Supporting Information

A simple Iodine-DMSO-promoted multicomponent reaction for the synthesis of

2,4-disubstituted dihydrotriazole-3-ones

Hui Liao, Zesheng Huang and Qiuhua Zhu*

School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue

North, Guangzhou 510515, China.

E-mail: <u>zhuqh@smu.edu.cn</u>; Fax: +86-20-61647627.

Contents

Figure S1. Synthesis of 2,4,5-trisubstitutied or 4,5-disubstituted 1,2,4-triazole-3-ones ^{[1] [2] [3] [4] [5] [6]}	2
Figure S2. Control experiment	2
Figure S3 synthesis of 4g and 4s in patent[7]	3
Figure S4. 1H NMR spectra monitoring formation of intermediate 5 and 6	3
Table S1. Influence of temperature on the MCR for the synthesis of 4a ^a	3
Table S2. Optimization of C sources, iodine-containing activators and solvents for the MCR synthesis of 4a	³4
Table S3. Crystallographic information of 4a	4
Scheme S1. Screen of the adding orders of reactants	5
Materials and Instruments	5
General procedure for the one-pot synthesis of 4a_4w	5
Structure Characteristics of 4a–4w	6
¹ H and ¹³ CNMR spectrum copies of 4a–4w in Table 2	9
References	32

Figure S1. Synthesis of 2,4,5-trisubstitutied or 4,5-disubstituted 1,2,4-triazole-3-ones^{[1] [2] [3] [4] [5] [6]}

Figure S2. Control experiment

4g: R=Ph; R¹= 4-ClPh **4s:** R=4-ClPh; R¹= Ph

Figure S3 synthesis of 4g and 4s in patent[7]

Figure S4. 1H NMR spectra monitoring formation of intermediate 5 and 6

1H NMR spectra of aniline (1), phenylhydrazine (2), the reaction (a) of aldehyde and phenylhydrazine in DMSOd6 at room temperature for 0 min and 3 h, respectively (3 and 4, respectively), the reaction (b) of aldehyde, aniline and phenylhydrazine in DMSO-d6 at room temperature for 0 min and 3 h, respectively (5 and 6, respectively)

Table S1. Influence of temperature on the MCR for the synthesis of 4a^a

о н Н Н	+ NH ₂ + NH ₂ -	$ \begin{array}{c} I_2 (1.5 \text{ equiv}) \\ \hline DMSO, 8 h \end{array} $
1 (3 equiv)	2a (1.5 equiv) 3a (1 equiv)	4a
entry	T (°C)	Yield (%)
1	100	0
2	120	14
3	140	28
4	160	28

				\rangle
	C source +	+	l ₂ (1.5 equiv) → N Solvent, 140 °C, 8 h	
	(3 equiv) 2a (1.5 equiv)	3a (1 equiv)		4a 🦷
Entry	C source	[I]	Solvent	$\operatorname{Yield}^{b}(\%)$
1	НСНО	I ₂	DMSO	28
2	(CH ₂ O) _n	I_2	DMSO	0
3	DMSO	I_2	DMSO	0
4	DMF	I_2	DMSO	0
5	MeOH	I_2	DMSO	0
6	НСНО	NIS	DMSO	13
7	НСНО	CuI	DMSO	5
8	НСНО	KI	DMSO	trace
9	НСНО	TBAI	DMSO	trace
10	НСНО	NH4I	DMSO	0
11	НСНО	I_2	DMF	0
12	НСНО	I_2	HMPA	0
13	НСНО	I_2	1,4-Dioxane	0
14	НСНО	I_2	<i>n</i> BuOH	0
15	НСНО	I_2	H_2O	0
16	НСНО	I ₂	Toluene	0

Table S2. Optimization of C sources, iodine-containing activators and solvents for the MCR synthesis of 4a^a

^{*a*} Reaction was carried out with C source (0.9 mmol), **2a** (0.45 mmol), **3a** (0.3 mmol) and iodine-containing catalyst (0.45 mmol) in 2 mL solvent at 140 °C for 8 h. ^{*b*} Isolated yield.

Table S3. Crystallographic information of 4a

$T^{a}\left[\mathrm{K} ight]$	293
crystal system	Monoclinic
space group	P121/c1
<i>a</i> [Å]	13.7128 (11)
<i>b</i> [Å]	7.4784 (7)
<i>c</i> [Å]	11.7095 (9)
α[Å]	90
β [deg]	96.628 (7)
γ [deg]	90
V[Å ³]	1192.78 (17)
Ζ	4
$D_{ m calcu}[m mg/m^3]$	1.321
R	0.0458

Scheme S1. Screen of the adding orders of reactants

Materials and Instruments

All the starting materials were purchased from commercial suppliers and used without further purification. All melting points were measured using a X-5 micro melting point apparatus and were uncorrected. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer with DMSO-*d*₆ or CDCl₃ as the solvent. ¹H NMR chemical shifts were referenced to DMSO-*d*₆ at 2.50 ppm or referenced to TMS at 0.00 ppm. ¹³C NMR chemical shifts were referenced to DMSO-*d*₆ at 39.50 ppm. IR spectra were obtained as potassium bromide pellets or as liquid films on potassium bromide pellets with a Bruker Vector 22 spectrometer. High resolution mass spectra (HRMS) were recorded on an Thermo Q Exactive Plus or Agilent 6210 ESI/TOF mass spectrometer. Single-crystal X-ray diffraction data were measured by Bruker D8 Venture. The reactions were monitored by thin-layer chromatography (TLC) using 100–400 mesh silica gel plates (GF254) and were visualized using UV lamp (254 and 365 nm).

General procedure for the one-pot synthesis of 4a-4w

The reactions were run with the following steps: Add 0.9 mmol formaldehyde 1, 0.3 mmol amine 2, 0.45 mmol hydrazine 3 (If 3 is hydrazine hydrochloride, adding 3 and equivalent of NaHCO₃ into a 25 ml sealed tube containing 2 ml DMSO before other reagents, stirring until no carbon dioxide gas emission and then adding other reagents.), 0.45 mmol iodine and 0.15 mmol H₂SO₄ to a 25 ml sealed tube containing 2 ml DMSO, and stir in a 140 °C oil bath for 8 hours. Then, take out the sealed tube and cool it to room temperature; extract the reaction solution with saturated sodium thiosulfate aqueous solution and ethyl acetate for three times; collect the organic layer; dry anhydrous sodium sulfate, filter, and remove the solvent to obtain the concentrated solution via a rotary evaporation instrument; The concentrated solution was separated by thin layer chromatography to obtain the target products **4a–w** with petroleum ether: ethyl acetate = 6:1-2:1 as eluent.

Structure Characteristics of 4a-4w

2,4-Diphenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4a):** Yellow brown solid, 51% yield, mp=107.5-108.5 °C; IR (KBr) $v_{\text{max}} = 3133$, 3062, 2929, 2851, 1696, 1588, 1490, 1388, 1235, 932, 750, 685 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.74$ (s, 1H), 8.07–7.86 (m, 2H), 7.83–7.66 (m, 2H), 7.65–7.37 (m, 5H), 7.29 (t, J = 7.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 149.70$, 137.51, 136.70, 133.54, 129.38, 129.13, 127.55, 125.50, 122.40, 118.39 ppm. HRMS (ESI) calculated for C₁₄H₁₂N₃O [M+H]⁺ : 238.0975; found: 238.0971.

2-Phenyl-4-(*p*-tolyl)-2,4-dihydro-3*H*-1,2,4-triazol-3-one (4b): Yellow brown solid, 55% yield, mp=134.4-135.1 °C; IR (KBr) $v_{\text{max}} = 3132$, 3067, 2923, 2849, 1692, 1579, 1504, 1382, 1230, 940, 892, 743 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.66$ (s, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.49 (t, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 2.36 (s, 3H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 149.75$, 137.09, 136.75, 131.05, 129.75, 129.11, 125.45, 122.33, 118.35, 20.57 ppm. HRMS (ESI) calculated for C₁₅H₁₃N₃NaO [M+Na]⁺: 274.0951; found: 274.0945.

4-(4-(*tert***-Butyl)phenyl)-2-phenyl-2,4-dihydro-3***H***-1,2,4-triazol-3-one (4c): White solid, 49% yield, mp=154.5-155.2 °C; IR (KBr) v_{max} = 3136, 3074, 2925, 2860, 1692, 1600, 1506, 1458, 1382, 1228, 833, 749 cm⁻¹; ¹H NMR (400 MHz, DMSO-***d***₆) \delta = 8.66 (s, 1H), 7.94 (d,** *J* **= 8.0 Hz, 2H), 7.62 (d,** *J* **= 8.6 Hz, 2H), 7.56 (d,** *J* **= 8.6 Hz, 2H), 7.50 (t,** *J* **= 7.9 Hz, 2H), 7.28 (t,** *J* **= 7.4 Hz, 1H), 1.32 (s, 9H) ppm; ¹³C NMR (101 MHz, DMSO-***d***₆) \delta = 150.24, 149.81, 137.55, 136.86, 130.98, 129.14, 126.13, 125.47, 122.31, 118.35, 34.41, 31.03 ppm. HRMS (ESI) calculated for C₁₈H₁₉N₃NaO [M+Na]⁺: 316.1420; found: 316.1417.**

4-(4-Methoxyphenyl)-2-phenyl-2,4-dihydro-*3H***-1,2,4-triazol-3-one (4d):** Yellow brown solid, 57% yield, mp=161.1-161.8 °C; IR (KBr) v_{max} = 3071, 2923, 2847, 1688, 1453, 1240, 1029, 826, 757 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.63 (s, 1H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.61 (d, *J* = 9.0 Hz, 2H), 7.55–7.44 (m, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 9.9 Hz, 2H), 3.82 (s, 3H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 158.54, 149.98, 137.61, 137.10, 129.13, 126.33, 125.43, 124.53, 118.30, 114.51, 55.49 ppm. HRMS (ESI) calculated for C₁₅H₁₃N₃NaO₂ [M+Na]⁺: 290.0900; found: 290.0898.

4-(4-Ethoxyphenyl)-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4e):** White solid, 56% yield, mp=141.5-142.1 °C; IR (KBr) $v_{\text{max}} = 3145$, 3077, 2922, 2858, 1692, 1581, 1509, 1456, 1375, 1242, 1048, 937, 822, 745 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.60$ (s, 1H), 7.94 (d, J = 7.7 Hz, 2H), 7.58 (d, J = 8.9 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 9.0 Hz, 2H), 4.08 (q, J = 6.9 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 157.80$, 149.97, 137.61, 137.08, 129.12, 126.19, 125.41, 124.50, 118.29, 114.95, 63.44, 14.56 ppm. HRMS (ESI) calculated for C₁₆H₁₆N₃O₂ [M+H]⁺: 282.1237; found: 282.1234.

4-(4-Fluorophenyl)-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4f): Yellow brown solid, 45% yield, mp=161.5-162.4 °C; IR (KBr) v_{max} = 3128, 3066, 2922, 2855, 1689, 1457, 1233, 833, 741 cm⁻¹; ¹H NMR (400 MHz, DMSO-***d***₆) \delta = 8.71 (s, 1H), 7.95 (d,** *J* **= 8.2 Hz, 2H), 7.82–7.70 (m, 2H), 7.56-7.35 (m, 4H), 7.29 (t,** *J* **= 7.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, DMSO-***d***₆) \delta = 162.13, 159.70, 149.76, 137.49, 136.80, 129.90, 129.87, 129.39, 129.14, 125.52, 125.02, 124.93, 122.40, 118.40, 118.36, 116.31, 116.08 ppm. HRMS (ESI) calculated for C₁₄H₁₀FN₃NaO [M+Na]⁺: 278.0700; found: 278.0701.**

4-(4-Chlorophenyl)-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4g): Light yellow solid, 33% yield, mp=187.2-188.1 °C; IR (KBr) v_{max}= 3130, 3065, 2923, 2855, 1689, 1458, 1230, 826, 744 cm⁻¹; ¹H NMR (400 MHz, DMSO-***d***₆) \delta = 8.76 (s, 1H), 8.02–7.87 (m, 2H), 7.87–7.73 (m, 2H), 7.70–7.57 (m, 2H), 7.57–7.43 (m, 2H), 7.30 (t,** *J* **= 7.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, DMSO-***d***₆) \delta = 149.52, 137.41, 136.45, 132.48, 131.77, 129.32, 129.14, 125.57, 123.97, 118.41 ppm. HRMS (ESI) calculated for C₁₄H₁₀ClN₃NaO [M+Na]⁺: 294.0405; found: 294.0438.**

4-(4-Bromophenyl)-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4h):** White solid, 32% yield, mp=201.3-202.2 °C; IR (KBr) $v_{\text{max}} = 3068$, 2928, 2855, 1728, 1673, 1593, 1509, 1252, 930, 835, 750 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 8.74$ (s, 1H), 7.93 (d, J = 7.8 Hz, 2H), 7.80–7.70 (m, 4H), 7.50 (t, J = 8.0 Hz, 2H), 7.28 (t, J = 7.4

Hz, 1H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 149.47, 137.39, 136.37, 132.90, 132.25, 129.13, 125.57, 124.19, 120.07, 118.41 ppm. HRMS (ESI) calculated for C₁₄H₁₁BrN₃O [M+H]⁺: 316.0080; found: 316.0073.

4-(3,4-Dimethylphenyl)-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4i): Orange red solid, 52% yield, mp=107.5-108.2 °C; IR (KBr) v_{max} = 3144, 3078, 2925, 2858, 1706, 1573, 1497, 1458, 1378, 1232, 954, 753 cm⁻¹; ¹H NMR (400 MHz, DMSO-***d***₆) \delta = 8.64 (s, 1H), 7.98–7.90 (m, 2H), 7.49 (t,** *J* **= 7.9 Hz, 3H), 7.42 (d,** *J* **= 8.1 Hz, 1H), 7.32–7.24 (m, 2H), 2.27 (d,** *J* **= 7.7 Hz, 6H) ppm; ¹³C NMR (101 MHz, DMSO-***d***₆) \delta = 149.77, 137.57, 137.49, 136.81, 135.89, 131.19, 130.13, 129.12, 125.46, 123.35, 119.81, 118.34, 19.43, 18.94 ppm. HRMS (ESI) calculated for C₁₆H₁₅N₃NaO [M+Na]⁺: 288.1107; found: 288.1105.**

2-Phenyl-4-(3,4,5-trimethoxyphenyl)-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4j):** Yellow brown solid, 50% yield, mp=144.7-145.5 °C; IR (KBr) $v_{\text{max}} = 3146$, 3078, 2930, 2850, 1707, 1587, 1490, 1367, 1242, 1118, 1006, 847, 757 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.69$ (s, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.50 (t, J = 7.8 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 7.07 (s, 2H), 3.83 (s, 6H), 3.70 (s, 3H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 153.17$, 149.71, 137.50, 136.96, 136.68, 129.26, 129.14, 125.54, 118.44, 100.70, 60.16, 56.20 ppm. HRMS (ESI) calculated for C₁₇H₁₇N₃NaO₄ [M+Na]⁺: 350.1111; found: 350.1106.

4-(Naphthalen-2-yl)-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one** (**4k**): Yellow brown solid, 39% yield, mp=172.4-173.5 °C; IR (KBr) $v_{max} = 3137$, 3070, 2922, 2852, 1690, 1454, 1374, 1234, 858, 743 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.84$ (s, 1H), 8.31 (d, J = 1.6 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.05–7.94 (m, 4H), 7.91– 7.84 (m, 1H), 7.65–7.56 (m, 2H), 7.52 (t, J = 7.9 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) $\delta = 149.85$, 137.54, 136.84, 132.79, 131.66, 131.09, 129.26, 129.18, 127.92, 127.76, 127.14, 126.67, 125.58, 120.88, 120.29, 118.45 ppm. HRMS (ESI) calculated for C₁₈H₁₄N₃O [M+H]⁺: 288.1131; found: 288.1104. **4-Benzyl-2-phenyl-2,4-dihydro-3***H***-1,2,4-triazol-3-one (41)**: Reddish brown oil, 37% yield; ¹H NMR (400 MHz,

DMSO- d_6) $\delta = 8.38$ (s, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.54–7.16 (m, 8H), 4.89 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 151.61$, 137.83, 135.60, 134.88, 129.16, 128.95, 128.58, 128.10, 125.54, 118.65, 46.21 ppm. HRMS (ESI) calculated for C₁₅H₁₃N₃NaO [M+Na]⁺: 274.0951; found: 274.0946.

4-Butyl-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4m):** Reddish brown oil, 34% yield; ¹H NMR (400 MHz, DMSO- d_6) $\delta = 8.29$ (s, 1H), 8.04–7.77 (m, 2H), 7.47 (t, J = 7.8 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 3.66 (t, J = 7.2 Hz, 2H), 1.75-1.60 (m, 2H), 1.43–1.16 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 151.65$, 137.90, 135.82, 128.91, 125.43, 118.61, 42.31, 31.12, 19.70, 13.47 ppm. HRMS (ESI) calculated for C₁₂H₁₅N₃NaO [M+Na]⁺: 240.1107; found: 240.1104.

4-Cyclopropyl-2-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4n):** White solid, 32% yield, mp=120.5-121.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.20 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 2H), 7.60–7.36 (m, 2H), 7.33–7.15 (m, 1H), 3.12–2.97 (m, 1H), 1.05-0.88 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 152.28, 137.84, 136.19, 128.94, 125.49, 118.70, 24.23, 5.65 ppm. HRMS (ESI) calculated for C₁₁H₁₁N₃NaO [M+Na]⁺: 224.0794; found: 224.0792.

4-Phenyl-2-(*p*-tolyl)-2,4-dihydro-3*H*-1,2,4-triazol-3-one (40): Light yellow solid, 48% yield, mp=156.2-157.1 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.69 (s, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 2H), 2.33 (s, 3H) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 149.66, 138.96, 137.51, 136.69, 133.45, 129.17, 129.10, 128.14, 125.46, 122.78, 119.43, 118.34, 20.91 ppm. HRMS (ESI) calculated for C₁₅H₁₃N₃NaO [M+Na]⁺: 274.0951; found: 274.0945.

2-(4-Ethylphenyl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4p): Yellow brown solid, 56% yield, mp=111.0-112.0 °C; ¹H NMR (400 MHz, CDCl₃) \delta = 7.89 (d,** *J* **= 8.3 Hz, 2H), 7.84 (s, 1H), 7.60 (d,** *J* **= 7.8 Hz, 2H), 7.51 (t,** *J* **= 7.7 Hz, 2H), 7.40 (t,** *J* **= 7.4 Hz, 1H), 7.28 (d,** *J* **= 8.3 Hz, 2H), 2.68 (q,** *J* **= 7.6 Hz, 2H), 1.26 (t,** *J* **= 7.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) \delta = 150.20, 141.98, 135.40, 134.46, 133.63, 129.69, 128.39, 127.86, 122.37, 119.19, 28.39, 15.57 ppm. HRMS (ESI) calculated for C₁₆H₁₅N₃NaO [M+Na]⁺: 288.1107; found: 288.1105.** **2-(4-(***tert***-Butyl)phenyl)-4-phenyl-2,4-dihydro-3***H***-1,2,4-triazol-3-one (4q): Yellow brown solid, 55% yield, mp=152.4-153.2 °C; ¹H NMR (400 MHz, CDCl₃) \delta = 7.90 (d,** *J* **= 8.7 Hz, 2H), 7.84 (s, 1H), 7.60 (d,** *J* **= 7.9 Hz, 2H), 7.55–7.44 (m, 4H), 7.39 (t,** *J* **= 7.4 Hz, 1H), 1.35 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) \delta = 150.22, 148.86, 135.10, 134.49, 133.62, 129.68, 127.84, 125.89, 122.35, 118.87, 34.50, 31.33 ppm. HRMS (ESI) calculated for C₁₈H₁₉N₃NaO [M+Na]⁺: 316.1420; found: 316.1418.**

2-(4-Fluorophenyl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4r): Yellow brown solid, 46% yield, mp=171.3-172.1 °C; ¹H NMR (400 MHz, DMSO-***d***₆) \delta = 8.74 (s, 1H), 8.02–7.89 (m, 2H), 7.82–7.66 (m, 2H), 7.56 (t,** *J* **= 7.7 Hz, 2H), 7.49–7.29 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) \delta = 161.65, 159.21, 150.15, 134.69, 133.45, 129.73, 128.01, 122.38, 120.82, 120.74, 115.88, 115.66 ppm. HRMS (ESI) calculated for C₁₄H₁₀FN₃NaO [M+Na]⁺: 278.0700; found: 278.0698.**

2-(4-Chlorophenyl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4s):** Yellow brown solid, 37% yield, mp=206.3-207.2 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.99 (d, *J* = 8.9 Hz, 2H), 7.85 (s, 1H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 8.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 150.08, 136.27, 134.90, 133.36, 131.07, 129.76, 129.10, 128.08, 122.42, 120.02 ppm. HRMS (ESI) calculated for C₁₄H₁₀ClN₃NaO [M+Na]⁺: 294.0405; found: 294.0403.

2-(4-Bromophenyl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4t): Yellow brown solid, 39% yield, mp=213.2-214.0 °C; ¹H NMR (400 MHz, CDCl₃) \delta = 7.94 (d,** *J* **= 8.9 Hz, 2H), 7.85 (s, 1H), 7.62–7.49 (m, 6H), 7.41 (t,** *J* **= 7.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) \delta = 150.07, 136.78, 134.94, 133.34, 132.05, 129.76, 128.09, 122.42, 120.30, 118.85 ppm. HRMS (ESI) calculated for C₁₄H₁₀BrN₃NaO [M+Na]⁺ : 337.9899; found: 337.9898.**

2-(3,4-Dimethylphenyl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4u): Reddish brown solid, 46% yield, mp=140.2-141.0 °C; ¹H NMR (400 MHz, DMSO-***d***₆) \delta = 8.70 (s, 1H), 7.78-7.69 (m, 3H), 7.68-7.62 (m, 1H), 7.56 (t,** *J* **= 7.7 Hz, 2H), 7.43 (t,** *J* **= 7.4 Hz, 1H), 7.25 (d,** *J* **= 8.2 Hz, 1H), 2.32-2.18 (m, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) \delta = 150.17, 137.38, 135.44, 134.35, 134.33, 133.66, 130.04, 129.67, 127.82, 122.32, 120.32, 116.66, 19.98, 19.30 ppm. HRMS (ESI) calculated for C₁₆H₁₅N₃NaO [M+Na]⁺: 288.1107; found: 288.1105.**

2-(3,5-Dimethylphenyl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4v): Yellow solid, 52% yield, mp=95.4-96.1 °C; ¹H NMR (400 MHz, CDCl₃) \delta = 7.84 (s, 1H), 7.68–7.56 (m, 4H), 7.51 (t,** *J* **= 7.6 Hz, 2H), 7.40 (t,** *J* **= 7.3 Hz, 1H), 6.91 (s, 1H), 2.38 (s, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) \delta = 150.20, 138.81, 137.49, 134.43, 133.62, 129.67, 127.85, 127.59, 122.30, 116.87, 21.46 ppm. HRMS (ESI) calculated for C₁₆H₁₅N₃NaO [M+Na]⁺: 288.1107; found: 288.1105.**

2-(Naphthalen-2-yl)-4-phenyl-2,4-dihydro-3*H***-1,2,4-triazol-3-one (4w):** White solid, 47% yield, mp=147.5-148.2 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.54 (s, 1H), 8.19 (d, *J* = 9.3 Hz, 1H), 7.95–7.84 (m, 4H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.56–7.39 (m, 5H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 150.35, 134.75, 133.43, 131.34, 129.72, 128.98, 128.16, 127.96, 127.65, 126.63, 125.71, 122.39, 118.17, 116.33 ppm. HRMS (ESI) calculated for C₁₈H₁₄N₃O [M+H]⁺: 288.1131; found: 288.1124.

¹³C NMR spectra of compound 4a

¹³C NMR spectra of compound **4b**

¹³C NMR spectra of compound **4**c

¹³C NMR spectra of compound **4g**

 $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{4h}$

¹³C NMR spectra of compound **4i**

¹³C NMR spectra of compound 4j

¹³C NMR spectra of compound **4**k

¹³C NMR spectra of compound **4**l

¹³C NMR spectra of compound **4n**

¹³C NMR spectra of compound 40

 $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{4q}$

 13 C NMR spectra of compound 4r

¹³C NMR spectra of compound 4s

 13 C NMR spectra of compound **4t**

¹³C NMR spectra of compound **4u**

 ^{13}C NMR spectra of compound 4v

¹³C NMR spectra of compound **4w**

References

- [1] Kane JM. The bis(tricyclohexylstannyl) sulfide thionation of 3*h*-1,2,4-triazol-3-ones. Synthesis (Stuttgart) 1987:912-14
- [2] Mohammadi B, Adib M. Microwave assisted one-pot tandem three-component synthesis of 2,4,5-triary1-2-4-dihydro-3*h*-1,2,4-triazol-3-one derivatives. Chin. Chem. Lett. 2014;25:553-56
- [3] Sharma P, Bhat SV, Prabhath MR, Molino A, Nauha E, Wilson DJ, et al. Synthesis of 1,2,4-triazol-3-imines via selective stepwise cycloaddition of nitrile imines with organo-cyanamides. Org. Lett. 2018;20:4263-66
- [4] Bektaş H, Karaali N, Şahin D, Demirbaş A, Karaoglu ŞA, Demirbaş N. Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecules 2010;15:2427-38
- [5] Özil M, Menteşe E, Karaoğlu ŞA, Kahveci B. Ecofriendly solventless synthesis and reduction reaction of some triazole compounds and evaluation of their antimicrobial activity. Synth. Commun. 2013;43:1328-36
- [6] You Y, Chen Y, You C, Wang J, Weng Z. Synthesis of 3-(tri/difluoromethyl)-1h-1,2,4-triazol-5(4h)-ones via the cyclization of hydrazinecarboxamides with tri/difluoroacetic anhydride. Org. Biomol. Chem. 2019;17:9343-47
- [7] Henbach G. 1978. Patent No. DE2724819A1