Supporting Information for

Cephaloliverols A and B, two sterol-hybrid meroterpenoids from

Cephalotaxus oliveri

Chun-Yu Jiang,^{a,b} Xiao-Jie Fan,^{a,b} De-Li Zou,^{a,b} Zhan-Lin Li,^{a,b} Tong-Han,^c Bin Lin,^d Hui-Ming Hua,^{*a,b} Da-Hong Li^{*a,b}

^aKey Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education and ^bSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.

^cDepartment of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, People's Republic of China. ^dSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.

*Corresponding Author.

E-mail: lidahong0203@163.com; huimhua@163.com

Contents

General experimental procedures
Plant material4
Extraction and isolation4
Cell culture and determination of NO5
Electronic circular dichroism (ECD) caculation5
Figure S1 The optimized conformers of the simplified structure of 16
Figure S2 The optimized conformers of the simplified structure of 27
Figure S3 The optimized 3D structures of 2 with predicted interproton distance
between H-4 and H ₃ -20'7
Figure S4 The viability of RAW 264.7 cells incubated with compounds 1-4 for 24 h.8
Figure S5 ¹ H NMR spectrum (600 MHz, CDCl ₃) of cephaloliverol A (1)
Figure S6 Enlarged ¹ H NMR spectrum (600 MHz, CDCl ₃) of cephaloliverol A (1) .12
Figure S7 ¹³ C NMR spectrum (150 MHz, CDCl ₃) of cephaloliverol A (1)13
Figure S8 DEPT spectrum (150 MHz, CDCl ₃) of cephaloliverol A (1)14
Figure S9 HSQC spectrum of cephaloliverol A (1)15
Figure S10 HMBC spectrum of cephaloliverol A (1)16
Figure S11 ¹ H- ¹ H COSY spectrum of cephaloliverol A (1)17
Figure S12 ROESY spectrum of cephaloliverol A (1)18
Figure S13 UV spectrum in CH ₃ OH of cephaloliverol A (1)19
Figure S14 IR spectrum in KBr of cephaloliverol A (1)20
Figure S15 Experimental ECD spectrum in CH ₃ OH of cephaloliverol A (1)21
Figure S16 HRESIMS of cephaloliverol A (1)22
Figure S17 ¹ H NMR spectrum (600 MHz, CDCl ₃) of cephaloliverol B (2)23
Figure S18 Enlarged ¹ H NMR spectrum (150 MHz, CDCl ₃) of cephaloliverol B (2)26
Figure S19 ¹³ C NMR spectrum (150 MHz, CDCl ₃) of cephaloliverol B (2)27
Figure S20 DEPT spectrum (150 MHz, CDCl ₃) of cephaloliverol B (2)28
Figure S21 HSQC spectrum of cephaloliverol B (2)29
Figure S22 HMBC spectrum of cephaloliverol B (2)
Figure S23 ¹ H- ¹ H COSY spectrum of cephaloliverol B (2)

Figure S24 ROESY spectrum of cephaloliverol B (2)	32
Figure S25 UV spectrum in CH ₃ OH of cephaloliverol B (2)	33
Figure S26 IR spectrum in KBr of cephaloliverol B (2)	34
Figure S27 Experimental ECD spectrum in CH ₃ OH of cephaloliverol B (2)	35
Figure S28 HRESIMS of cephaloliverol B (2)	36

General experimental procedures

Optical rotations were recorded on Anton Par MCP 200 polarimeter. UV spectra were measured on a Shimadzu UV-2400 spectrophotometer. ECD spectrum was recorded on Bio-Logic Science MOS-450 spectropolarimeter. HRESIMS data were measured on a Bruker micro-TOFQ-Q mass spectrometer. NMR spectroscopic data were recorded on Bruker AV-600 NMR spectrometer with tetramethylsilane as an internal standard. ODS (50 μ m, YMC Co. Ltd., Kyoto, Japan), MCI gel (Mitsubishi Chemical Industries Ltd., Tokyo, Japan) and Sephadex LH-20 (Pharmacia Biotech, Uppsala, Sweden) were used for column chromatography (CC). Semi-preparative HPLC was conducted on a YMC ODS-A column (250 × 10 mm I.D., 5 μ m) equipped with a LC-6AD pump and a Shimadzu SPD-20A UV-vis detector (Shimadzu Co., Ltd., Tokyo, Japan). TLC analysis was performed on silica gel plates (GF254, Qingdao Haiyang Chemical Co., Ltd., Qingdao, PR China).

Plant material

The twigs and leaves of *C. oliveri* were collected in October 2019 from Longhui County, Shaoyang City of Hunan Province, PR China, and authenticated by Mr. Hongqiang Zhang of Kunming GenPHYTech Co. Ltd, Kunming, PR China. A voucher specimen (No. 20191105) was deposited at School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China.

Extraction and isolation

The air-dried twigs and leaves of *C. oliveri* (50 kg) were extracted with 95% EtOH twice and 75% EtOH once. The crude EtOH extract was suspended in water and then partitioned with petroleum ether (PE), dichloromethane (CH₂Cl₂), and *n*-butanol (*n*-BuOH) successively to afford PE, CH₂Cl₂, and *n*-BuOH extracts, respectively. The CH₂Cl₂ extract (70 g) was subjected to an MCI column eluted with CH₃OH-H₂O (30% to 100% CH₃OH) to yield nine fractions F1-F9.

F5 was separated subsequently by ODS (30% to 70% CH₃OH–H₂O) to obtain four subfractions F5A–F5D. F5C was chromatographed over Sephadex LH–20, and then purified by semi–preparative HPLC (CH₃OH–H₂O 65:35, v/v; flow rate, 2.0 mL/min) to obtain 4 (3.0 mg, $t_R = 49.8$ min). F8 was subjected to

silica gel CC (petroleum ether–ethyl acetate 100:0–100:50, v/v) to get four subfractions F8A–F8D. F8A was purified by Sephadex LH–20 (CH₃OH) to furnish **3** (5.1 mg). F8B was further separated by ODS, Sephadex LH–20 (CH₃OH) CC and semi–preparative HPLC (CH₃OH–H₂O 91:9, v/v; flow rate, 2.0 mL/min) to yield **1** (6.0 mg, $t_R = 77.8$ min) and **2** (6.0 mg, $t_R = 87.4$ min).

Cephaloliverol A (1). white solid; $[\alpha]_D^{20} -37$ (*c* 0.3, CH₃OH); UV (CH₃OH) λ_{max} (log ε): 253 (3.45), 284 (3.31), 335 (3.32) nm; ECD (CH₃OH) λ_{max} (log ε): 253 (+68.30), 280 (+102.10), 335 (-69.76) nm; IR (KBr) v_{max} : 3383, 2958, 2871, 1714, 1635, 1600, 1467, 1340, 1328, 1271, 1176, 1018 cm⁻¹; HRESIMS (*m/z*): 769.5042 [M–H]⁻ (calcd for C₄₉H₆₉O₇, 769.5043).

Cephaloliverol B (**2**). white solid; $[\alpha]_D^{20}$ +25 (*c* 0.3, CH₃OH); UV (CH₃OH) λ_{max} (log ε): 253 (3.93), 285 (3.74), 334 (3.74) nm; ECD (CH₃OH) λ_{max} (log ε): 227 (+25.96), 279 (+82.60) nm; IR (KBr) v_{max} : 3377, 2958, 2870, 1714, 1635, 1600, 1462, 1340, 1272, 1178, 1022 cm-1; HRESIMS (*m/z*): 769.5074 [M–H]⁻ (calcd for C₄₉H₆₉O₇, 769.5043).

The other known metabolites isolated from this extract include sugiol, 3β -hydroxysugiol, hinokione, 3β ,12,16-trihydroxy-6,8,11,13-abietatrien, salviniol, hinokiol, 8β -hydroxy-9(11),13-abietadien-12-one, abieta-6,8,11,13-tetraene- 3β ,12-diol, dehydrouomifoliol, epiloliolide, kaempferol, 3',4',5',5,7-pentamethoxyflavone, homoeriodictyol, naringenin, epicatechin, catechin, and 5,7-dihydroxychromone.

Cell culture and determination of NO

RAW 264.7 macrophages were cultured in Dulbecco's modified eagle medium (DMEM) (Hyclone, Logan, USA) with 10% fetal bovine serum (FBS, Gibco, Gaithersburg, USA) in a humidified atmosphere containing 5% CO₂ at 37 °C for 48 h. Cells were treated with different concentrations of compounds (10, 20, and 40 μ M) and incubated for 1 h. After incubation, lipopolysaccharide (LPS) (1 μ g/mL) was introduced to cells. The culture medium was collected and used for measuring NO production by NO Test Kit. And indomethacin (10 μ M) was used as the positive drug.

Electronic circular dichroism (ECD) caculation

The conformation of the simplified structure of **1** was used to search by Spartan 14.0 (Wavefunction Inc., Irvine, CA, USA) under MMFF force field. The low-energy conformers of them were optimized in the gas phase by semi-empirical method in Gaussian 09 program package, which were further reoptimized and analysed, using the density functional theory (DFT) at the RB31YP/6-31 G (d, p) level, resulted in no imaginary frequencies. Then the ECD spectra were calculated using TD-DFT-B3LYP/6-31 G (d, p) level in methanol solution. Finally, the calculated low-energy conformational results were Boltzmann averaged by software SpecDis1.51 to yield the depicted ECD spectra of the simplified structure of **1**. The ECD spectra of the simplified structure of **2** were calculated in the same method.

Figure S1 The optimized conformers of the simplified structure of 1.

Figure S2 The optimized conformers of the simplified structure of 2.

Figure S3 The optimized 3D structures of 2 with predicted interproton distance between H-4 and H_3 -20'.

Figure S4 The viability of RAW 264.7 cells incubated with compounds 1-4 for 24 h.

Figure S5 ¹H NMR spectrum (600 MHz, CDCl₃) of cephaloliverol A (1)

F8-36-101-2

F8-36-101-2

Figure S6 Enlarged ¹H NMR spectrum (600 MHz, CDCl₃) of cephaloliverol A (1)

Figure S7¹³C NMR spectrum (150 MHz, CDCl₃) of cephaloliverol A (1)

Figure S8 DEPT spectrum (150 MHz, CDCl₃) of cephaloliverol A (1)

Figure S9 HSQC spectrum of cephaloliverol A (1)

Figure S10 HMBC spectrum of cephaloliverol A (1)

Figure S11 ¹H-¹H COSY spectrum of cephaloliverol A (1)

Figure S12 ROESY spectrum of cephaloliverol A (1)

Figure S13 UV spectrum in CH₃OH of cephaloliverol A (1)

Figure S14 IR spectrum in KBr of cephaloliverol A (1)

Figure S15 Experimental ECD spectrum in CH₃OH of cephaloliverol A (1)

Figure S16 HRESIMS of cephaloliverol A (1)

Figure S17 ¹H NMR spectrum (600 MHz, CDCl₃) of cephaloliverol B (2)

Figure S18 Enlarged ¹H NMR spectrum (150 MHz, CDCl₃) of cephaloliverol B (2)

Figure S19¹³C NMR spectrum (150 MHz, CDCl₃) of cephaloliverol B (2)

Figure S20 DEPT spectrum (150 MHz, CDCl₃) of cephaloliverol B (2)

Figure S21 HSQC spectrum of cephaloliverol B (2)

Figure S22 HMBC spectrum of cephaloliverol B (2)

Figure S23 ¹H-¹H COSY spectrum of cephaloliverol B (2)

Figure S24 ROESY spectrum of cephaloliverol B (2)

Figure S25 UV spectrum in CH₃OH of cephaloliverol B (2)

Figure S26 IR spectrum in KBr of cephaloliverol B (2)

Figure S27 Experimental ECD spectrum in CH₃OH of cephaloliverol B (2)

Figure S28 HRESIMS of cephaloliverol B (2)