring (3 F/mol, 120 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entry 3.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) and NH₄SCN (2 eq., 2.0 mmol, 152.2 mg) in DMSO (15 mL) was electrolyzed using constant current conditions I = 40 mA ($j_{anode} = 9 \text{ mA/cm}^2$) at 50 °C under magnetic stirring (3 F/mol, 120 min). After that time, CH₂Cl₂ (30 mL) was added. The mixture was washed with brine (2 × 10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure using a rotary evaporator (15-20 mmHg) (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entry 5.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) and NH₄SCN (2 eq., 2.0 mmol, 152.2 mg) in CH₃CN (15 mL) was stirred for 15 minutes at 50 °C. The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was not detected.

Experimental Procedure for Table 1, entries 6-8.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of

α-benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) and NH₄SCN (2 eq., 2.0 mmol, 152.2 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 40-320 mA ($j_{anode} = 9-71 \text{ mA/cm}^2$) at 20-25 °C under magnetic stirring (3 F/mol, 15-120 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entry 9.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) and NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entries 10-11.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 40 or 320 mA (*j*_{anode} = 9 or 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 or 120 min). The combined organic phases were concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entries 12-13.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) and HCOOH (4.0 mmol, 184 mg) (entry 12) or *p*-TsOH·H₂O (4.0 mmol, 760 mg) (entry 13) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The combined organic phases were concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entries 14-16.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and cathode (4.5 cm²) (entry 14) or glassy carbon anode (4.5 cm²) and stainless steel cathode (4.5 cm²) (entry 15) or platinum anode (4.5 cm²) and cathode (4.5 cm²) (entry 16) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The combined organic phases were concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedure for Table 1, entries 17-18.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), KSCN (4 eq., 4.0 mmol, 388.7 mg) (entry 17) or NaSCN (4 eq., 4.0 mmol, 324.3 mg) (entry 18) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The combined organic phases were concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = 5:1).

Experimental Procedures for Scheme 3.

The influence of the current density on 2a yield (top).

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4 eq., 4 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 22-900 mA (*j*_{anode} = 5-200 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 5-214 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc).

The recovery of 2a (bottom).

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of

compound **2a** (1.0 mmol, 303.3 mg), NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) or *n*-Bu₄NClO₄ (1 eq., 1 mmol, 341.9 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 45-675 mA (j_{anode} = 10-150 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 7-107 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Compound **2a** was isolated by chromatography on SiO₂ (PE:EtOAc).

Experimental Procedure for Scheme 4.

Electrochemical synthesis of α -thiocyanobarbiturates 2a-u from different α -substituted barbituric acids 1a-u.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -substituted barbituric acids **1a-u** (1.0 mmol, 156.1-315.1 mg), NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Products **2a-u** were isolated by chromatography on SiO₂ (PE:EtOAc).

5-Benzyl-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2a

Yield was 80% (0.80 mmol, 242.4 mg). Yellow solid (mp = 80-81 °C). $R_f = 0.37$ (PE:EtOAc =5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.29-7.24 (m, 3H), 7.08-7.06 (m, 2H), 3.64 (s, 2H), 3.21 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.44, 148.85, 132.08, 129.66, 129.07, 128.97, 107.81, 59.75, 43.66, 29.34;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₄H₁₃N₃O₃SNa]⁺: 326.0570. Found: 326.0568.

5-(4-Isopropylbenzyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)trione, 2b

Yield was 70% (0.70 mmol, 202.5 mg). Yellow oil. $R_f = 0.45$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.11 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 8.3 Hz, 2H), 3.59 (s, 2H), 3.20 (s, 6H), 2.84 (sept, *J* = 6.7 Hz, 1H), 1.19 (d, *J* = 7.0 Hz, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.59, 149.88, 148.98, 129.69, 129.34, 127.14, 107.97, 59.87, 43.39, 33.84, 29.42, 23.89;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for $[C_{17}H_{19}N_3NaO_3S]^+$: 368.1039. Found: 368.1040.

5-(4-Methoxybenzyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione, 2c²

Yield was 40% (0.40 mmol, 134.7 mg). Yellow solid (mp = 108-109 °C). $R_f = 0.62$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, CDCl₃) δ 6.98 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 3.57 (s, 2H), 3.22 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.63, 159.94, 149.00, 131.01, 123.92, 114.46, 107.90, 59.52, 55.34, 42.78, 29.45;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₅H₁₅N₃NaO₄S]⁺: 356.0675. Found: 356.0678.

5-(4-Chlorobenzyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione, 2d

Yield was 74% (0.74 mmol, 249.1 mg). Yellow solid (mp = 78-79 °C). $R_f = 0.67$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.24 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 3.62 (s, 2H), 3.25 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.21, 148.88, 135.12, 131.45, 130.78, 129.39, 107.41, 58.54, 41.61, 29.57;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₄H₁₂ClN₃NaO₃S]⁺: 360.0180. Found: 360.0175.

5-(2,4-Dichlorobenzyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)trione, 2e

Yield was 56% (0.56 mmol, 207.4 mg). White solid (mp = 146-147 °C). $R_f = 0.22$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.39 (d, *J* = 2.1 Hz, 1H), 7.21 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 3.81 (s, 2H), 3.24 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.02, 149.05, 135.90, 135.63, 132.39, 130.19, 128.76, 127.71, 108.31, 61.16, 41.05, 29.89;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₄H₁₁Cl₂N₃NaO₃S]⁺: 395.9761. Found: 395.9759.

5-(4-Fluorobenzyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2f

Yield was 85% (0.85 mmol, 274.7 mg). Yellow solid (mp = 89-90 °C). $R_f = 0.17$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.10-7.05 (m, 2H), 6.98-6.93 (m, 2H), 3.62 (s, 2H), 3.25 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.35, 162.91 (d, J = 249.1 Hz), 148.90, 131.83 (d, J = 8.2 Hz), 128.09 (d, J = 3.5 Hz), 116.24 (d, J = 21.3 Hz), 107.55, 58.90, 41.87, 29.54;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₄H₁₂FN₃NaO₃S]⁺: 344.0476. Found: 344.0489.

1,3-Dimethyl-5-(2-nitrobenzyl)-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2g

Yield was 45% (0.45 mmol, 155.7 mg). Yellow solid (mp = 142-143 °C). $R_f = 0.39$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, CDCl₃) δ 8.01 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.63 (td, *J* = 7.7, 1.6 Hz, 1H), 7.54 (td, *J* = 7.7, 1.6 Hz, 1H), 7.42 (dd, *J* = 7.7, 1.6 Hz, 1H), 4.08 (s, 2H), 3.29 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.08, 149.51, 149.10, 133.64, 133.13, 130.15, 127.45, 125.92, 107.90, 59.59, 38.79, 29.86;

HRMS (ESI-TOF) m/z [M + K]⁺: Calcd for [C₁₄H₁₂N₄KO₅S]⁺: 387.0160. Found: 387.0158.

5-(4-Hydroxybenzyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione, 2h

Yield was 83% (0.83 mmol, 265.1 mg). Yellow solid (mp = 155-156 °C). $R_f = 0.31$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, DMSO- d_6) δ 9.58 (s br., 1H), 6.79 (d, J = 8.6 Hz, 2H), 6.67 (d, J = 8.6 Hz, 2H), 3.45 (s, 2H), 3.01 (s, 6H);

¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 166.28, 157.54, 149.28, 130.58, 121.98, 115.39, 110.40, 61.50, 45.64, 28.86;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₄H₁₃N₃NaO₄S]⁺: 342.0519. Found: 342.0512.

1,3-Dimethyl-5-(naphthalen-1-ylmethyl)-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)trione, 2i

Yield was 67% (0.67 mmol, 235.5 mg). Yellow solid (mp = 152-153 °C). $R_f = 0.24$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.85-7.77 (m, 3H), 7.55-7.45 (m, 2H), 7.36-7.30 (m, 1H), 7.17-7.15 (m, 1H), 4.11 (s, 2H), 2.78 (s, 6H); ¹³C NMR (75.48 MHz, CDCl₃) δ 165.62, 148.41, 133.62, 131.22, 129.97, 129.08, 128.37, 127.95, 126.95, 126.32, 124.77, 122.78, 108.73, 62.54, 42.52, 29.12; HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₈H₁₅N₃NaO₃S]⁺: 376.0726. Found: 376.0717.

5-Hexyl-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2j

Yield was 87% (0.87 mmol, 258.6 mg). Colorless oil. R_f = 0.29 (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 3.40 (s, 6H), 2.32-2.26 (m, 2H), 1.33-1.12 (m, 8H), 0.85 (t, *J* = 6.8 Hz, 3H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.74, 149.53, 107.61, 57.45, 35.86, 31.22, 29.70, 28.94, 25.65, 22.45, 14.02;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₃H₁₉N₃NaO₃S]⁺: 320.1039. Found: 320.1031.

5-(Furan-2-ylmethyl)-1,3-dimethyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione, 2k

Yield was 69% (0.69 mmol, 201.8 mg). Yellow oil. $R_f = 0.25$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.28 (dd, *J* = 1.9, 0.9 Hz, 1H), 6.29 (dd, *J* = 3.3, 1.9 Hz, 1H), 6.16 (dd, *J* = 3.3, 0.9 Hz, 1H), 3.73 (s, 2H), 3.31 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.11, 149.22, 146.59, 143.39, 111.05, 110.31, 107.39, 57.07, 36.04, 29.63;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₂H₁₁N₃NaO₄S]⁺: 316.0362. Found: 316.0368.

1,3-Dimethyl-5-thiocyanato-5-(thiophen-2-ylmethyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)trione, 2l

Yield was 65% (0.65 mmol, 202.3 mg). Colorless oil. $R_f = 0.35$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 7.20 (dd, *J* = 5.1, 1.3 Hz, 1H), 6.89 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.84-6.83 (m, 1H), 3.86 (s, 2H), 3.28 (s, 6H);

¹³C NMR (75.48 MHz, CDCl₃) δ 165.20, 149.08, 133.09, 129.48, 127.46, 127.10, 107.25, 57.67, 36.63, 29.59;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₂H₁₁N₃NaO₃S₂]⁺: 332.0134. Found: 332.0141.

5-Benzyl-1-methyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2m

Yield was 86% (0.86 mmol, 249.7 mg). Yellow solid (mp = 123-124 °C). R_f = 0.51 (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, CDCl₃) δ 9.05 (s, 1H), 7.30-7.24 (m, 3H), 7.13-7.10 (m, 2H), 3.63 (s, 2H), 3.20 (s, 3H);

¹³C NMR (75.48 MHz, CDCl₃) δ 166.14, 164.99, 147.96, 131.86, 129.98, 129.26, 129.02, 107.51, 59.06, 42.39, 28.78.

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₃H₁₁N₃NaO₃S]⁺: 312.0413. Found: 312.0409.

5-(4-Methoxybenzyl)-1-methyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2n

Yield was 89% (0.89 mmol, 283.6 mg). Yellow solid (mp = 124-125 °C). $R_f = 0.46$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, CDCl₃) δ 8.62 (s, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 3H), 3.57 (s, 2H), 3.22 (s, 3H);

¹³C NMR (75.48 MHz, CDCl₃) δ 166.27, 164.94, 159.95, 147.77, 131.29, 123.69, 114.65, 107.54, 58.90, 55.37, 41.65, 28.86;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₄H₁₃N₃NaO₄S]⁺: 342.0519. Found: 342.0510.

5-(4-Chlorobenzyl)-1-methyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 20

Yield was 51% (0.51 mmol, 166.4 mg). White solid (mp = 106-107 °C). $R_f = 0.16$ (PE:EtOAc = 5:1);

¹H NMR (300.13 MHz, CDCl₃) δ 9.08 (s, 1H), 7.25 (d, *J* = 8.7 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 3.62 (s, 2H), 3.24 (s, 3H);

 ^{13}C NMR (75.48 MHz, CDCl₃) δ 165.82, 164.66, 147.92, 135.12, 131.62, 130.49, 129.48, 107.16, 58.09, 40.67, 28.91;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₃H₁₀ClN₃NaO₃S]⁺: 346.0024. Found: 346.0023.

1,5-Dimethyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2p

Yield was 91% (0.91 mmol, 193.5 mg). Yellow solid (mp = 115-116 °C). $R_f = 0.35$ (PE:EtOAc = 2:1);

 1 H NMR (300.13 MHz, CDCl₃) δ 9.31 (s br., 1H), 3.36 (s, 3H), 1.91 (s, 3H);

 ^{13}C NMR (75.48 MHz, CDCl_3) δ 166.66, 165.62, 148.83, 107.57, 53.36, 29.13, 20.60;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₇H₇N₃NaO₃S]⁺: 236.0100. Found: 236.0105.

5-Hexyl-1-methyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione, 2q

Yield was 18% (0.18 mmol, 50.9 mg). Colorless oil. $R_f = 0.27$ (PE:EtOAc = 5:1); ¹H NMR (300.13 MHz, CDCl₃) δ 9.42 (br.s, 1H), 3.38 (s, 3H), 2.31-2.26 (m, 2H), 1.31-1.19 (m, 8H), 0.85 (t, *J* =6.7 Hz, 3H); ¹³C NMR (75.48 MHz, CDCl₃) δ 166.41, 165.28, 148.66, 107.49, 57.50, 35.59, 31.17, 29.03, 28.90, 25.56, 22.42, 14.00;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₂H₁₇N₃NaO₃S]⁺: 306.0883. Found: 306.0878.

5-Benzyl-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2r

Yield was 40% (0.40 mmol, 110.7 mg). White solid (mp = 184-185 °C). $R_f = 0.40$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, DMSO-*d*₆) δ 11.95 (s, 2H), 7.33-7.31 (m, 3H), 7.11-7.08 (m, 2H), 3.50 (s, 2H);

¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 167.18, 148.46, 132.59, 129.88, 128.75, 128.33, 109.93, 58.98, 42.29;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₂H₉N₃NaO₃S]⁺: 298.0257. Found: 298.0256.

5-(4-Methoxybenzyl)-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2s

Yield was 35% (0.35 mmol, 106.2 mg). Yellow solid (mp = 197-198 °C). $R_f = 0.21$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, DMSO- d_6) δ 11.94 (s, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.72 (s, 3H), 3.43 (s, 2H);

¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 167.29, 159.11, 148.54, 131.14, 124.30, 114.12, 109.94, 58.88, 55.11, 41.59;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₃H₁₁N₃NaO₄S]⁺: 328.0362. Found: 328.0362.

5-(4-Chlorobenzyl)-5-thiocyanatopyrimidine-2,4,6(1H,3H,5H)-trione, 2t

Yield was 65% (0.65 mmol, 203.4 mg). Yellow solid (mp = 173-174 °C). $R_f = 0.34$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, DMSO-*d*₆) δ 11.98 (s, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.12 (d, *J* = 8.5 Hz, 2H), 3.51 (s, 2H);

¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 167.01, 148.50, 133.08, 131.82, 131.66, 128.70, 109.87, 58.88, 41.24;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₂H₈ClN₃NaO₃S]⁺: 331.9867. Found: 331.9871.

5-Hexyl-5-thiocyanatopyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione, 2u

Yield was 22% (0.22 mmol, 58.1 mg). Yellow solid (mp = 89-90 °C). $R_f = 0.67$ (PE:EtOAc = 2:1);

¹H NMR (300.13 MHz, CDCl₃) δ 9.53 (s, 2H), 2.31-2.26 (m, 2H), 1.33-1.25 (m, 8H), 0.86 (t, *J* = 6.7 Hz, 3H);

¹³C NMR (75.48 MHz, CDCl₃) δ 166.19, 148.21, 107.68, 57.55, 35.44, 31.19, 28.95, 25.48, 22.46, 14.04;

HRMS (ESI-TOF) m/z [M + Na]⁺: Calcd for [C₁₁H₁₅N₃NaO₃S]⁺: 292.0726. Found: 292.0725.

Experimental Procedures for Scheme 5.

Electrochemical synthesis of ammonium salts α -thiocyanobarbiturates 4a-b from different α -unsubstituted barbituric acids 3a-b.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -unsubstituted barbituric acids **3a-b** (1.0 mmol, 142.1-156.1 mg) and NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). After completion of the reaction, the pure compound **4a-b** was obtained by filtration of the reaction mixture and washing of the residue with CH₃CN (5 mL).

Ammonium 1,3-dimethyl-2,6-dioxo-5-thiocyanato-1,2,3,6-tetrahydropyrimidin-4olate, 4a

Yield was 76% (0.76 mmol, 174.9 mg). Orange solid; ¹H NMR (300.13 MHz, DMSO-*d*₆) δ 7.10 (s, 4H), 3.09 (s, 6H); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 162.16, 152.44, 115.06, 66.17, 27.72; HRMS (ESI-TOF) m/z [M-NH₄]⁻: Calcd for [C₇H₆N₃O₃S]⁻: 212.0135. Found: 212.0131.

Ammonium 1-methyl-2,6-dioxo-5-thiocyanato-1,2,3,6-tetrahydropyrimidin-4-olate, 4b

Yield was 75% (0.75 mmol, 161.6 mg). Yellow solid; ¹H NMR (300.13 MHz, DMSO-*d*₆) δ 9.95 (s, 1H), 7.14 (s, 4H), 3.02 (s, 3H); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 163.54, 162.73, 151.99, 115.13, 65.82, 26.94;

HRMS (ESI-TOF) m/z [M-NH4]⁻: Calcd for [C₆H₄N₃O₃S]⁻: 197.9979. Found: 197.9976.

Electrochemical synthesis of ammonium salt α -thiocyanobarbiturate 4c from α -unsubstituted barbituric acid 3c.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -unsubstituted barbituric acid **3c** (1.0 mmol, 128.1 mg) and NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) in CH₃OH (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). After completion of the reaction, the pure compound **4c** was obtained by filtration of the reaction mixture and washing of the residue with CH₃OH (5 mL).

Ammonium 2,6-dioxo-5-thiocyanato-1,2,3,6-tetrahydropyrimidin-4-olate, 4c

Yield was 72% (0.72 mmol, 146.1 mg). White solid; ¹H NMR (300.13 MHz, DMSO- d_6) δ 9.75 (s, 2H), 7.15 (s, 4H); ¹³C NMR (75.48 MHz, DMSO- d_6) δ 164.22, 151.66, 115.19, 65.28; HRMS (ESI-TOF) m/z [M-NH₄]⁻: Calcd for [C₅H₂N₃O₃S]⁻: 183.9822. Found: 183.9824.

Experimental procedure for Figure 1. Cyclic voltammetry

Cyclic voltammetry (CV) was implemented on an IPC-Pro M computer-assisted potentiostat manufactured by Econix (scan rate error 1.0 %; potential setting 0.25 mV; scan rate 100 mV s⁻¹). The experiments were performed in a 2 mL five-neck glass conic electrochemical cell with a water jacket for thermostatting. CV curves were recorded using a three-electrode scheme. The working electrode was a disc glassy-carbon electrode (d = 3 mm). A platinum wire served as an auxiliary electrode. An Ag/Ag⁺ electrode was used as the reference electrode and was linked to the solution by a porous glass diaphragm. The solutions were kept under thermally controlled conditions at 25±0.5 °C and deaerated by bubbling argon. Electrochemical experiments were performed under an argon atmosphere. The working electrode was polished before recording each CV curve. In a typical case, 2 mL of solution was utilized. The compound concentration was 0.05 M.

in CH₃CN, (e) 0.1 M *n*-Bu₄NBF₄ in CH₃CN.

Experimental procedures for Scheme 6. Control experiments.

a) Divided cell (without AcOH):

A divided cell was equipped with a glassy carbon anode (2.25 cm²) and a platinum plate cathode (2.25 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (0.5 mmol, 123.1 mg), NH₄SCN (4.0 eq., 2.0 mmol, 152.2 mg) in CH₃CN (7 mL) (anodic compartment) and solution of NH₄SCN (4.0 eq., 2.0 mmol, 152.2 mg) in CH₃CN (7 mL) (cathode compartment) were electrolyzed using constant current conditions I = 30 mA (13 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 80 min). The combined organic phases (anodic and cathode compartments) were concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

Divided cell (4.0 eq. AcOH):

A divided cell was equipped with a glassy carbon anode (2.25 cm²) and a platinum plate cathode (2.25 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (0.5 mmol, 123.1 mg), NH₄SCN (4.0 eq., 2.0 mmol, 152.2 mg), acetic acid (2.0 mmol, 120 mg) in CH₃CN (7 mL) (anodic compartment) and solution of NH₄SCN (4 eq., 2 mmol, 152.2 mg) in CH₃CN (7 mL) (cathode compartment) were electrolyzed using constant current conditions I = 30 mA (13 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 80 min). The combined organic phases (anodic and cathode compartments) were concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

Undivided cell (without AcOH):

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) and NH₄SCN (4.0 eq., 4.0 mmol, 304.4 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 60 mA (13 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 80 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

Undivided cell (4.0 eq. AcOH):

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The

solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4 eq., 4.0 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 60 mA (13 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 80 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

b) Without AcOH:

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of ammonium 5-benzyl-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate **5** (1.0 mmol, 263.3 mg) and NH₄SCN (4.0 eq., 4.0 mmol, 304.4 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

b) 5.0 eq. AcOH:

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of ammonium 5-benzyl-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate **5** (1.0 mmol, 263.3 mg), NH₄SCN (4.0 eq., 4.0 mmol, 304.4 mg) and acetic acid (5.0 mmol, 300 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

Ammonium 5-benzyl-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate, 5

 $O^- NH_4^+$

Preparation of ammonium 5-benzyl-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (**5**): the solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) in CH₃CN (15 mL) was flushed with NH₃ with stirring at 20-25 °C. After completion of the reaction, pure compound **5** was obtained by filtration of the reaction mixture and washing the residue with CH₃CN (5 mL).

White solid;

¹H NMR (300.13 MHz, DMSO-*d*₆) δ 7.21-7.09 (m, 8H), 7.03-6.98 (m, 1H), 3.45 (s, 2H), 3.05 (s, 6H);

¹³C NMR (75.48 MHz, DMSO-*d*₆) δ 162.26, 152.92, 145.17, 128.26, 127.35, 124.36, 84.96, 30.23, 27.03.

Experimental procedure for Scheme 6, c

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4.0 eq., 4.0 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). pH of the reaction mixture was measurement every 90 sec.

Experimental procedure for Scheme 6, d

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4.0 eq., 4.0 mmol, 304.4 mg), acetic acid (4.0 mmol, 240 mg) and 2,6-di-*tert*-butyl-4-methylphenol (BHT) (4.0 mmol, 881.4 mg) or (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (4.0 mmol, 625.0 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (3 F/mol, 15 min). The reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** and substrate **1a** were isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 2:1).

Experimental procedure for Scheme 6, e

Bromine (2.0 mmol, 319.6 mg, 103 μ L) was added to the solution of potassium thiocyanate (4.0 mmol, 388.8 mg) in acetic acid (3 mL) at 20-25 °C under stirring. Later, the solution of α -benzyl barbituric acid **1a** (1.0 mmol, 246.3 mg) in CH₃CN (15 mL) was added to the resulting solution of thiocyanogen at 20-25 °C under stirring. The reaction mixture was stirring for 15 min at 20-25 °C. Product **2a** was isolated by chromatography on SiO₂ (PE:EtOAc = from 10:1 to 5:1).

Control ON/OFF experiment

Scheme S1.

An undivided cell was equipped with a glassy carbon anode (4.5 cm²) and a platinum plate cathode (4.5 cm²) and connected to a DC regulated power supply. The solution of α -substituted barbituric acids **1a** (1.0 mmol, 246.3 mg), NH₄SCN (4.0 eq., 4.0 mmol, 304.4 mg) and acetic acid (4.0 mmol, 240 mg) in CH₃CN (15 mL) was electrolyzed using constant current conditions I = 320 mA (*j*_{anode} = 71 mA/cm²) at 20-25 °C under magnetic stirring (1.5 F/mol, 7.5 min).

The reaction mixture was divided in half.

Aliquot 1. The half of the reaction mixture was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** (0.26 mmol, 78.9 mg) was isolated by chromatography on SiO₂ (PE:EtOAc).

Aliquot 2. The other half of the reaction mixture was standing for additional 7.5 min at 20-25 °C under magnetic stirring. Later, it was concentrated under reduced pressure using a rotary evaporator (15-20 mmHg), (bath temperature, ca. 20-25 °C). Product **2a** (0.25 mmol, 77.2 mg) was isolated by chromatography on SiO₂ (PE:EtOAc).

Bioassay of fungicidal activity

The antifungal activities were tested according to the conventional procedure ³ with six phytopathogenic fungi from different taxonomic classes: Fusarium culmorum (F.c.), Rhizoctonia solani (R.s.), Alternaria solani (A.s.), Phytophthora infestans (P.i.), and Colletotrichum coccodes (C.c.). The effect of the chemicals on mycelial radial growth was determined by dissolving concentration 3 mg×mL⁻¹ in acetone and suspending aliquots in potato-saccharose agar at 50 °C to give the concentration 30 µg×mL⁻¹. The final acetone concentration of both fungicide-containing and control samples was 10 mL×L⁻¹. Petri dishes containing 15 mL of the agar medium were inoculated by placing 2-mm micelial agar discs on the agar surface. Plates were incubated at 25 °C and radial growth was measured after 5 days. The mixed medium without a sample was used as the blank control. Three replicates of each test were carried out. The mycelium elongation diameter (mm) of fungi settlements was measured after 5 days of culture. The growth inhibition rates were calculated with the following equation: $I = [(DC - DT)/DC] \times 100\%$. Here I is the growth inhibition rates (%), DC is the control settlement diameter (mm), and DT is the treatment group fungi settlement diameter (mm). The results are summarized in Table 2.

References

- 1. A. A. Al-Turkistani, O. A. Al-Deeb, N. R. El-Brollosy and A. A. El-Emam, *Molecules*, 2011, **16**.
- 2. M. Y. Sharipov, I. B. Krylov, I. D. Karpov, O. V. Vasilkova, A.-M. V. Oleksiienko and A. O. Terent'ev, *Chem. Heterocycl. Compd.*, 2021, **57**, 531-537.
- (a) Metodicheskie rekomendatsii po opredeleniyu fungitsidnoi aktivnosti novykh soedinenii, NIITEKhIM, Cherkassy, 1984, pp. 32 (in Russian); (b) S. V. Popkov, L. V. Kovalenko, M. M. Bobylev, O. Y. Molchanov, M. Z. Krimer, V. P. Tashchi and Y. G. Putsykin, *Pesticide Science*, 1997, **49**, 125-129; (c) H. Itoh, H. Kajino, T. Tsukiyama, J. Tobitsuka, H. Ohta, Y. Takahi, M. Tsuda and H. Takeshiba, *Bioorg. Med. Chem.*, 2002, **10**, 4029-4034.

Copies of ¹H NMR, ¹³C NMR and HRMS spectra

¹H NMR (CDCI₃) spectrum of 2a

¹³C NMR (CDCI₃) spectrum of 2a

¹H NMR (CDCI₃) spectrum of 2b

¹³C NMR (CDCI₃) spectrum of 2b

S31

¹H NMR (CDCI₃) spectrum of 2c

¹³C NMR (CDCI₃) spectrum of 2c

S33

¹H NMR (CDCl₃) spectrum of 2d

¹³C NMR (CDCI₃) spectrum of 2d

¹H NMR (CDCI₃) spectrum of 2e

¹³C NMR (CDCI₃) spectrum of 2e

¹H NMR (CDCI₃) spectrum of 2f

¹³C NMR (CDCI₃) spectrum of 2f

¹H NMR (CDCl₃) spectrum of 2g

¹³C NMR (CDCl₃) spectrum of 2g

¹H NMR (DMSO-*d*₆) spectrum of 2h

¹³C NMR (DMSO-*d*₆) spectrum of 2h

¹H NMR (CDCI₃) spectrum of 2i

¹³C NMR (CDCI₃) spectrum of 2i

¹H NMR (CDCI₃) spectrum of 2j

¹³C NMR (CDCI₃) spectrum of 2j

¹H NMR (CDCI₃) spectrum of 2k

¹³C NMR (CDCI₃) spectrum of 2k

¹H NMR (CDCI₃) spectrum of 2I

¹³C NMR (CDCI₃) spectrum of 2I

¹H NMR (CDCI₃) spectrum of 2m

¹³C NMR (CDCI₃) spectrum of 2m

¹H NMR (CDCI₃) spectrum of 2n

¹³C NMR (CDCI₃) spectrum of 2n

¹H NMR (CDCl₃) spectrum of 20

¹³C NMR (CDCI₃) spectrum of 20

¹H NMR (CDCl₃) spectrum of 2p

¹³C NMR (CDCI₃) spectrum of 2p

¹H NMR (CDCI₃) spectrum of 2q

¹³C NMR (CDCI₃) spectrum of 2q

¹H NMR (DMSO-*d*₆) spectrum of 2r

¹³C NMR (DMSO-*d*₆) spectrum of 2r

¹H NMR (DMSO-*d*₆) spectrum of 2s

S64

¹³C NMR (DMSO-*d*₆) spectrum of 2s

¹H NMR (DMSO-*d*₆) spectrum of 2t

S66

¹³C NMR (DMSO-*d*₆) spectrum of 2t

¹H NMR (CDCI₃) spectrum of 2u

¹³C NMR (CDCI₃) spectrum of 2u

¹H NMR (DMSO-*d*₆) spectrum of 4a

¹³C NMR (DMSO-*d*₆) spectrum of 4a

¹H NMR (DMSO-*d*₆) spectrum of 4b

¹³C NMR (DMSO-*d*₆) spectrum of 4b

¹H NMR (DMSO-*d*₆) spectrum of 4c

¹³C NMR (DMSO-*d*₆) spectrum of 4c

¹H NMR (DMSO-*d*₆) spectrum of 5

¹³C NMR (DMSO-*d*₆) spectrum of 5

HRMS spectrum of 2a

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\pil86_&clblow.d
Method	tune_low.m
Sample Name	/TERN Pil86
Comment	CH3CN 100 %, dil. 200, calibrant added

Acquisition Date 03.02.2020 15:36:15

Operator	BDAL@DE		
Instrument / Ser#	micrOTOF	10248	

S78

HRMS spectrum of 2b

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\ov2234_&clblow.d
Method	tune_low.m
Sample Name	/TERN ov2234
Comment	CH3OH 100 %, dil. 2000, calibrant added

Acquisition Date 14.05.2021 14:36:36

Operator	BDAL@DE	
Instrument / Ser#	micrOTOF	10248

Acquisition Parame	ter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active			Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste

HRMS spectrum of 2c

Positive

Analysis Info

D:\Data\Kolotyrkina\2021\Kirillov\0420053.d
tune_50-1600.m
/TERN ov2206
C15H15N3O4S mH 334.0856 calibrant added CH3CN

Ion Polarity

Acquisition Date 20.04.2021 18:22:15

Operator BDAL@DE Instrument / Ser# micrOTOF 10248

Acquisition Parameter ESI Source Type

HRMS spectrum of 2d

HRMS spectrum of 2e

HRMS spectrum of 2f

Analysis Info

Analysis Name	D:\Data\Kolotyrkina\2021\Kirillov\0420050.d		
Method	tune_50-1600.m	Operator	E
Sample Name	/TERN ov2211	Instrument / Ser#	n
Comment	C14H12FN3O3S mH 322.0656 calibrant added CH3CN		

Acquisition Date 20.04.2021 18:03:02

Operator	BDAL@DE	
nstrument / Ser#	micrOTOF	10248

Acquisition Parameter

HRMS spectrum of 2g

Analysis Info

Analysis Name	D:\Data\Kolotyrkina\2021\Bitukov\0429044.d
Method	tune_50-1600.m
Sample Name	/TERN OV2233
Comment	C14H12N4O5S mH 349.0601 clb added CH3CN

Acquisition Date 29.04.2021 17:06:21

HRMS spectrum of 2h

Analysis Info

Analysis Name	D:\Data\Kolotyrkina\2021\Bitukov\04290434.d
Method	tune_50-1600.m
Sample Name	/TERN OV2228
Comment	C14H13N3O4S mH 320.0699 clb added CH3CN

Acquisition Date 29.04.2021 16:47:48

HRMS spectrum of 2i

Analysis Info

Source Type

Acquisition Parameter

ESI

Analysis Name	D:\Data\Kolotyrkina\2021\Kirillov\0420051.d
Method	tune_50-1600.m
Sample Name	/TERN ov2209
Comment	C18H15N3O3S mH 354.0906 calibrant added CH3CN

Ion Polarity

Acquisition Date 20.04.2021 18:11:10

BDAL@DE Operator Instrument / Ser# micrOTOF 10248

Positive

HRMS spectrum of 2j

HRMS spectrum of 2k

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\ov2231_&clblow.d
Method	tune_low.m
Sample Name	/TERN ov2231
Comment	CH3OH 100 %, dil. 2000, calibrant added

Acquisition Date 14.05.2021 14:24:02

Operator	BDAL@DE	
Instrument / Ser#	micrOTOF	10248

Acquisition Parame	ter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active			Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste

HRMS spectrum of 2I

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\ov2232_&clblow.d
Method	tune_low.m
Sample Name	/TERN ov2232
Comment	CH3OH 100 %, dil. 20, calibrant added

Acquisition Date 14.05.2021 14:31:52

Acquisition Par	rameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	-		Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste

HRMS spectrum of 2m

Analysis Info

Analysis Name	D:\Data\Kolotyrkina\2021\Bitukov\0429043.d
Method	tune_50-1600.m
Sample Name	/TERN OV2229
Comment	C13H11N3O3S mH 290.0593 clb added CH3CN

Acquisition Date 29.04.2021 16:52:46

HRMS spectrum of 2n

Analysis Info Acquisition Date 20.04.2021 18:16:59 Analysis Name D:\Data\Kolotyrkina\2021\Kirillov\0420052.d Method tune_50-1600.m Operator BDAL@DE Sample Name /TERN ov2207 Instrument / Ser# micrOTOF 10248 Comment C14H13N3O4S mH 320.0699 calibrant added CH3CN Acquisition Parameter Source Type 1.0 Bar 200 °C ESI Ion Polarity Positive Set Nebulizer Not active Set Dry Heater Focus 4500 V 4.0 Vmin Scan Begin 50 m/z Set Capillary Set Dry Gas Scan End 1600 m/z Set End Plate Offset -500 V Set Divert Valve Waste Intens. +MS, 0.8-1.0min #(46-59) x10⁵ 1.0 0.8 337.0955 342.0510 0.6 0.4 358.0248 0.2 353.2639 331.2846 348.3084 365.1067 0.0 C14H13N3O4S, M+nNH4 .337.10 337.0965 2000 1500 1000 500 0 C14H13N3O4S, M+nNa ,342.05 342.0519 2000 1500 1000 500 0 C14H13N3O4S, M+nK ,358.03 358.0258 2000 1500 1000 500 0 340 355 365 m/z 330 335 345 350 360 20.04.2021 18:20:34 printed:

Bruker Compass DataAnalysis 4.0

HRMS spectrum of 20

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\ov2236_&clblow.d
Method	tune_low.m
Sample Name	/TERN ov2236
Comment	CH3OH 100 %, dil. 20, calibrant added

Acquisition Date 14.05.2021 14:42:32

Operator	BDAL@DE	
Instrument / Ser#	micrOTOF	10248

Acquisition Parame	ter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	_		Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste

HRMS spectrum of 2p

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\ov2227_&clblow.d
Method	tune_low.m
Sample Name	/TERN ov2227
Comment	CH3OH 100 %, dil. 200, calibrant added

Acquisition Date 14.05.2021 14:12:05

HRMS spectrum of 2q

HRMS spectrum of 2r

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentie	v\Bityukov\ov2297_&clblow.d
Method	tune_low.m	
Sample Name	/TERN ov2297	
Comment	CH3OH 100 %, dil. 200,	calibrant added

Acquisition Date 17.01.2022 17:06:24

Operator BDAL@DE Instrument / Ser# micrOTOF 10248

nent /	Ser#	micrOTOF	102

Acquisition Parameter

HRMS spectrum of 2s

HRMS spectrum of 2t

HRMS spectrum of 2u

Analysis Info

Analysis Name	D:\Data\Chizhov\Terentiev\Bityukov\pil286_&clblow.d
Method	tune_low.m
Sample Name	/TERN pil286
Comment	CH3OH 100 %, dil. 200, calibrant added

Acquisition Date 17.01.2022 17:01:16

Operator	BDAL@DE	
Instrument / Ser#	micrOTOF	10248

Acquisition Parameter

HRMS spectrum of 4a

Analysis Info

Analysis Info		Acquisition Date	20.01.2022 13:27:43	3
Analysis Name	D:\Data\Burykina\OV2284negrep.d			
Method	tune_100-1200.m	Operator	BDAL@DE	
Sample Name	OV2284	Instrument / Ser#	maXis 43	
Comment	H2O 100%			

Acquisition Parameter

HRMS spectrum of 4b

Analysis Info Acquisition Date 20.01.2022 13:36:36 Analysis Name D:\Data\Burykina\OV2295neg.d Method tune 100-1200.m Operator BDAL@DE Sample Name /TERN OV2295 Instrument / Ser# maXis 43 Comment H2O 100% Acquisition Parameter 1.0 Bar Source Type ESI Ion Polarity Negative Set Nebulizer 200 °C Focus Active Set Dry Heater Set Capillary Set End Plate Offset Scan Begin 50 m/z 4000 V Set Dry Gas 4.0 l/min -500 V Scan End 1800 m/z Set Divert Valve Waste Intens. x10⁵ -MS, 54.8-58.8s #(54-58) 197.9976 1.0 0.8 0.6 0.4 0.2 199.1697 199.9935 201.1130 0.0 197.0 200.5 196.5 197.5 198.0 198.5 199.0 199.5 200.0 201.0 m/z Intens. -MS, 54.8-58.8s #(54-58) 197.9976 x10⁵ 1.0 0.8 0.6 0.4 0.2 199.1697 199.9935 0.0 C6H4N3O3S, M ,198.00 197.9979 2000 1500 1000 500 199.0012 199.9937 \bigtriangleup 0 200.0 197.5 198.5 199.5 200.5 198.0 199.0 m/z 20.01.2022 13:41:47 Bruker Compass DataAnalysis 4.0 Page 1 of 1 printed:

HRMS spectrum of 4c

Analysis Info

Analysis Name	D:\Data\Kolotyrkina\2022\Bitikov\0120010.d
Method	tune_50-1600_neg.m
Sample Name	/TERN 2433
Comment	C5H2N3O3S m 182.9733 clb added H2O

Acquisition Date 20.01.2022 15:48:23

