Supporting information

Synthesis of Acyloxy-2H-Azirine and Sulfonyloxy-2H-Azirine Derivatives via the One-Pot Reaction of $\boldsymbol{\beta}$-Enamino Esters, PIDA and Carboxylic Acid or Sulfonic Acid
Pan Tang, Long Wen, Hao-Jie Ma, Yi Yang and Yan Jiang*
School of Chemistry and Environmental Engineering, Sichuan University of Science \& Engineering, No. 519, Huixing Road, Ziliujing District, Zigong City, Sichuan Province, China E-mail: jiangyan199@126.com

Table of contents

General information 2
General Procedure for the PIDA Mediated Reaction of Unsubstituted β-Enamino Esters to Acetoxy 2 H -Azirines 2 2
General Procedure for the PIDA Mediated Reaction of Unsubstituted β-Enamino Esters with Sulfonic Acids to Sulfonyloxy-2H-Azirines 3 2
General Procedure for the PIDA Mediated Reaction of Unsubstituted β-Enamino Esters with Other Carboxylic Acid to Acyloxy 2H-Azirines 4 3
The Procedure for the PIDA and TsOH Mediated Oxidative Sulfonyloxylation of
Unsubstituted β-Enamino Ester 1a to compound 5 3
Experiment Data for the Acetoxy 2H-Azirines 2 3
Experiment Data for the Sulfonyloxy-2H-Azirines 3 6
Experiment Data for the Acyloxy 2H-Azirines 4 8
Experiment Data for the compound 5 10
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 11

General information

All starting materials were of the highest commercially available grade and used without further purification. All solvents used in the reactions were distilled from appropriate drying agents prior to use. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Flash chromatography (FC) was performed using the silica gel of particle size 200-300 mesh. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on 600 MHz in CDCl_{3} or DMSO- d_{6} and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 151 MHz in CDCl_{3} or DMSO- $d_{6} \cdot{ }^{1} \mathrm{H}$ NMR chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3}, \delta=7.26\right.$ ppm or DMSO- $d_{6}, \delta=2.50 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}, \delta=77.16 \mathrm{ppm}\right.$ or DMSO- $\left.d_{6}, \delta=39.52 \mathrm{ppm}\right)$. ESI HRMS spectra were recorded on Bio TOF Q .

General Procedure for the PIDA Mediated Reaction of Unsubstituted $\boldsymbol{\beta}$-Enamino

 Esters to Acetoxy 2H-Azirines 2β-enamino esters $1(0.2 \mathrm{mmol})$ and PIDA $(0.4 \mathrm{mmol}, 128.8 \mathrm{mg})$ were added in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. The reaction mixture was stirred at room temperature for 12 h . Then the resulting mixture was directly purified by column chromatography (silica gel, hexane/EtOAc $=7 / 1$) to afforded the desired compounds 2.

General Procedure for the PIDA Mediated Reaction of Unsubstituted $\boldsymbol{\beta}$-Enamino

Esters with Sulfonic Acids to Sulfonyloxy-2H-Azirines 3

To the powder mixture of $4 \AA$ MS $(50 \mathrm{mg})$, PIDA $(0.4 \mathrm{mmol}, 128.8 \mathrm{mg})$, sulfonic acids $(0.2 \mathrm{mmol})$ and β-enamino esters $1(0.2 \mathrm{mmol}), 2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at room temperature. The reaction was stirred at room temperature for 12 h . Then the resulting mixture was directly purified by column chromatography (silica gel, hexane/EtOAc $=10 / 1$ to $5 / 1$) to afforded the desired compounds 3 .

General Procedure for the PIDA Mediated Reaction of Unsubstituted $\boldsymbol{\beta}$-Enamino

Esters with Other Carboxylic Acid to Acyloxy 2H-Azirines 4

(A) To the powder mixture of $4 \AA$ MS $(50 \mathrm{mg})$, PIDA $(0.4 \mathrm{mmol}, 128.8 \mathrm{mg})$, other carboxylic acid $(0.2$ $\mathrm{mmol})$ and β-enamino esters $1(0.2 \mathrm{mmol}), 2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at room temperature. The reaction was stirred at room temperature for 12 h . Then the resulting mixture was directly purified by column chromatography (silica gel, hexane/EtOAc $=10 / 1$ to $5 / 1$) to afforded the desired compounds 4.
(B) To the powder mixture of $4 \AA$ MS $(50 \mathrm{mg})$, PIDA $(0.4 \mathrm{mmol}, 128.8 \mathrm{mg})$, other carboxylic acid $(0.4$ $\mathrm{mmol})$ and β-enamino esters $\mathbf{1}(0.2 \mathrm{mmol}), 2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added at room temperature. The reaction was stirred at room temperature for 12 h . Then the reaction was filtered through celite, washed with aqueous potassium carbonate solution and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting mixture was purified by column chromatography (silica gel, hexane/EtOAc $=10 / 1$) to afforded the desired compounds 4.

The Procedure for the PIDA and TsOH Mediated Oxidative Sulfonyloxylation of

 Unsubstituted $\boldsymbol{\beta}$-Enamino Ester 1a to compound 5To the powder mixture of PIDA ($0.24 \mathrm{mmol}, 77.3 \mathrm{mg}$), TsOH $(0.2 \mathrm{mmol}, 34.4 \mathrm{mg})$ and β-enamino esters $\mathbf{1 a}(0.2 \mathrm{mmol}, 35.4 \mathrm{mg}), 2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at room temperature. The reaction was stirred at room temperature for 12 h . Then the resulting mixture was directly purified by column chromatography (silica gel, hexane/EtOAc $=5 / 1$) to afforded the desired compounds $\mathbf{5}$ with 65% yield.

Experiment Data for the Acetoxy 2H-Azirines 2

Methyl 2-acetoxy-3-phenyl-2H-azirine-2-carboxylate (2a): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.11-8.09 (m, 2H), 7.67-7.70 (m, 1H), 7.58-7.61 (m, 2H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 170.50,168.05,165.38$, 134.83, 131.33, 129.51, 120.88, 63.34, 53.39, 20.69; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires $m / z 256.0580$, found $m / z 256.0583$.

Ethyl 2-acetoxy-3-phenyl-2H-azirine-2-carboxylate (2b): colorless viscous oil;
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J$
$=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.48,167.55,165.46,134.75,131.29,129.48,120.95,63.45,62.61,20.67,14.17$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 270.0737$, found m / z 270.0740.

Isopropyl 2-acetoxy-3-phenyl-2H-azirine-2-carboxylate (2c): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.48,167.07,165.63,134.69,131.25$, 129.47, 121.03, 70.57, 63.63, 21.74, 21.73, 20.66; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$ requires $m / z 284.0893$, found $m / z 284.0896$.

Ethyl 2-acetoxy-3-(furan-2-yl)-2H-azirine-2-carboxylate (2d): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{qd}, J=7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 170.44,167.03,155.03,150.65,138.05,124.70,113.27,62.78,62.21$, 20.63, 14.16; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5}+\mathrm{Na}\right)^{+}$requires $m / z 260.0529$, found m / z 260.0535.

Ethyl 2-acetoxy-3-(thiophen-2-yl)-2H-azirine-2-carboxylate (2e): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=3.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}$, $J=4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=4.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{tt}, J=7.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.56,167.28,158.91,137.80,137.15,128.93,122.60$, 63.41, 62.69, 20.63, 14.17, ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / z 276.0301$, found $m / z 276.0306$.
${ }^{N}{ }_{\sim}^{N} \quad$ Ethyl \quad 2-acetoxy-3-(pyridin-2-yl)-2H-azirine-2-carboxylate \quad (2f): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96-8.90(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=7.7,4.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{qd}, J=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.34,166.96,166.32,151.72$, 142.02, 137.47, 128.51, 127.83, 63.97, 62.78, 20.71, 14.16; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right)^{+}$requires $m / z 271.0689$, found $m / z 271.0692$.

Ethyl 2-acetoxy-3-(benzo[d][1,3]dioxol-5-yl)-2H-azirine-2-carboxylate
(2g): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=8.1$,
4.27-4.19(m, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.61$, $167.66,164.30,153.33,148.72,128.36,114.55,110.04,109.34,102.42,63.80,62.55,20.67$, 14.18; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{6}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 314.0635$, found m / z 314.0635 .

Methyl 2-acetoxy-3-(naphthalen-2-yl)-2H-azirine-2-carboxylate (2h):

 white solid, mp 121.6-122.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{~s}, 1 \mathrm{H})$, $8.10(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.63,168.14$, $165.42,136.31,134.39,132.79,129.79,129.66,129.58,128.23,127.54,125.10,118.01,63.53,53.42$, 20.73; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires m / z 306.0737, found m / z 306.0741. Methyl 2-acetoxy-3-(p-tolyl)-2H-azirine-2-carboxylate (2i): white solid, mp $50-51{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- $\left.d_{6}\right) \delta 170.19$, $167.60,164.09,146.43,130.86,130.55,117.08,62.55,53.33,21.59,20.27$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires $m / z 270.0737$, found $m / z 270.0739$.

Methyl 2-acetoxy-3-(4-isopropylphenyl)-2H-azirine-2-carboxylate (2j):
colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 170.09,167.56,164.12,156.72,131.03,127.96,117.47$, 62.52, 53.24, 33.87, 23.33, 23.31, 20.19; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires $m / z 298.1050$, found $m / z 298.1056$.

Methyl 3-([1,1'-biphenyl]-4-yl)-2-acetoxy-2H-azirine-2-carboxylate (2k): white solid, $\mathrm{mp} 96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=10.3,4.7 \mathrm{~Hz}$, $2 \mathrm{H})$, 7.46-7.42 (m, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 170.58, 168.11, 164.93, 147.68, 139.58, 131.83, 129.23, 128.84, 128.15, 127.48, 119.42, 63.29, 53.42, 20.72; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{H}\right)^{+}$requires $m / z 310.1074$, found $m / z 310.1075$.

Ethyl 2-acetoxy-3-(4-fluorophenyl)-2H-azirine-2-carboxylate (21): yellow viscous oil; ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) $\delta 8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz ,

DMSO- d_{6}) $\delta 170.24,166.85,166.10(\mathrm{~d}, J=249.2 \mathrm{~Hz}), 163.94,133.92(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 117.53(\mathrm{~d}, J=$ $22.7 \mathrm{~Hz}), 116.69(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 62.65,62.34,20.25,13.91$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}_{4}+\mathrm{H}\right)^{+}$requires m / z 266.0823, found $m / z 266.0824$.

Ethyl 2-acetoxy-3-(4-chlorophenyl)-2H-azirine-2-carboxylate (2m): white solid, mp 75-76 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.07-8.03 (m, 2H), 7.59-7.56 (m, 2H), $4.23(\mathrm{qd}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.58,167.33,164.98,141.46,132.50,130.02,119.43,63.30,62.76,20.68,14.18 ;$ ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClNO}_{4}+\mathrm{H}\right)^{+}$requires $m / z 282.0528$, found m / z 282.0532.

Ethyl 2-acetoxy-3-(4-cyanophenyl)-2H-azirine-2-carboxylate (2n): white solid, mp 135-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.90$ $-7.87(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{qd}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(151$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.49,168.83,165.76,133.10,131.54,124.98,117.93,117.63,63.20,62.98,20.63$, 14.15; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right)^{+}$requires m / z 273.0870, found m / z 273.0875. Nethyl 2-acetoxy-3-(2-chlorophenyl)-2H-azirine-2-carboxylate (20): white solid, mp 106-107 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) δ 8.10-8.07 (m, 1 H), 7.85-7.82 (m, 2H), 7.70-7.67 (m, 1H), 3.72 (s, 3H), $2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- $\left.d_{6}\right) \delta$ $170.01,167.20,162.84,136.76,135.68,134.16,131.16,128.54,118.72,61.39,53.44,20.32$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{4}+\mathrm{Na}\right)^{+}$requires m / z 290.0191, found $m / z 290.0190$.

Experiment Data for the Sulfonyloxy-2H-Azirines 3

Methyl 3-phenyl-2-(tosyloxy)-2H-azirine-2-carboxylate (3a): white solid, mp 127.6-128.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.44,163.81,145.32,135.12,134.00,131.31,129.71,129.52$, 128.21, $120.49,66.74,53.72,21.78$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right)^{+}$requires m / z 346.0744, found $m / z 346.0750$.

Ethyl 3-(4-chlorophenyl)-2-(tosyloxy)-2H-azirine-2-carboxylate (3b): white solid, mp 119.3-120.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.71$, $163.41,145.47,141.78,133.86,132.45,130.06,129.77,128.18,119.10,66.59,63.20,21.80,14.14$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{5} \mathrm{~S}+\mathrm{Na}\right)^{+}$requires $m / z 416.0330$, found $m / z 416.0336$.

Ethyl 3-(4-bromophenyl)-2-(tosyloxy)-2H-azirine-2-carboxylate (3c): white solid, mp 112.5-113.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.27(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.68,163.59,145.48,133.78,133.02,132.44,130.53,129.76,128.16,119.47,66.51,63.20,21.80$, 14.13; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{5} \mathrm{~S}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 438.0005$, found m / z 438.0009 .

Methyl 3-(3-bromophenyl)-2-(tosyloxy)-2H-azirine-2-carboxylate (3d): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.0,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.02$, $163.51,145.55,137.91,133.73,133.63,131.01,129.77,129.73,128.22,123.42,122.47,66.47,53.82$, 21.80; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{5} \mathrm{~S}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 438.0005$, found m / z 438.0009 .

Ethyl 3-(2,4-dichlorophenyl)-2-(tosyloxy)-2H-azirine-2-carboxylate (3e): white solid, $\mathrm{mp} 63.5-64.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{qd}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.50,162.14,145.46,141.99,138.16,134.52,134.00,131.06,129.77$, 128.24, 128.22, 118.42, 65.67, 63.25, 21.82, 14.19; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right)^{+}$requires $m / z 428.0121$, found $m / z 428.0125$.

Methyl 3-(p-tolyl)-2-(tosyloxy)-2H-azirine-2-carboxylate (3f): white solid, mp 101.1-102.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.61,163.20,146.55,145.26,134.10,131.39,130.30$, $129.70,128.21,117.62,66.80,53.67,21.25,21.80$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{Na}\right)^{+}$requires $m / z 382.0720$, found $\mathrm{m} / \mathrm{z} 382.0725$.

Methyl 3-(naphthalen-2-yl)-2-(tosyloxy)-2H-azirine-2-carboxylate (3g): white solid, mp 144.0-145.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H})$, $8.01(\mathrm{t}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H})$, 7.66-7.60 (m, 1H), $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.55,163.75,145.31,136.35,134.34,134.00,132.62,129.89,129.75,129.69,129.60,128.24$, 128.19, 127.67, 125.03, 117.56, 66.93, 53.77, 21.73; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right)^{+}$requires $m / z 396.0900$, found m / z 396.0906.

Methyl 2-(((4-chlorophenyl)sulfonyl)oxy)-3-phenyl-2H-azirine-2-
carboxylate (3h): white solid, mp 96.5-97.3 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 8.05-7.99(m, 2H), 7.88-7.82(m, 2H), $7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.21,163.69$, $140.96,135.53,135.35,131.33,129.66,129.65,129.47,120.24,67.20,53.80$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{5} \mathrm{~S}+\mathrm{Na}\right)^{+}$requires $m / z 388.0017$, found $\mathrm{m} / \mathrm{z} 388.0023$.

Experiment Data for the Acyloxy 2H-Azirines 4

Methyl 2-((4-nitrobenzoyl)oxy)-3-phenyl-2H-azirine-2-carboxylate (4a): white solid, mp 120.4-121.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.22-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.8$, $2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=10.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.64$, 165.16, 164.32, 151.11, 135.16, 134.17, 131.49, 131.44, 129.66, 123.78, 120.57, 64.55, 53.65; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right)^{+}$requires $m / z 341.0768$, found $m / z 341.0777$.

Ethyl 3-(4-chlorophenyl)-2-((4-nitrobenzoyl)oxy)-2H-azirine-2carboxylate (4b): white solid, mp 121.2-122.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d d_{6}) $\delta 8.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 166.38,164.11,163.94,150.81,140.52,133.24,132.72,131.21,130.27$, 124.11, 118.71, 63.87, 62.66, 13.88; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{6}+\mathrm{H}\right)^{+}$requires m / z 389.0535, found $m / z 389.0544$.

Ethyl 3-(4-bromophenyl)-2-((4-nitrobenzoyl)oxy)-2H-azirine-2carboxylate (4c): white solid, mp 122.1-123.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{qd}, J=7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.87,164.98,164.37,151.15,134.06,133.17,132.64,131.42,130.59,123.82$, 119.56, 64.48, 63.05, 14.19; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{6}+\mathrm{H}\right)^{+}$requires m / z 433.0030, found $m / z 433.0038$.

Ethyl 3-(4-cyanophenyl)-2-((4-nitrobenzoyl)oxy)-2H-azirine-2-
carboxylate (4d): white solid, mp 144.2-145.6 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.37-8.29(\mathrm{~m}, 4 \mathrm{H}), 8.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.28(\mathrm{qd}, J=7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.42,165.59$, $164.32,151.25,133.78,133.23,131.71,131.46,124.72,123.88,118.28,117.55,64.39,63.28,14.18$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}\right)^{+}$requires $m / z 380.0877$, found $m / z 380.0881$.

Methyl

2-((4-nitrobenzoyl)oxy)-3-(p-tolyl)-2H-azirine-2-carboxylate (4e): white solid, $\mathrm{mp} 131.3-132.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, 3H), 2.49 ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.82,164.52,164.35,151.07,146.56,134.25$, $131.53,131.43,130.42,123.76,117.67,64.53,53.59,22.26$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\right)^{+}$requires $m / z 377.0744$, found $m / z 377.0752$.

Methyl

3-phenyl-2-((4-(trifluoromethyl)benzoyl)oxy)-2H-azirine-2-carboxylate

(4f): white solid, $\mathrm{mp} 62.5-63.4{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.28-8.12 (m, 4H), $7.72(\mathrm{dd}, J=10.2,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.82,165.32,164.97,135.30(\mathrm{q}, J=33.2 \mathrm{~Hz}), 135.04,132.03,131.47,130.69$, $129.62,125.69(\mathrm{q}, J=4.5 \mathrm{~Hz}), 123.62(\mathrm{q}, J=273.3 \mathrm{~Hz}), 120.70,64.31,53.57$; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires $m / z 386.0611$, found $m / z 386.0617$.

Methyl 2-((4-cyanobenzoyl)oxy)-3-phenyl-2H-azirine-2-carboxylate (4g):
white solid, $\mathrm{mp} 90.6-91.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.25-8.12 (m,

2H), 7.79-7.74 (m, 2H), 7.74-7.68 (m, 1H), $7.63(\mathrm{dd}, J=10.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.68,165.18,164.56,135.12,132.60,132.44,131.47,130.74,129.64,120.57$, 117.91, 117.28, 64.43, 53.61; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right)^{+}$requires m / z 321.0870, found $m / z 321.0876$.

Methyl 2-((4-fluorobenzoyl)oxy)-3-phenyl-2H-azirine-2-carboxylate (4h): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 8.17$ (dd, $J=8.1,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.14-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 167.33,165.74(\mathrm{~d}, J=253.7 \mathrm{~Hz})$, 164.68, 164.31, 135.51, $132.77(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 130.96,129.97,124.45,119.82,116.30(\mathrm{~d}, J=22.7$ $\mathrm{Hz}), 63.41$, 53.52; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FNO}_{4}+\mathrm{Na}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 336.0643$, found $m / z 336.0646$.

Methyl 2-(butyryloxy)-3-phenyl-2H-azirine-2-carboxylate (4i): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{ddd}, J=23.4,15.9,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dd}$, $J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{dd}, J=7.8,7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.22,168.14$, 165.52, 134.80, 131.34, 129.52, 120.93, 63.21, 53.37, 35.75, 18.29, 13.61; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}\right)^{+}$requires $m / z 284.0893$, found $m / z 284.0909$.

Experiment Data for the compound 5

Methyl 3-amino-3-phenyl-2-(tosyloxy)acrylate (5): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}$, $5 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) $\delta 165.93,156.75$, 144.44, 133.66, 132.59, 129.66, 129.51, 128.45, 127.90, 127.60, 110.48, 50.64, 21.11; ESI HRMS exact mass calcd. for $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{H}\right)^{+}$requires $m / z 348.0900$, found m / z 348.0907.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

$\stackrel{N}{N}$
$\stackrel{\llcorner }{\sim}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound 2a

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound 2a

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 b}$
© in o

مom ๗o
Nin

든응응

৷

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 c}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 d}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 f}$

	웅우은		\pm
込或介00	0	ボ发发	$\stackrel{\sim}{1}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 h}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ spectra of compound $\mathbf{2 i}$

${ }^{13}$ C NMR (151 MHz , DMSO- d_{6}) spectra of compound $2 \mathbf{i}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ spectra of compound $\mathbf{2} \mathbf{j}$

${ }^{13}$ C NMR (151 MHz , DMSO- d_{6}) spectra of compound $\mathbf{2 j}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 k}$

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) spectra of compound 21

${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) spectra of compound 21

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound $\mathbf{2 m}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 n}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{2 n}$

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) spectra of compound $\mathbf{2 0}$

${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) spectra of compound $2 \mathbf{2}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound 3a

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound $\mathbf{3 b}$

${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{3} \mathbf{b}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound 3c

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound 3d

～～

${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectra of compound $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectra of compound $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) spectra of compound $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}) spectra of compound $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) spectra of compound $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 d}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of compound $\mathbf{4 e}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4} \mathbf{e}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 f}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 g}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ spectra of compound $\mathbf{4 h}$

${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) spectra of compound $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 i}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of compound $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) spectra of compound 5

${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO- d_{6}) spectra of compound 5

