Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Organocatalytic Enantioselective Construction of Axially Chiral

(1H)-isochromen-1-imines

Ying Wang,^a Yang Yang,^b Shiyu Xu,^b Aima Huang,^a Lu Chen,^a Yubao Xie,^a Pengyutian Liu,^a Liang Hong^b and Guofeng Li^{*a}

^aSchool of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.

^bGuangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.

E-mail: liguofeng@szu.edu.cn

Index:

General information	S3
General procedure and spectral data for the synthesis of 1	S4-S16
¹ H NMR and enantioselectivities studies	S16
General procedure and spectral data for the synthesis of 3	S17-S31
General procedure and spectral data for the synthesis of 4	S32
General procedure and spectral data for the synthesis of 5	S33-S42
General procedure and spectral data for the synthesis of 6	S42
Spectral data of 7 and 8	S43
X-ray Structure of 3a	S44-45
References	S46
Copies of HPLC spectrum	S47-93
Copies of ¹ H and ¹³ C NMR of 3 , 4 , 5 , 6 , 7 or 8	S94-253

General information

Unless stated otherwise, all reactions were carried out in flame dried glassware. All solvents were purified and dried according to standard methods prior to use. ¹H NMR spectra was recorded on a Varian instrument (500 MHz or 400 MHz) and internally referenced to tetramethylsilane signal or residual protio solvent signals, while ¹³C NMR was recorded on a Varian instrument (125 MHz or 100 MHz). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. Optical rotations were reported as follows: [α]²⁰_D (c: g/100 mL, in solvent). High resolution mass spectra (HRMS) were obtained by the ESI ionization sources. The ee value determination was carried out using chiral HPLC with Daicel Chiracel column on Thermo Fisher.

General procedure and spectral data for the synthesis of 1

General procedure for the synthesis of S3

Under argon atmosphere, to a stirred solution of **S1** (10 mmol, 1.0 equiv), $PdCl_2(PPh_3)_2$ (2.5 mol%), CuI (5 mol%) in dry Et₃N (30 mL) was added **S2** (15 mmol, 1.5 equiv). Then the mixture was stirred for overnight at 55 °C. After the completion of the reaction which was indicated by TLC, Et₃N was evaporated in vacuo and the resulting crude residue was extracted with EA and washed with water. Then organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by flash chromatography (PE/EA 15:1) to afford **S3** as a yellow oil. The preparation of **S1** was followed the literature procedure.¹

General procedure for the synthesis of S4

To a mixture of **S3** (8 mmol, 1.0 equiv) and KOH (80 mmol, 10 equiv) were added the mixed solvent of MeOH (30 mL) and H₂O (15 mL). The mixture was stirred at room temperature until the completion of the reaction. Then, the pH of reaction mixture was adjusted to acidity at 0 °C and extracted with EA. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo. **S4** could be obtained by crystallization using CH₂Cl₂/PE as a pale yellow solid.

General procedure for the synthesis of S6

There are two methods to process this condensation reaction according to the different positions of the substituents. When R^2 was at *meta* or *para* position of **S5**, the reaction was performed using method A, and otherwise, the method B was used.

Method A: Under argon atmosphere, to a stirred solution of S4 (2 mmol, 1.0 equiv), EDCI (2.6 mmol, 1.3 equiv), HOBT (2.6 mmol, 1.3 equiv) and Et₃N (2.6 mmol, 1.3 equiv) in dry THF (10 mL) was added S5 (2.4 mmol, 1.2 equiv). The mixture was stirred at room temperature until the completion of the reaction was indicated by TLC. Then, the reaction mixture was extracted with ethyl acetate, washed with water, dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude mixture was purified by flash chromatography to afford the desired S6 as a white solid.

Method B: Under argon atmosphere, the mixture solution of EEDQ (2 mmol, 1.0 equiv) and S4 (2 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) was stirred at room temperature. After half an hour later, S5

(2.4 mmol, 1.2 equiv) was added. The mixture was stirred at room temperature until the completion of the reaction was indicated by TLC. Then, the reaction mixture was extracted with ethyl acetate, washed with water, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by flash chromatography to afford the desired **S6** as a white solid.

General procedure for the synthesis of 1

To a stirred solution of **S6** (2 mmol, 1.0 equiv) in MeOH (10 mL) was added a few drops of 6M HCl aq. at room temperature. The mixture was stirred at room temperature until the completion of the reaction. Then, the reaction mixture was extracted with ethyl acetate, washed with water, dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude mixture was purified by flash chromatography to afford the desired **1** as a pale yellow solid.

Spectral data for *o*-alkynylbenzamide 1

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-phenylbenzamide (1a)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.62 (s, 1H), 10.24 (s, 1H), 8.09 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.78 (dd, J = 12.7, 8.2 Hz, 3H), 7.65 (d, J = 9.2 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.28 – 7.18 (m, 2H), 7.16 – 7.07 (t, 1H), 7.06 – 6.94 (t, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.8, 157.9, 139.4, 139.2, 133.9, 132.2, 130.6, 129.8, 128.7, 128.2, 128.0, 127.5, 127.4, 126.9, 124.6, 123.6, 123.4, 120.9, 119.7, 117.8, 102.0, 96.1, 88.4. **IR (KBr, cm⁻¹):** 3298, 3120, 2200, 1658, 1582, 1478, 1201, 744, 676. **HRMS (ESI):** C₂₅H₁₇NO₂+H, Calc: 364.1328, Found: 364.1332.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-(o-tolyl)benzamide (1b)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.19 (s, 1H), 10.02 (d, J = 4.1 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.92 – 7.69 (m, 4H), 7.57 (dd, J = 15.7, 7.0 Hz, 3H), 7.38 – 7.07 (m, 6H), 2.24 (s, 3H). ¹³**C NMR** (125 MHz, DMSO-*d*₆): δ 166.6, 158.0, 138.5, 136.2, 133.9, 132.8, 132.6, 130.7, 130.4, 130.0, 128.2, 128.1, 127.9, 127.4, 127.1, 125.9, 125.8, 125.7, 124.6, 123.5, 121.1, 117.8, 102.1, 96.4, 88.5, 18.0.

IR (KBr, cm⁻¹): 3324, 3221, 1654, 1508, 1328, 1200, 831, 743, 621.

HRMS (ESI): C₂₆H₁₉NO₂+H, Calc: 378.1489, Found: 378.1489.

N-(2-ethoxyphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide(1c)

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.25 (s, 1H), 8.91 (s, 1H), 8.50 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.02 – 7.80 (m, 4H), 7.65 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.42 – 7.30 (m, 2H), 7.23 (d, J = 8.9 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 7.7 Hz, 1H), 6.97 (d, J = 8.9 Hz, 1H), 3.94 (q, J = 7.0 Hz, 2H), 1.21 (t, J = 7.0 Hz, 3H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 165.6, 159.9, 149.6, 137.8, 134.7, 133.9, 132.1, 131.9, 129.5, 129.2, 129.1, 128.7, 128.2, 125.6, 125.6, 124.7, 122.8, 121.7, 121.4, 118.5, 112.4, 103.1, 99.0, 89.9, 64.9, 14.8.

IR (KBr, cm⁻¹): 3376, 3216, 1721, 1525, 1311, 1089, 790, 745, 641. **HRMS (ESI):** C₂₇H₂₁NO₃+H, Calc: 408.1603, Found: 408.1594.

N-(2-fluorophenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide(1d)

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.65 (s, 1H), 8.81 (s, 1H), 8.24 (t, J = 8.3 Hz, 2H), 8.01 (d, J = 7.7 Hz, 1H), 7.95 – 7.80 (m, 3H), 7.71 – 7.63 (m, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.1 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.31 – 7.15 (m, 4H).

¹⁹**F NMR** (376 MHz, Acetone-*d*₆): δ -126.33.

¹³C NMR (125 MHz, Acetone-*d*₆): δ 167.4, 159.9, 156.5, 136.0 (d, *J*=302.4 Hz), 133.8, 132.1, 132.1, 129.6 (d, *J* = 34.0 Hz), 129.2, 129.2, 128.3, 127.2(d, *J* = 34.0 Hz), 127.0(d, *J* = 34.0 Hz), 125.6, 125.3(d, *J* = 3.8 Hz), 124.8, 123.0, 118.5, 116.4(d, *J* = 66.8 Hz), 103.2, 99.1, 89.6. **IR (KBr, cm⁻¹):** 3402, 3306, 1778, 1622, 1212, 976, 775, 752, 701.

HRMS (ESI): C₂₅H₁₆FNO₂+H, Calc: 382.1265, Found: 382.1238.

N-(2-chlorophenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1e)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 9.99 (s, 2H), 8.18 (d, *J* = 9.3 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.85 – 7.71 (m, 4H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.54 (dd, *J* = 15.5, 7.8 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.35 – 7.25 (m, 3H), 7.22 (d, *J* = 8.9 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.4, 158.3, 138.1, 134.8, 134.0, 132.7, 130.7, 130.4, 129.6, 128.2, 128.1, 127.4, 127.4, 127.1, 127.0, 124.5, 123.4, 121.2, 117.9, 102.0, 96.1, 89.2.

IR (KBr, cm⁻¹): 3287, 3109, 1725, 1627, 1378, 1129, 775, 677, 638.

HRMS (ESI): C₂₅H₁₆ClNO₂+H, Calc: 398.0954, Found: 398.0942.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-(m-tolyl)benzamide (1f)

¹**H** NMR (400 MHz, DMSO- d_6): δ 10.53 (s, 1H), 10.24 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.99 – 7.74 (m, 3H), 7.71 (s, 1H), 7.64 (t, J = 7.2 Hz, 2H), 7.54 (dt, J = 14.8, 7.5 Hz, 2H), 7.37 – 7.15 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 2.29 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.7, 157.9, 139.3, 139.3, 137.8, 133.9, 132.2, 130.6, 129.8, 128.6, 128.2, 128.0, 127.5, 127.4, 127.0, 124.7, 124.3, 123.4, 120.9, 120.3, 117.8, 117.0, 102.1, 96.1, 88.4, 21.3.

IR (KBr, cm⁻¹): 3389, 3170, 1733, 1674, 1387, 1023, 835, 792, 724. **HRMS (ESI):** C₂₆H₁₉NO₂+H, Calc: 378.1521, Found: 378.1489.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-(3-(methylthio)phenyl)benzamide (1g)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.63 (s, 1H), 10.24 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.74 (m, 4H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 8.4 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.35 – 7.17 (m, 3H), 7.08 (t, *J* = 7.7 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 2.43 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆): δ 166.9, 157.9, 139.8, 139.1, 138.6, 133.9, 132.2, 130.6, 129.9, 129.2, 128.2, 128.1, 127.5, 127.4, 126.9, 124.6, 123.4, 121.0, 120.9, 117.8, 116.8, 116.2, 102.0, 96.0, 88.4, 14.7.

IR (KBr, cm⁻¹): 3366, 3202, 1789, 1623, 1436, 1373, 852, 742, 676. **HRMS (ESI):** C₂₆H₁₉NO₂S+H, Calc: 410.1238, Found: 410.1209

N-(3-bromophenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1h)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.81 (s, 1H), 10.31 (s, 1H), 8.25 (d, *J* = 2.4 Hz, 1H), 8.09 (d, *J* = 8.3 Hz, 1H), 7.77 (t, *J* = 12.5 Hz, 4H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.59 (t, *J* = 6.8 Hz, 1H), 7.53 (t, *J* = 6.9 Hz, 1H), 7.36 – 7.20 (m, 4H), 7.11 (t, *J* = 7.6 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.1, 158.0, 140.9, 138.9, 133.9, 132.3, 130.8, 130.7, 130.0, 128.2, 128.1, 127.5, 127.4, 126.9, 126.3, 124.4, 123.4, 122.0, 121.6, 121.0, 118.5, 117.9, 102.0, 95.8, 88.6.

IR (KBr, cm⁻¹): 3289, 3108, 1726, 1583, 1366, 1099, 846, 805, 632. **HRMS (ESI):** C₂₆H₁₆BrNO₂+H, Calc: 442.0457, Found: 442.0437.

N-(3-chlorophenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1i)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.82 (s, 1H), 10.30 (s, 1H), 8.09 (d, J = 8.1 Hz, 2H), 7.88 – 7.74 (m, 3H), 7.68 (dd, J = 14.6, 7.8 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 8.1 Hz, 1H), 7.25 (dd, J = 12.8, 8.3 Hz, 2H), 7.18 (d, J = 5.6 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 167.1, 158.0, 140.8, 138.9, 138.9, 133.9, 133.1, 132.3, 130.7, 130.4, 130.0, 128.2, 128.1, 127.5, 127.4, 126.8, 124.4, 123.4, 123.3, 121.0, 119.1, 118.1, 117.9, 102.0, 95.8, 88.5.

IR (KBr, cm⁻¹): 3401.6, 3189, 1944, 1634, 1478, 1145, 902, 783, 684. **HRMS (ESI):** C₂₅H₁₆ClNO₂+H, Calc: 398.0939, Found: 398.0942.

N-(4-ethylphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1j)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.53 (s, 1H), 10.21 (s, 1H), 8.10 (d, *J* = 8.3 Hz, 1H), 7.84 – 7.70 (m, 5H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.57 (t, *J* = 6.9 Hz, 1H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.28 – 7.12 (m, 4H), 7.03 (t, *J* = 7.6 Hz, 1H), 2.59 (q, *J* = 7.6 Hz, 2H), 1.18 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.6, 157.9, 139.3, 139.1, 137.1, 133.9, 132.2, 130.6, 129.8, 128.1, 128.0, 127.9, 127.5, 127.4, 127.0, 124.6, 123.4, 120.9, 119.8, 117.8, 102.1, 96.2, 88.3, 27.7, 15.9.

IR (KBr, cm⁻¹): 3232, 2999, 1739, 1539, 1429, 1308, 1199, 828, 674. **HRMS (ESI):** C₂₇H₂₁NO₂+H, Calc: 392.1668, Found: 392.1645.

N-(4-ethylphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1k)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.65 (s, 1H), 10.33 (s, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.85 – 7.74 (m, 3H), 7.66 (d, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 6.8 Hz, 1H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.39 (ddd, *J* = 24.0, 17.7, 7.2 Hz, 6H), 7.25 (dd, *J* = 14.1, 8.4 Hz, 3H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 5.07 (s, 2H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.8, 158.6, 157.9, 140.5, 139.2, 137.0, 133.9, 132.2, 130.6, 129.9, 129.5, 128.4, 128.2, 128.0, 127.8, 127.6, 127.5, 127.4, 127.0, 124.6, 123.4, 120.9, 117.8, 112.4, 109.7, 106.6, 102.1, 96.0, 88.4, 69.2.

IR (KBr, cm⁻¹): 3339, 3135, 1739, 1679, 1451, 1374, 1003, 812, 732.

HRMS (ESI): C₃₂H₂₃NO₃+H, Calc: 470.1795, Found: 470.1751.

N-(4-fluorophenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (11)

¹**H NMR** (400 MHz, DMSO- d_6): δ 10.69 (s, 1H), 10.26 (s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.88 (dd, J = 9.1, 5.1 Hz, 2H), 7.83 – 7.73 (m, 3H), 7.66 (d, J = 7.5 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H), 7.23 (q, J = 10.0, 8.8 Hz, 4H), 7.09 (t, J = 7.6 Hz, 1H).

¹⁹**F NMR** (376 MHz, DMSO): δ -118.79.

¹³**C NMR** (125 MHz, DMSO-*d*₆): δ 166.7, 158.2(d, *J* = 220.7 Hz), 158.0, 139.1, 135.8, 133.9, 132.3, 130.6, 129.9, 128.1(d, *J* = 11.3 Hz), 127.5(d, *J* = 21.4 Hz), 126.9, 124.4, 123.4, 121.4, 121.4, 121.0, 117.8, 115.3(d, *J* = 22.7 Hz), 102.0, 96.0, 88.4.

IR (KBr, cm⁻¹): 3356, 3145, 1875, 1573, 1480, 989, 910, 776, 676.

HRMS (ESI): C₂₅H₁₆FNO₂+H, Calc: 382.1239, Found: 382.1238.

N-(4-chlorophenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1m)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.75 (s, 1H), 10.25 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.79 (t, J = 9.5 Hz, 3H), 7.66 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.32 – 7.17 (m, 2H), 7.10 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.9, 158.0, 139.0, 138.3, 133.9, 132.3, 130.7, 130.0, 128.6, 128.2, 128.1, 127.6, 127.4, 127.2, 126.9, 124.4, 123.4, 121.2, 121.0, 117.8, 102.0, 96.0, 88.5. **IR (KBr, cm⁻¹):** 3401, 3276, 2131, 1657, 1532, 1146, 1001, 778, 688. **HRMS (ESI):** C₂₆H₁₆CINO₂+H, Calc: 398.0934, Found: 398.1209.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-(4-iodophenyl)benzamide (1n)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.72 (s, 1H), 10.25 (s, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.87 – 7.74 (m, 3H), 7.68 (d, J = 23.1 Hz, 5H), 7.59 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 8.9 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.9, 158.0, 139.2, 139.0, 137.4, 133.9, 132.3, 130.7, 130.0, 128.2, 128.1, 127.5, 127.4, 127.0, 124.4, 123.4, 121.8, 120.9, 117.8, 102.0, 96.0, 88.5, 87.2. **IR** (**KBr, cm**⁻¹): 3336, 3285, 1638, 1508, 1202, 998, 832, 743, 683. **HRMS (ESI):** C₂₆H₁₆INO₂+H, Calc: 490.0322, Found: 490.0299.

N-(2,3-dimethylphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (10)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.18 (s, 1H), 10.07 (s, 1H), 8.20 (d, *J* = 8.2 Hz, 1H), 7.80 (td, *J* = 13.3, 12.2, 8.2 Hz, 4H), 7.57 (m, *J* = 14.9, 7.4 Hz, 2H), 7.44 – 7.21 (m, 4H), 7.09 (d, *J* = 7.2 Hz, 2H), 2.23 (s, 3H), 2.11 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.7, 158.0, 138.5, 137.0, 136.0, 133.9, 132.6, 132.0, 130.7, 130.0, 128.2, 128.1, 127.9, 127.4, 127.4, 127.1, 125.2, 124.7, 124.2, 123.5, 121.1, 117.8, 102.1, 96.5, 88.5, 20.1, 14.3. **IR (KBr, cm⁻¹):** 3373, 3209, 2200, 1738, 1616, 1276, 1066, 819, 751.

HRMS (ESI): C₂₇H₂₁NO₂+H, Calc: 392.1660, Found: 392.1645.

N-(3,4-dimethylphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1p)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.43 (s, 1H), 10.21 (s, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.86 – 7.71 (m, 3H), 7.68 – 7.61 (m, 2H), 7.60 – 7.46 (m, 3H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 8.9 Hz, 1H), 7.17 – 7.07 (m, 2H), 2.19 (s, 6H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.5, 157.9, 139.3, 137.0, 136.2, 133.9, 132.3, 131.4, 130.6, 129.8, 129.5, 128.2, 128.0, 127.6, 127.4, 127.0, 124.7, 123.5, 121.0, 117.8, 117.3, 102.1, 96.2, 88.3, 19.7, 18.8.

IR (KBr, cm⁻¹): 3372, 3208, 2199, 1740, 1629, 1277, 1071, 819, 750. **HRMS (ESI):** C₂₇H₂₁NO₂+H, Calc: 392.1666, Found: 392.1645.

N-(3,4-dimethoxyphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1q)

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.75 (s, 1H), 8.96 (s, 1H), 8.26 (d, *J* = 8.3 Hz, 1H), 7.95 – 7.81 (m, 4H), 7.67 – 7.59 (m, 2H), 7.57 – 7.47 (m, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 8.9 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 1H), 3.81 (s, 6H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 167.2, 160.1, 150.4, 147.4, 138.3, 134.6, 133.4, 132.1, 131.7, 129.2, 129.2, 128.9, 128.4, 125.6, 124.8, 124.8, 123.0, 123.0, 118.6, 113.4, 113.1, 106.7, 103.2, 99.5, 89.2, 56.5, 56.1.

IR (KBr, cm⁻¹): 3256, 3176, 1730, 1651, 1450, 1206, 1049, 822, 743. **HRMS (ESI):** C₂₇H₂₁NO₄+H, Calc: 424.1565, Found: 424.1543.

N-(4-chloro-2-methylphenyl)-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1r)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.22 (s, 1H), 10.07 (s, 1H), 8.17 (d, *J* = 8.1 Hz, 1H), 7.91 – 7.68 (m, 4H), 7.67 – 7.47 (m, 3H), 7.39 – 7.08 (m, 5H), 2.23 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.6, 158.0, 138.2, 135.2, 135.1, 134.0, 132.6, 130.7, 130.1, 129.9, 129.5, 128.2, 128.2, 128.0, 127.4, 127.2, 127.1, 125.8, 124.5, 123.5, 121.1, 117.8, 102.0, 96.3, 88.7, 19.3.

IR (KBr, cm⁻¹): 3403, 3249, 1790, 1740, 1434, 1267, 1068, 760, 750. **HRMS (ESI):** C₂₆H₁₈ClNO₂+H, Calc: 412.1104, Found: 412.1099.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-mesitylbenzamide (1s)

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 9.99 (s, 1H), 9.80 (s, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.77 (m, 4H), 7.63 – 7.52 (m, 2H), 7.43 – 7.32 (m, 2H), 7.22 (d, *J* = 8.9 Hz, 1H), 6.93 (s, 2H), 2.24 (s, 3H), 2.17 (s, 6H).

¹³**C NMR** (125 MHz, DMSO-*d*₆): δ 166.4, 158.1, 138.1, 135.7, 135.3, 133.8, 132.8, 132.2, 130.7, 130.1, 128.3, 128.2, 128.1, 127.9, 127.4, 127.1, 124.7, 123.6, 121.2, 117.7, 102.1, 96.7, 88.3, 20.5, 18.1.

IR (KBr, cm⁻¹): 3403, 3249, 1745, 1708, 1285, 1197, 1054, 832, 752. **HRMS (ESI):** C₂₈H₂₃NO₂+H, Calc: 406.1821, Found: 406.1802.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-(naphthalen-2-yl)benzamide (1t)

¹**H** NMR (400 MHz, Acetone-*d*₆): δ 10.08 (s, 1H), 8.87 (s, 1H), 8.58 (s, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.94 - 7.86 (m, 5H), 7.86 - 7.77 (m, 2H), 7.66 (t, *J* = 7.6 Hz, 1H),

7.54 (dt, *J* = 20.8, 7.9 Hz, 2H), 7.44 (q, *J* = 8.3 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 8.9 Hz, 1H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 167.8, 159.9, 138.2, 137.6, 134.9, 134.7, 133.6, 132.1, 131.8, 131.8, 129.4, 129.2, 129.2, 129.2, 129.2, 128.6, 128.6, 128.3, 127.4, 126.0, 125.6, 124.7, 123.0, 121.6, 118.5, 118.0, 103.2, 99.3, 89.3.

IR (KBr, cm⁻¹): 3343, 3211, 1676, 1530, 1437, 1196, 977, 824, 753. **HRMS (ESI):** C₂₉H₁₉NO₂+H, Calc: 414.1502, Found: 414.1489.

N-benzyl-2-((2-hydroxynaphthalen-1-yl)ethynyl)benzamide (1u)

¹**H NMR** (500 MHz, DMSO- d_6): δ 10.25 (s, 1H), 9.17 (t, J = 6.1 Hz, 1H), 8.26 (s, 1H), 7.92 – 7.83 (m, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.59 – 7.47 (m, 3H), 7.38 (t, J = 8.1 Hz, 3H), 7.26 (d, J = 9.0 Hz, 1H), 7.17 (p, J = 6.8 Hz, 3H), 4.56 (d, J = 6.1 Hz, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ 167.5, 158.1, 139.2, 137.8, 133.9, 132.5, 130.8, 130.1, 128.2, 128.2, 128.2, 128.0, 128.0, 127.5, 127.4, 127.2, 126.7, 124.6, 123.6, 120.9, 117.8, 102.1, 96.8, 88.6, 42.8.

IR (KBr, cm⁻¹): 3405, 3229, 1756, 1620, 1434, 1227, 977, 760, 750. **HRMS (ESI):** C₂₆H₁₉NO₂+H, Calc: 378.1494, Found: 378.1489.

5-chloro-2-((2-hydroxynaphthalen-1-yl)ethynyl)-N-phenylbenzamide (1v)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.71 (s, 1H), 10.39 (s, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.91 – 7.73 (m, 6H), 7.66 (d, *J* = 2.4 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 2H), 7.23 (dd, *J* = 8.4, 5.0 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ 165.3, 158.1, 140.8, 139.2, 133.9, 133.8, 132.6, 130.9, 129.8, 128.8, 128.1, 127.4, 127.4, 127.0, 124.5, 123.8, 123.4, 120.0, 120.0, 117.8, 101.8, 95.1, 89.4.
IR (KBr, cm⁻¹): 3289, 3164, 1740, 1636, 1588, 1435, 1035, 845, 752.
HRMS (ESI): C₂₆H₁₆ClNO₂+H, Calc: 398.0954, Found: 398.0942

2-((2-hydroxynaphthalen-1-yl)ethynyl)-5-methyl-N-phenylbenzamide (1w)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.59 (s, 1H), 10.17 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.78 (t, J = 8.9 Hz, 2H), 7.67 (d, J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.38 (t, J = 7.9 Hz, 3H), 7.23 (dd, J = 8.5, 5.0 Hz, 2H), 7.12 (t, J = 7.3 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.8, 157.8, 139.4, 139.1, 138.1, 133.9, 132.2, 130.5, 130.4, 128.7, 128.0, 127.4, 126.9, 124.6, 123.6, 123.4, 119.7, 118.1, 117.8, 102.3, 96.3, 87.6, 20.9. **IR (KBr, cm⁻¹):** 3378, 3164, 1749, 1620, 1437, 1478, 1029, 833, 754. **HRMS (ESI):** C₂₆H₁₉NO₂+H, Calc: 378.1521, Found: 378.1489.

2-((2-hydroxynaphthalen-1-yl)ethynyl)-5-methoxy-N-phenylbenzamide (1x)

¹**H** NMR (400 MHz, DMSO- d_6): δ 10.61 (s, 1H), 10.11 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.81 – 7.67 (m, 3H), 7.38 (t, J = 7.9 Hz, 2H), 7.31 – 7.19 (m, 3H), 7.19 – 7.10 (m, 2H), 7.03 (t, J = 7.6 Hz, 1H), 3.89 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.4, 158.9, 157.5, 140.7, 139.3, 133.9, 133.8, 130.1, 128.7, 128.0, 127.4, 126.8, 124.6, 123.7, 123.4, 119.7, 117.8, 115.8, 113.0, 113.0, 102.5, 96.2, 86.6, 55.6.
IR (KBr, cm⁻¹): 3353, 3185, 1648, 1638, 1578, 1202, 1102, 834, 753.
HRMS (ESI): C₂₆H₁₉NO₃+H, Calc: 394.1432, Found: 394.1438.

2-fluoro-6-((2-hydroxynaphthalen-1-yl)ethynyl)-N-phenylbenzamide (1y)

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.91 (s, 1H), 10.43 (s, 1H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.89 – 7.72 (m, 4H), 7.58 (t, *J* = 4.9 Hz, 2H), 7.45 – 7.34 (m, 3H), 7.21 (dd, *J* = 8.4, 4.3 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.93 – 6.84 (m, 1H).

¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -116.36.

¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.1, 158.2(d, *J* = 246.4 Hz), 158.2, 139.1, 133.9, 131.1, 131.0, 128.9, 128.1, 127.9(d, *J* = 3.0 Hz), 127.7, 127.1(d, *J* = 27.3 Hz), 124.2, 123.9, 123.4, 123.0(d, *J* = 6.1 Hz), 119.4, 117.8, 115.7(d, *J* = 21.2 Hz), 101.5, 94.5, 94.5, 89.0.
IR (KBr, cm⁻¹): 3379, 3186, 1753, 1716, 1535, 1196, 1049, 824, 749.
HRMS (ESI): C₂₅H₁₆FNO₂+H, Calc: 382.1233, Found: 382.1233.

2-((2-hydroxy-7-phenylnaphthalen-1-yl)ethynyl)-N-phenylbenzamide (1z)

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.49 (s, 1H), 10.32 (s, 1H), 8.56 (s, 1H), 7.88 (dd, *J* = 14.4, 9.2 Hz, 4H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.70 (dt, *J* = 14.8, 7.0 Hz, 4H), 7.61 (t, *J* = 7.0 Hz, 1H), 7.52 (dt, *J* = 20.5, 7.5 Hz, 3H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.13 (t, *J* = 7.9 Hz, 2H), 6.98 (t, *J* = 7.3 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.3, 158.6, 140.0, 139.1, 138.5, 134.5, 132.8, 130.4, 130.1, 128.9, 128.8, 128.4, 128.1, 127.8, 127.6, 127.3, 126.7, 123.4, 122.8, 122.0, 121.4, 119.6, 117.8, 102.5, 96.5, 88.3.

IR (KBr, cm⁻¹): 3383, 3253, 1746, 1616, 1513, 1277, 975, 819, 750. **HRMS (ESI):** C₃₁H₂₁NO₂+H, Calc: 440.1668, Found: 440.1645.

2-((2-hydroxy-6-phenylnaphthalen-1-yl)ethynyl)-N-phenylbenzamide (1aa)

¹**H** NMR (400 MHz, DMSO- d_6): δ 10.69 (s, 1H), 10.34 (s, 1H), 8.13 (d, J = 8.7 Hz, 1H), 8.08 (s, 1H), 7.89 (t, J = 8.4 Hz, 3H), 7.78 (d, J = 7.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 3H), 7.59 (t, J = 8.4 Hz, 1H), 7.51 (q, J = 8.8, 7.8 Hz, 3H), 7.39 (dt, J = 14.4, 7.6 Hz, 3H), 7.25 (d, J = 8.9 Hz, 1H), 7.21 – 7.11 (m, 2H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.9, 158.0, 139.7, 139.5, 139.5, 134.9, 133.1, 132.1, 131.0, 129.8, 129.0, 128.8, 128.2, 127.7, 127.5, 127.3, 126.5, 125.9, 125.5, 125.2, 123.6, 120.8, 119.8, 118.3, 102.0, 96.1, 88.3.

IR (KBr, cm⁻¹): 3382, 3253, 1753, 1584, 1435, 1051, 831, 778, 750.

HRMS (ESI): C₃₁H₂₁NO₂+H, Calc: 440.1644, Found: 440.1645.

2-((2-hydroxy-7-methylnaphthalen-1-yl)ethynyl)-N-phenylbenzamide (1ab)

¹**H** NMR (400 MHz, DMSO- d_6): δ 10.55 (s, 1H), 10.23 (s, 1H), 8.00 (s, 1H), 7.88 – 7.72 (m, 4H), 7.69 (t, J = 6.8 Hz, 2H), 7.56 (dq, J = 15.2, 7.6 Hz, 2H), 7.31 (t, J = 7.8 Hz, 2H), 7.13 (t, J = 7.4 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H), 2.27 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 166.6, 158.1, 139.2, 138.8, 136.9, 134.2, 132.5, 130.4, 130.0, 128.7, 128.6, 128.1, 127.9, 127.8, 125.6, 125.6, 123.7, 123.6, 121.2, 119.8, 116.7, 101.6, 96.0, 88.6, 21.1.

IR (KBr, cm⁻¹): 3374, 3188, 1754, 1608, 1328, 1283, 1055, 809, 751. **HRMS (ESI):** C₂₆H₁₉NO₂+H, Calc: 378.1499, Found: 378.1489.

¹H NMR and enantioselectivities studies

Figure S1. ¹H NMR and enantioselectivities studies. a) ¹H NMR spectrum of **1a** at -50 °C. b) ¹H NMR spectrum of **1a** treated by NIP (1.0 equiv) at -50 °C after 5min. c) ¹H NMR spectrum of **1a** treated by NIP (1.0 equiv) from -50 °C to -20 °C after 15 min. d) ¹H NMR spectrum of **1a** treated by NIP (1.0 equiv) from -50 °C to 0 °C after 25 min. e) ee of **3a** measured at different times.

To our surprise, the reaction proceeded very quickly, for which 100% conversion was monitored by thin-layer chromatography (TLC) within minutes. However, enantioselectivities showed a poor repeatability in different times under the same reaction conditions. When the reaction time was extended to overnight, enantioselectivities could remain consistent with 77% ee (Table 1, entry 1). Due to the fast reaction progress and the inconsistent operation, it was difficult to maintain the repeatability of enantioselectivities. We speculated that the conversion of the reaction was incomplete at -78 °C, while the complete conversion occurs quickly in the sampling capillary during the TLC monitoring. This conjecture had also been confirmed by NMR experiments (see Supporting Information for details).

In order to investigate the rapid conversion of *o*-alkynylbenzamides during the TLC monitoring within minutes, ¹H NMR experiment was carried out. As shown in Figure 2, the characteristic peaks of the product **3a** was observed by ¹H NMR spectrum after **1a** treated by NIP at -50 °C for 5 min (Figure 2b). During this process, the reaction achieved 10% conversion. While 50% conversion was carried out after **1a** treated by NIP for 15 minutes during the temperature rising from -50 °C to -20 °C (Figure 2c). And complete conversion could be observed after **1a** treated by NIP for 25 minutes during the temperature rising from -50 °C to 0 °C (Figure 2d). Therefore, 100% conversion could be easily achieved when the reaction temperature rose rapidly from -78 °C to room temperature in minutes during the TLC monitoring. Furthermore, to prove that the complete conversion of reaction needed more time at -78 °C, ee of **3a** was dynamically monitored and shown in Figure 2e. We also tested the stability of the **3a** at 75 °C for 12 h, and there was no racemization. As a result, the low enantioselectivity before the complete conversion of reaction can be considered to be the absence of the catalyst or weakened chiral control during the rise of temperature.

General procedure and spectral data for the synthesis of 3

To a solution of **1** (0.05 mmol) in DCM: Et₂O (1:1 vol/vol, 1 mL) was added catalyst **2d** (10 mol%) at -78 °C. Then, NIP (1.1 equiv, 0.055 mmol) dissolved in DCM: Et₂O (1:1 vol/vol, 1 mL) was added slowly. After the reaction performed completely, the solvent was removed under vacuum and residue was purified by flash column chromatography (petroleum ether/DCM 1:10) to give the pure desired products (R_a)-**3**.

1.0 mmol scale for the synthesis of 3a

To a solution of **1** (363mg, 1.0 mmol) in DCM: Et₂O (1:1 vol/vol, 20 mL) was added catalyst **2d** (65 mg, 10 mol%) at -78 °C. Then, NIP (247 mg, 1.1 mmol) dissolved in DCM: Et₂O (1:1 vol/vol, 20 mL) was added slowly. Then the reaction mixture was stirred at -78 °C. After the reaction performed completely, the solvent was removed under vacuum and residue was purified by flash column chromatography (petroleum ether/DCM 1:10) to give the pure desired products (R_a)-**3a** as a while solid.

Spectral data for (1H)-isochromen-1-imines 3

(*R_a*)-1-(4-iodo-1-(phenylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3a)

Appearance: white solid.

Yield: 99%, 24.3 mg

¹**H** NMR (400 MHz, Acetone-*d*₆): δ 9.13 (s, 1H), 8.42 (d, *J* = 7.1 Hz, 1H), 7.91 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.78 (q, *J* = 7.5, 7.0 Hz, 3H), 7.63 (t, *J* = 8.3 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.35 (t, *J* = 7.0 Hz, 1H), 7.26 (d, *J* = 8.9 Hz, 1H), 7.19 – 7.04 (m, 4H), 6.95 – 6.82 (m, 1H). ¹³C NMR (125 MHz, Acetone-*d*₆): δ 154.4, 151.8, 149.9, 147.1, 135.6, 134.1, 133.4, 132.8, 131.5, 130.4, 129.3, 129.3, 129.2, 128.3, 125.2, 124.5, 124.5, 124.4, 123.7, 119.4, 117.1, 82.7. HRMS (ESI): C₂₅H₁₆INO₂+H, Calc: 490.0290, Found: 490.0299. Optical Rotation: $[\alpha]_D^{20} = +28^\circ$ (*c* = 1, acetone). IR (KBr, cm⁻¹): 3085, 1643, 1588, 1488, 1434, 1274, 1039, 939, 817, 744. HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, *t*_R = 5.473 min (minor), *t*_R = 7.767 min (major).

(*R_a*)-1-(4-iodo-1-(o-tolylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3b)

Appearance: white solid.

Yield: 99%, 24.9 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.09 (s, 1H), 8.47 (d, J = 7.9 Hz, 1H), 7.90 – 7.69 (m, 5H), 7.66 – 7.60 (m, 1H), 7.54 – 7.44 (m, 1H), 7.38 – 7.31 (m, 1H), 7.22 (d, J = 8.9 Hz, 1H), 7.02 (d, J = 8.1 Hz, 2H), 6.88 (t, J = 7.7 Hz, 1H), 6.75 (t, J = 8.1 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.3, 152.0, 149.4, 146.1, 135.5, 134.1, 133.4, 132.7, 131.4, 130.8, 130.6, 130.4, 129.2, 129.1, 128.4, 128.2, 126.7, 125.0, 124.4, 124.4, 124.1, 121.8, 119.3, 117.2, 82.5, 18.4.

HRMS (ESI): C₂₆H₁₈INO₂+H, Calc: 504.0448, Found: 504.0455.

Optical Rotation: $[\alpha]_D^{20} = +127^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2923, 1721, 1652, 1579, 1434, 1275, 1115, 1038, 819.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.890 min (minor), t_R = 7.613 min (major).

(*R_a*)-1-(1-((2-ethoxyphenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3c)

Appearance: white solid.

Yield: 89%, 23.7 mg

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.05 (s, 1H), 8.44 (d, J = 7.9 Hz, 1H), 7.91 – 7.69 (m, 5H), 7.62 (t, J = 6.4 Hz, 1H), 7.55 – 7.45 (m, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 6.96 (d, J = 9.3 Hz, 1H), 6.77 (d, J = 8.3 Hz, 2H), 6.70 – 6.63 (m, 1H), 3.94 (d, J = 6.8, 2.8 Hz, 2H), 1.30 (t, J = 7.0 Hz, 3H).

¹³C NMR (125 MHz, Acetone-*d*₆): δ 154.3, 152.1, 151.2, 150.2, 137.4, 135.5, 134.0, 133.5, 132.6, 131.4, 130.3, 129.2, 129.1, 128.5, 128.0, 124.9, 124.8, 124.5, 124.3, 123.0, 121.3, 119.3, 117.3, 114.0, 82.4, 64.7, 15.4.

HRMS (ESI): C₂₇H₂₀IN0₃+H, Calc: 534.0556, Found: 534.0561.

Optical Rotation: $[\alpha]_D^{20} = +54^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2968, 1646, 1588, 1435, 1271, 1189, 1044, 970, 816.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 9.053 min (minor), t_R = 18.433 min (major).

(R_a)-1-(1-((2-fluorophenyl)imino)-4-iodo-1H-isochromen-3-yl)naphthalen-2-ol (3d)

Appearance: yellow solid.

Yield: 90%, 22.9 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.14 (s, 1H), 8.45 (d, J = 7.7 Hz, 1H), 7.94 – 7.75 (m, 4H), 7.72 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 8.3 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 8.9 Hz, 1H), 7.20 – 7.09 (m, 1H), 6.98 – 6.77 (m, 3H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 156.3, 154.4(d, *J* = 325.0 Hz), 151.8, 135.7, 135.4(d, *J* = 12.6 Hz), 134.5, 133.4, 132.8, 131.6, 130.5, 129.2, 129.1, 128.4(d, *J* = 39.1 Hz), 125.3(d, *J* = 7.6 Hz), 124.9(d, *J* = 6.3 Hz), 124.8, 124.5, 124.4, 124.4, 119.3, 116.9, 116.4, 116.3, 83.0.

¹⁹**F NMR** (376 MHz, Acetone-*d*₆): δ -124.53.

HRMS (ESI): C₂₅H₁₅FINO₂+H, Calc: 508.0143, Found: 508.0224.

Optical Rotation: $[\alpha]_D^{20} = +31^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 3194, 1725, 1605, 1604, 1308, 1242, 1031, 838, 819.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.570 min (minor), t_R = 9.383 min (major).

(*R_a*)-1-(1-((2-chlorophenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3e)

Appearance: white solid.

Yield: 84%, 22.0 mg

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.15 (s, 1H), 8.48 (d, J = 7.8 Hz, 1H), 7.89 – 7.71 (m, 5H), 7.65 (t, J = 8.2 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.23 (t, J = 8.2 Hz, 2H), 7.16 (d, J = 9.4 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 6.83 (t, J = 7.7 Hz, 1H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 154.4, 151.8, 151.3, 145.0, 135.7, 134.6, 133.4, 132.8, 131.5, 130.5, 130.2, 129.2, 129.1, 128.6, 128.2, 127.9, 127.1, 125.2, 124.5, 124.4, 124.3, 123.8, 119.2, 116.8, 83.0.

HRMS (ESI): C₂₅H₁₅ClINO₂+H, Calc: 523.9915, Found: 523.9909

Optical Rotation: $[\alpha]_D^{20} = +27^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2969, 1648, 1578, 1435, 1350, 1276, 1189, 939, 818.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.270 min (minor), t_R = 8.067 min (major).

(R_a)-1-(4-iodo-1-(m-tolylimino)-1H-isochromen-3-yl)naphthalen-2-ol (3f)

Appearance: white solid.

Yield: 88%, 22.2 mg

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.26 (s, 1H), 8.32 (d, *J* = 7.8 Hz, 1H), 7.92 – 7.75 (m, 3H), 7.72 – 7.59 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.38 – 7.28 (m, 1H), 7.24 (d, *J* = 8.9 Hz, 1H), 7.04 – 6.89 (m, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 2.03 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆): δ 153.6, 150.6, 149.0, 145.6, 137.5, 134.3, 133.5, 132.0, 131.5, 130.2, 129.5, 128.3, 128.1, 127.4, 127.2, 126.9, 124.2, 123.3, 123.1, 123.1, 119.5, 118.3, 115.4, 82.0, 20.8.

HRMS (ESI):C₂₆H₁₈INO₂+H, Calc: 504.0468, Found: 504.0455

Optical Rotation: $[\alpha]_D^{20} = +37^\circ$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 2922, 1646, 1595, 1434, 1275, 1123, 1041, 968, 819.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.490 min (minor), t_R = 7.663 min (major).

(*R_a*)-1-(4-iodo-1-((3-(methylthio)phenyl)imino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3g)

Appearance: white solid.

Yield: 85%, 22.7 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.13 (s, 1H), 8.42 (d, J = 7.8 Hz, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.82 – 7.74 (m, 3H), 7.64 (t, J = 8.3 Hz, 1H), 7.50 (t, J = 6.9 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 8.9 Hz, 1H), 7.11 (s, 1H), 7.05 (t, J = 7.9 Hz, 1H), 6.91 (d, J = 7.9 Hz, 1H), 6.78 (d, J = 10.6 Hz, 1H), 2.06 (d, J = 5.4 Hz, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.4, 151.7, 150.3, 147.5, 139.6, 135.6, 134.2, 133.4, 132.8, 131.5, 130.5, 129.6, 129.3, 129.2, 128.4, 128.3, 125.1, 124.5, 122.8, 121.1, 120.7, 119.4, 117.1, 82.8, 15.5.

HRMS (ESI): C₂₆H₁₈INO₂S+H, Calc: 536.3983, Found: 536.3960

Optical Rotation: $[\alpha]_D^{20} = +33^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2922, 1721, 1650, 1578, 1468, 1275, 1116, 1039, 818.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 6.973 min (minor), t_R = 9.213 min (major).

(*R_a*)-1-(1-((3-bromophenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3h)

Appearance: white solid.

Yield: 97%, 27.5 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.15 (s, 1H), 8.41 (d, J = 9.2 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.87 – 7.75 (m, 4H), 7.65 (t, J = 7.4 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.40 – 7.32 (m, 2H), 7.27 (d, J = 8.9 Hz, 1H), 7.14 – 7.08 (m, 1H), 7.08 – 6.98 (m, 2H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.5, 151.7, 151.2, 148.9, 135.7, 134.5, 133.4, 132.9, 131.6, 131.0, 130.5, 129.3, 129.2, 128.4, 128.4, 127.2, 126.5, 124.7, 124.5, 124.4, 122.7, 122.6, 119.3, 116.8, 82.9.

HRMS (ESI): $C_{25}H_{15}BrINO_2$ +H, Calc: 567.9405, Found: 567.9404. Optical Rotation: $[\alpha]_D^{20} = +107^{\circ}$ (c = 1, acetone). IR (KBr, cm⁻¹): 2924, 1718, 1645, 1584, 1467, 1144, 1067, 860, 818. HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.833 min (minor), t_R = 6.297 min (major).

(*R_a*)-1-(1-((3-chlorophenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3i)

Appearance: white solid.

Yield: 80%, 20.9 mg

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.17 (s, 1H), 8.41 (d, J = 7.3 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.88 – 7.74 (m, 4H), 7.67 – 7.61 (m, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.36 (t, J = 6.9 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.22 (t, J = 2.1 Hz, 1H), 7.15 – 7.05 (m, 2H), 6.89 (dt, J = 7.3, 2.0 Hz, 1H).

¹³C NMR (125 MHz, Acetone-*d*₆): δ 154.4, 151.7, 151.2, 148.7, 135.7, 134.4, 134.4, 133.4, 132.9, 131.5, 130.7, 130.5, 129.2, 129.2, 128.4, 128.3, 124.7, 124.5, 124.4, 124.2, 123.6, 122.2, 119.3, 116.8.

HRMS (ESI): C25H15ClINO2+H, Calc: 524.0130, Found: 523.9909

Optical Rotation: $[\alpha]_D^{20} = +46^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 3061, 1645, 1488, 1278, 1189, 1091, 1041, 968, 818.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.553 min (minor), t_R = 6.370 min (major).

(*R_a*)-1-(1-((3-ethylphenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3j)

Appearance: white solid.

Yield: 83%, 21.5 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.11 (s, 1H), 8.41 (d, J = 7.9 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.81 – 7.72 (m, 3H), 7.62 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.11 (d, J = 8.3 Hz, 2H), 6.94 (d, J = 8.3 Hz, 2H), 2.45 (q, J = 7.6 Hz, 2H), 1.07 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.4, 151.8, 149.4, 144.4, 140.5, 135.5, 133.9, 133.5, 132.8, 131.4, 130.4, 129.3, 129.2, 128.7, 128.3, 128.2, 125.4, 124.5, 124.4, 124.0, 119.4, 117.2, 82.7, 28.8, 16.0.

HRMS (ESI): C₂₇H₂₀INO₂+H, Calc: 518.0561, Found: 518.0612.

Optical Rotation: $[\alpha]_D^{20} = +63^\circ$ (c = 1, acetone). **IR (KBr, cm⁻¹):** 2963, 1650, 1592, 1435, 1278, 1190, 1041, 939, 816. **HPLC analysis:** Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $t_R = 5.773$ min (minor), $t_R = 8.067$ min (major).

(*R_a*)-1-(1-((4-(benzyloxy)phenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3k)

Appearance: white solid.

Yield: 82%, 24.4 mg

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 9.82 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 9.0 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.21 (td, *J* = 16.1, 14.5, 7.6 Hz, 3H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.93 – 6.75 (m, 7H), 6.59 (t, *J* = 8.1 Hz, 1H), 6.37 (s, 1H), 6.23 (d, *J* = 7.7 Hz, 1H), 6.08 (d, *J* = 11.0 Hz, 1H), 4.42 – 4.08 (m, 2H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 158.4, 153.6, 150.6, 149.2, 146.8, 136.9, 134.3, 133.6, 132.0, 131.6, 130.2, 129.5, 129.2, 128.3, 128.1, 127.7, 127.6, 127.4, 127.4, 127.0, 123.3, 123.2, 123.2, 118.4, 115.7, 115.4, 110.9, 108.2, 82.3, 68.8.

HRMS (ESI): C₃₂H₂₂INO₃+H, Calc: 596.0637, Found: 596.0717

Optical Rotation: $[\alpha]_D^{20} = +50^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2924, 1646, 1583, 1489, 1454, 1261, 1039, 936, 819.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 8.277 min (minor), t_R =12.703 min (major).

(R_a)-1-(1-((4-fluorophenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3l)

OH

Appearance: white solid. Yield: 83%, 21.0 mg

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.14 (s, 1H), 8.41 (d, *J* = 7.5 Hz, 1H), 7.93 (d, *J* = 9.0 Hz, 1H), 7.81 – 7.73 (m, 3H), 7.66 – 7.60 (m, 1H), 7.52 – 7.46 (m, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 8.9 Hz, 1H), 7.21 (dd, *J* = 9.0, 5.1 Hz, 2H), 6.86 (t, *J* = 8.9 Hz, 2H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 160.0(d, *J* = 242.0 Hz), 154.4, 151.7, 150.2, 143.2, 135.5, 134.2, 133.4, 132.8, 131.5, 130.4, 129.3, 129.2, 128.3(d, *J* = 11.3 Hz), 125.5(d, *J* = 7.56 Hz), 125.1, 124.5(d, *J* = 10.1 Hz), 119.4, 117.0, 115.9, 115.7, 82.8.

¹⁹F NMR (376 MHz, Acetone- d_6): δ -120.99. HRMS (ESI): C₂₅H₁₅FINO₂+H, Calc: 508.0156, Found: 508.0204. Optical Rotation: $[\alpha]_D^{20} = +42^\circ$ (c = 1, acetone). IR (KBr, cm⁻¹): 3122, 1646, 1502, 1434, 1276, 1191, 1073, 843, 816. HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.520 min (minor), t_R = 6.117 min (major).

(*R_a*)-1-(1-((4-chlorophenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3m)

Appearance: white solid.

Yield: 87%, 22.8 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.15 (s, 1H), 8.41 (d, J = 7.3 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.82 – 7.73 (m, 3H), 7.62 (t, J = 6.1 Hz, 1H), 7.49 (t, J = 6.9 Hz, 1H), 7.39 – 7.32 (m, 1H), 7.27 (d, J = 8.9 Hz, 1H), 7.19 – 7.09 (m, 4H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 154.4, 151.7, 150.8, 145.9, 135.6, 134.3, 133.4, 132.9, 131.5, 130.4, 129.3, 129.2, 129.2, 129.0, 128.3, 125.4, 124.8, 124.5, 124.4, 119.3, 116.9, 82.9.

HRMS (ESI): C₂₅H₁₅ClINO₂+H, Calc: 524.0082, Found: 523.9909.

Optical Rotation: $[\alpha]_{D}^{20} = +122^{\circ}$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 3022, 1640, 1589, 1486, 1317, 1206, 1073, 819, 755.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.493 min (minor), t_R = 6.220 min (major).

(*R_a*)-1-(4-iodo-1-((4-iodophenyl)imino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3n)

OH

Appearance: white solid. Yield: 83%, 25.5 mg

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.22 (s, 1H), 8.33 (d, *J* = 7.9 Hz, 1H), 7.94 – 7.78 (m, 3H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.44 (dd, *J* = 14.4, 7.6 Hz, 3H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 9.0 Hz, 1H), 6.89 (d, *J* = 8.6 Hz, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ 153.7, 150.5, 149.8, 145.6, 137.2, 134.4, 133.8, 132.0, 131.6, 130.3, 129.6, 128.2, 127.4, 127.3, 127.1, 125.0, 123.3, 123.2, 123.1, 118.4, 115.3, 87.6, 82.5. HRMS (ESI): C₂₅H₁₅I₂NO₂+H, Calc: 615.9543, Found: 615.9265.

Optical Rotation: $[\alpha]_D^{20} = +54^\circ$ (*c* = 1, acetone). **IR (KBr, cm⁻¹):** 2921, 1603, 1575, 1285, 1186, 1045, 1002, 843, 813. **HPLC analysis:** Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, *t*_R = 4.817 min (minor), *t*_R = 6.903 min (major).

(*R_a*)-1-(1-((2,3-dimethylphenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (30)

Appearance: white solid.

Yield: 86%, 22.3 mg

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.09 (s, 1H), 8.45 (d, J = 9.4 Hz, 1H), 7.90 – 7.69 (m, 5H), 7.64 (t, J = 7.4 Hz, 1H), 7.54 – 7.44 (m, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 8.9 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.75 (t, J = 7.7 Hz, 1H), 6.64 (d, J = 7.2 Hz, 1H), 2.12 (d, J = 7.5 Hz, 6H).

¹³C NMR (125 MHz, Acetone-*d*₆): δ 154.3, 152.0, 149.2, 146.0, 137.6, 135.5, 134.0, 133.4, 132.7, 131.4, 130.4, 129.3, 129.1, 129.0, 128.3, 128.2, 126.1, 125.7, 125.2, 124.5, 124.4, 119.6, 119.3, 117.2, 82.4, 20.4, 14.4.

HRMS (ESI): C₂₇H₂₀INO₂+H, Calc: 518.0596, Found: 518.0612.

Optical Rotation: $[\alpha]_D^{20} = +29^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2923, 1717, 1652, 1579, 1434, 1261, 1036, 939, 756.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.713 min (minor), t_R = 9.170 min (major).

(*R_a*)-1-(1-((3,4-dimethylphenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3p)

Appearance: white solid. **Yield:** 78%, 20.2 mg

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.12 (s, 1H), 8.40 (d, J = 7.3 Hz, 1H), 7.89 (dd, J = 21.5, 8.5 Hz, 2H), 7.81 – 7.72 (m, 3H), 7.60 (ddd, J = 8.3, 5.9, 2.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.27 (d, J = 8.9 Hz, 1H), 6.99 (s, 1H), 6.89 (d, J = 10.3 Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H), 2.04 (s, 3H), 1.98 (s, 3H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.4, 151.9, 149.4, 144.6, 137.0, 135.5, 133.9, 133.5, 132.7, 132.5, 131.4, 130.4, 130.3, 129.3, 129.2, 128.2, 128.1, 125.3, 125., 124.6, 124.3, 121.2, 119.3, 117.1, 82.3, 19.7, 19.2.

HRMS (ESI): $C_{27}H_{20}INO_2$ +H, Calc: 518.0596, Found: 518.0612. **Optical Rotation:** $[\alpha]_D^{20} = +73^\circ$ (c = 1, acetone). **IR (KBr, cm⁻¹):** 2922, 1721, 1651, 1498, 1307, 1116, 1041, 968, 816. **HPLC analysis:** Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $t_R = 6.043$ min (minor), $t_R = 8.237$ min (major).

(R_a)-1-(1-((3,4-dimethoxyphenyl)imino)-4-iodo-1H-isochromen-3-yl)naphthalen-2-ol (3q)

Appearance: white solid.

Yield: 91%, 25.0 mg

¹**H NMR** (500 MHz, CD₃CN): δ 8.37 (d, J = 7.9 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.78 – 7.69 (m, 3H), 7.60 (dd, J = 8.6, 3.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 9.0 Hz, 1H), 6.82 (s, 1H), 6.74 – 6.66 (m, 2H), 3.66 (s, 3H), 3.26 (s, 3H). ¹³**C NMR** (125 MHz, CD₃CN): δ 153.3, 150.6, 149.3, 148.9, 146.6, 139.5, 134.8, 133.7, 132.7, 132.6, 131.1, 130.3, 128.9, 128.3, 127.5, 124.9, 124.4, 124.1, 118.8, 116.4, 112.3, 107.9, 82.7, 56.0, 55.2.

HRMS (ESI): C₂₇H₂₀INO₄+H, Calc: 550.0540, Found: 550.0510.

Optical Rotation: $[\alpha]_D^{20} = +44^\circ (c = 1, acetone).$

IR (KBr, cm⁻¹): 2957, 1732, 1646, 1238, 1119, 1042, 932, 817, 755.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.170 min (minor), t_R = 8.930 min (major).

(*R_a*)-1-(1-((4-chloro-2-methylphenyl)imino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3r)

Appearance: white solid. **Yield:** 98%, 26.4 mg

¹**H** NMR (400 MHz, CD₃CN): δ 8.42 (d, *J* = 7.8 Hz, 1H), 7.86 (dd, *J* = 16.4, 8.0 Hz, 2H), 7.77 (d, *J* = 3.5 Hz, 2H), 7.67 – 7.59 (m, 2H), 7.51 – 7.42 (m, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 8.9 Hz, 1H), 7.08 (s, 1H), 6.94 – 6.83 (m, 2H), 2.15 (s, 3H).

¹³**C NMR** (100 MHz, CD₃CN): δ 153.5, 150.8, 150.2, 144.9, 135.1, 134.3, 132.8, 132.7, 131.3, 130.5, 130.3, 128.9, 128.9, 128.2, 128.2, 128.0, 126.4, 124.6, 124.3, 124.1, 122.8, 118.8, 116.5, 83.0, 17.8.

HRMS (ESI): $C_{26}H_{17}CIINO_2$ +H, Calc: 538.0061, Found: 538.0065. Optical Rotation: $[\alpha]_D^{20} = +105^\circ$ (c = 1, acetone). IR (KBr, cm⁻¹): 2958, 1717, 1651, 1482, 1308, 1276, 1040, 939, 815. HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.433 min (minor), t_R = 6.193 min (major).

(*R_a*)-1-(4-iodo-1-(mesitylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3s)

Appearance: white solid.

Yield: 84%, 22.3 mg

¹**H** NMR (500 MHz, Acetone- d_6): δ 9.13 (s, 1H), 8.51 (d, J = 7.9 Hz, 1H), 7.80 (ddd, J = 32.2, 17.9, 8.4 Hz, 4H), 7.63 (t, J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 9.0 Hz, 1H), 6.62 (s, 2H), 2.07 (s, 6H), 2.03 (s, 3H).

¹³C NMR (125 MHz, Acetone-*d*₆): δ 154.2, 152.0, 149.1, 143.0, 135.4, 134.1, 133.4, 132.6, 132.1, 131.4, 130.3, 129.2, 128.9, 128.4, 128.2, 128.0, 124.6, 124.3, 124.2, 119.2, 117.4, 82.4, 20.7, 18.4. HRMS (ESI): C₂₈H₂₂INO₂+H, Calc: 532.0778, Found: 532.0768.

Optical Rotation: $[\alpha]_{D}^{20} = +133^{\circ}$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 3185, 1725, 1603, 1574, 1307, 1287, 1173, 1051, 814.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.570min (minor), t_R = 7.143min (major).

(*R_a*)-1-(4-iodo-1-(naphthalen-2-ylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3t)

Appearance: white solid.

Yield: 76%, 20.5 mg

¹**H** NMR (400 MHz, DMSO- d_6): δ 10.28 (s, 1H), 8.40 (d, J = 7.8 Hz, 1H), 7.84 (dd, J = 14.6, 9.4 Hz, 3H), 7.75 – 7.62 (m, 5H), 7.56 (s, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.37 – 7.26 (m, 4H), 7.22 (d, J = 8.9 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 153.6, 150.6, 149.7, 143.4, 134.4, 133.7, 133.5, 132.0, 131.6, 130.3, 130.0, 129.6, 128.1, 127.9, 127.4, 127.4, 127.3, 127.0, 126.9, 126.0, 124.5, 123.4, 123.3, 123.2, 118.8, 118.3, 115.3, 82.3.

HRMS (ESI): C₂₉H₁₈INO₂+H, Calc: 540.0432, Found: 540.0455.

Optical Rotation: $[\alpha]_D^{20} = +89^\circ$ (c = 1, acetone). **IR (KBr, cm⁻¹):** 2924, 1747, 1645, 1579, 1504, 1286, 1071, 1050, 813. **HPLC analysis:** Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 8.073 min (minor), t_R = 10.923 min (major).

(*R_a*)-1-(1-(benzylimino)-4-iodo-1*H*-isochromen-3-yl)naphthalen-2-ol (3u)

(1H)-isochromen-1-imines **3u** contained an alkylamine, which was unstable during the purification process. As a result, (1H)-isochromen-1-imines **3u** was hydrolyzed by 4M HCl to afford axially chiral isocoumarin **4**.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.183 min (minor), t_R = 9.800 min (major).

(R_a)-1-(7-chloro-4-iodo-1-(phenylimino)-1H-isochromen-3-yl)naphthalen-2-ol (3v)

Appearance: white solid.

Yield: 99%, 25.9 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.12 (s, 1H), 8.39 (s, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.82 – 7.75 (m, 3H), 7.53 – 7.47 (m, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.26 (d, J = 8.9 Hz, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.14 – 7.09 (m, 2H), 6.92 – 6.87 (m, 1H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.4, 152.4, 148.8, 146.5, 135.7, 134.5, 133.9, 133.6, 133.4, 132.9, 129.4, 129.3, 129.2, 128.4, 127.3, 126.6, 124.9, 124.5, 124.5, 123.8, 119.3, 116.8, 81.2.

HRMS (ESI): C₂₅H₁₅ClINO₂+H, Calc: 524.0180, Found: 523.9909.

Optical Rotation: $[\alpha]_D^{20} = +40^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2966, 1647, 1580, 1435, 1271, 1189, 1066, 940, 816.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.723 min (minor), t_R = 6.127 min (major).

(*R_a*)-1-(4-iodo-7-methyl-1-(phenylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3w)

Yield: 98%, 24.7 mg.

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.21 (s, 1H), 8.17 (s, 1H), 7.85 (dd, *J* = 17.8, 8.6 Hz, 2H), 7.67 – 7.55 (m, 3H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.32 (t, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 9.0 Hz, 1H), 7.15 – 7.02 (m, 4H), 6.88 (t, *J* = 7.1 Hz, 1H), 2.50 (d, *J* = 3.2 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.7, 149.7, 149.2, 145.8, 139.4, 134.4, 132.0, 132.0, 131.5, 130.2, 128.5, 128.1, 127.4, 127.2, 126.8, 123.4, 123.2, 123.1, 123.0, 122.4, 118.4, 115.4, 82.1, 20.8. HRMS (ESI): C₂₆H₁₈INO₂+H, Calc: 504.0456, Found: 504.0455.

Optical Rotation: $[\alpha]_D^{20} = +57^\circ$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 2922, 1638, 1500, 1393, 1309, 1274, 1140, 1074, 813.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.737 min (minor), t_R = 10.087 min (major).

(*R_a*)-1-(4-iodo-7-methoxy-1-(phenylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (3x)

Appearance: white solid.

Yield: 93%, 24.2 mg.

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.05 (s, 1H), 7.95 (d, *J* = 2.8 Hz, 1H), 7.90 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 6.8 Hz, 1H), 7.72 (dd, *J* = 8.7, 5.6 Hz, 2H), 7.48 (t, *J* = 8.3 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.24 (d, *J* = 8.9 Hz, 1H), 7.19 – 7.04 (m, 4H), 6.91 – 6.83 (m, 1H), 3.99 (s, 3H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 161.7, 154.5, 150.1, 149.4, 147.1, 133.6, 133.3, 132.7, 129.3, 129.2, 129.0, 128.2, 126.2, 124.6, 124.4, 124.4, 123.7, 121.7, 119.4, 117.0, 110.5, 82.2, 56.4.

HRMS (ESI): C₂₆H₁₈INO₂+H, Calc: 520.0392, Found: 520.0404.

Optical Rotation: $[\alpha]_D^{20} = +158^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2924, 1637, 1603, 1589, 1490, 1340, 1203, 1034, 818.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R =8.890 min (minor), t_R = 15.580 min (major).

(Ra)-1-(8-fluoro-4-iodo-1-(phenylimino)-1H-isochromen-3-yl)naphthalen-2-ol (3y)

Appearance: white solid. Yield: 88%, 23.4 mg.

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.08 (s, 1H), 8.45 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.85 – 7.76 (m, 3H), 7.72 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.19 (dd, J = 27.2, 8.4 Hz, 2H), 6.99 – 6.79 (m, 3H).

¹³C NMR (125 MHz, Acetone-*d*₆): δ 155.3(d, *J* = 244.4 Hz) 151.9, 151.8, 135.7, 135.4, 135.3, 134.5, 133.4, 132.8, 131.6, 130.5, 129.2, 129.1, 128.4(d, *J* = 39.1 Hz), 125.3(d, *J* = 7.56 Hz), 124.9(d, *J* = 3.78 Hz), 124.4(d, *J* = 8.82 Hz), 119.3, 116.9, 116.4(d, *J* = 21.4 Hz), 83.0.

¹⁹**F NMR** (376 MHz, Acetone-*d*₆): δ -124.34.

HRMS (ESI): C₂₅H₁₅FINO₂+H, Calc: 508.0157, Found: 508.0204.

Optical Rotation: $[\alpha]_D^{20} = +73^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2924, 1722, 1651, 1584, 1307, 1276, 1071, 1044, 818.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 7.887 min (minor), t_R = 13.813 min (major).

(*R_a*)-1-(4-iodo-1-(phenylimino)-1*H*-isochromen-3-yl)-7-phenylnaphthalen-2-ol (3z)

Appearance: white solid.

Yield: 99%, 28.0 mg.

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.23 (s, 1H), 8.41 (d, *J* = 7.9 Hz, 1H), 8.03 – 7.89 (m, 3H), 7.76 (d, *J* = 4.2 Hz, 2H), 7.71 – 7.54 (m, 4H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.30 (dd, *J* = 18.0, 8.1 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.08 (t, *J* = 7.8 Hz, 2H), 6.86 (t, *J* = 7.3 Hz, 1H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 155.0, 151.7, 150.0, 147.1, 142.0, 140.9, 135.6, 134.1, 133.7, 132.6, 131.5, 130.4, 130.0, 129.8, 129.3, 128.5, 128.4, 128.3, 128.2, 125.3, 124.4, 124.0, 123.6, 122.3, 119.5, 117.48, 82.9.

HRMS (ESI): C₃₁H₂₀INO₂+H, Calc: 566.0815, Found: 566.0612.

Optical Rotation: $[\alpha]_D^{20} = +49^\circ (c = 1, acetone).$

IR (KBr, cm⁻¹): 3039, 1646, 1615, 1580, 1435, 1189, 1042, 936, 751.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.597 min (minor), t_R = 8.590 min (major).

(R_a)-1-(4-iodo-1-(phenylimino)-1H-isochromen-3-yl)-6-phenylnaphthalen-2-ol (3aa)

Appearance: white solid.

Yield: 89%, 25.2 mg.

¹**H NMR** (400 MHz, DMSO- d_6): δ 10.30 (s, 1H), 8.35 (d, J = 7.9 Hz, 1H), 8.15 (s, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.91 – 7.55 (m, 8H), 7.49 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 8.9 Hz, 1H), 7.16 – 7.05 (m, 4H), 6.92 – 6.85 (m, 1H).

¹³**C NMR** (125 MHz, DMSO-*d*₆): δ 150.5, 149.1, 145.7, 139.9, 134.8, 134.3, 133.6, 132.0, 131.3, 130.2, 129.6, 129.0, 127.7, 127.2, 127.0, 126.7, 126.4, 125.7, 124.0, 123.5, 123.4, 122.5, 119.0, 115.4, 82.3.

HRMS (ESI): C₃₁H₂₀INO₂+H, Calc: 566.0874, Found: 566.0612.

Optical Rotation: $[\alpha]_D^{20} = +181^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 3060, 1644, 1589, 1489, 1288, 1128, 1040, 941, 813.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.953 min (minor), t_R = 8.870 min (major).

(R_a)-1-(4-iodo-1-(phenylimino)-1H-isochromen-3-yl)-7-methylnaphthalen-2-ol (3ab)

Appearance: white solid.

Yield: 70%, 17.6 mg.

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 10.23 (s, 1H), 8.32 (d, *J* = 7.8 Hz, 1H), 7.91 (d, *J* = 9.0 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.60 (q, *J* = 3.9 Hz, 2H), 7.45 (t, *J* = 7.7 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 8.9 Hz, 1H), 7.11 (d, *J* = 8.9 Hz, 2H), 6.68 (d, *J* = 8.9 Hz, 2H), 3.61 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.7, 153.6, 150.6, 148.0, 138.2, 134.1, 133.2, 132.0, 131.5, 130.1, 129.4, 128.2, 127.4, 127.3, 126.8, 124.3, 123.7, 123.2, 118.5, 115.6, 113.7, 82.1, 55.0.

HRMS (ESI): C₂₆H₁₈INO₂+H, Calc: 504.0434, Found: 504.0455.

Optical Rotation: $[\alpha]_D^{20} = +45^\circ (c = 0.8, \text{ acetone}).$

IR (KBr, cm⁻¹): 2922, 1644, 1588, 1201, 1040, 946, 830, 745, 756.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $t_R = 5.293 \text{ min}$ (minor), $t_R = 8.300 \text{ min}$ (major).

General procedure and spectral data for the synthesis of 4

To a solution of 3a (393 mg) in THF (10 mL) was added a few drops of 6M HCl aq. at room temperature. Then the reaction mixture was stirred for 3h at 50 °C. After the reaction performed completely, the solvent was removed under vacuum and residue was purified by flash column chromatography (petroleum ether/EA 1:8) to give the pure desired product 4 (316mg, 95% yield) as a while solid.

Spectral data for axially chiral isocoumarin 4

(*R_a*)-3-(2-hydroxynaphthalen-1-yl)-4-iodo-1*H*-isochromen-1-one (4)

Appearance: white solid.

Yield: 71%, 14.7 mg.

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.13 (s, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.97 (dd, J = 8.3, 4.6 Hz, 2H), 7.89 (t, J = 7.6 Hz, 2H), 7.71 (dq, J = 15.7, 7.5 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 162.6, 154.4, 153.3, 139.0, 136.7, 133.4, 132.9, 131.8, 130.5, 130.3, 129.3, 129.2, 128.4, 124.5, 124.4, 121.9, 119.3, 117.1, 110.4, 83.2.

HRMS (ESI): C₁₉H₁₁IO₃+H, Calc: 414.9860, Found: 414.9826.

Optical Rotation: $[\alpha]_D^{20} = +134^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 3287, 1763, 1562, 1278, 1229, 938, 829, 764.

HPLC analysis: Chiralcel IB-H (Hexane/*i*-PrOH = 8:2, flow rate = 1.0 mL/min, t_R = 9.743min (major), t_R = 16.463 min (minor).

General procedure and spectral data for the synthesis of 5

To a solution of **1** (0.05 mmol) and catalyst **2d** (10 mol%) in DCM: Et₂O (1:1 vol/vol, 2 mL) was added NBP (1.1 equiv, 0.055 mmol) slowly at -78 °C. Then, the reaction mixture was stirred for 72 h at -78 °C. After the reaction performed completely, the solvent was removed under vacuum and residue was purified by flash column chromatography (petroleum ether/DCM 1:10) to give the pure desired products (R_a)-**5** as a while solid.

Spectral data for (1H)-isochromen-1-imines 5

(R_a)-1-(4-bromo-1-(phenylimino)-1H-isochromen-3-yl)naphthalen-2-ol (5a)

Appearance: white solid.

Yield: 72%, 15.9 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.15 (d, J = 5.4 Hz, 1H), 8.46 (d, J = 7.8 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.82 (d, J = 7.1 Hz, 4H), 7.65 (d, J = 6.4 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.35 (t, J = 10.3 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 7.17 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 6.88 (d, J = 6.2 Hz, 1H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.7, 149.6, 148.7, 146.9, 134.0, 133.5, 132.9, 130.4, 129.4, 129.4, 129.2, 128.4, 128.3, 126.6, 125.7, 124.6, 124.4, 123.7, 119.3, 119.3, 114.2, 114.2, 106.6.

HRMS (ESI): C₂₅H₁₆BrNO₂+H, Calc: 442.0437, Found: 442.0438.

Optical Rotation: $[\alpha]_D^{20} = +29^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2927, 1740, 1643, 1603, 1508, 1435, 1283, 1053, 809.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.387 min (minor), t_R = 8.877 min (major).

(R_a)-1-(4-bromo-1-(o-tolylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (5b)

Yield: 75%, 17.1 mg.

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.17 (s, 1H), 8.50 (d, *J* = 7.8 Hz, 1H), 7.93 – 7.82 (m, 4H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 8.9 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.76 (t, *J* = 7.3 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.6, 149.0, 149.0, 146.0, 134.0, 133.5, 132.8, 130.8, 130.7, 130.4, 129.3, 129.2, 128.5, 128.3, 126.8, 126.6, 125.6, 124.5, 124.4, 124.2, 121.9, 119.3, 106.4, 19.0.

HRMS (ESI): C₂₅H₁₆BrNO₂+H, Calc: 456.0594, Found: 456.0594.

Optical Rotation: $[\alpha]_D^{20} = +47^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2918, 1726, 1617, 1643, 1433, 1380, 1279, 1085, 822.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.903 min (minor), t_R = 7.667 min (major).

(*R_a*)-1-(4-bromo-1-((2-fluorophenyl)imino)-1*H*-isochromen-3-yl)naphthalen-2-ol (5c)

Appearance: white solid.

Yield: 92%, 21.2 mg.

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 10.27 (s, 1H), 8.44 (d, *J* = 7.9 Hz, 1H), 7.97 – 7.76 (m, 4H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.19 (dd, *J* = 27.7, 8.4 Hz, 2H), 7.09 – 7.00 (m, 1H), 6.94 (q, *J* = 7.5 Hz, 2H).

¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 153.9, 153.7 (d, J = 245.4 Hz), 150.4, 147.8, 133.8, 133.6, 132.6, 132.0, 131.8, 129.7, 128.1, 127.5(d, J = 17.2 Hz), 127.4, 125.5, 124.6(d, J = 10.1 Hz), 124.2(d, J = 5.1 Hz), 123.8, 123.1(d, J = 13.1 Hz), 123.1, 118.3, 115.6(d, J = 20.2 Hz), 112.3, 105.4.

19F NMR (376 MHz, DMSO): δ -123.44.

HRMS (ESI): C₂₅H₁₅BrFNO₂+H, Calc: 460.0340, Found: 460.0343.

Optical Rotation: $[\alpha]_D^{20} = +111^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2923, 1620, 1567, 1489, 1359, 1290, 1179, 975, 820.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.353 min (minor), t_R = 8.877 min (major).

(R_a)-1-(4-bromo-1-((2-chlorophenyl)imino)-1H-isochromen-3-yl)naphthalen-2-ol (5d)

Yield: 91%, 21.7 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.20 (s, 1H), 8.46 (d, J = 7.9 Hz, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.83 (dd, J = 20.4, 7.0 Hz, 4H), 7.68 (d, J = 13.1 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.37 (dd, J = 14.2, 6.5 Hz, 2H), 7.28 (d, J = 9.0 Hz, 1H), 7.13 (d, J = 6.7 Hz, 1H), 7.06 (d, J = 6.6 Hz, 2H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.6, 151.0, 148.8, 144.9, 134.5, 134.1, 133.5, 133.0, 130.6, 130.3, 129.3, 129.1, 128.8, 128.3, 128.0, 127.2, 126.7, 125.3, 124.9, 124.6, 124.4, 123.9, 119.2, 113.9, 106.9.

HRMS (ESI): C₂₅H₁₅BrClNO₂+H, Calc: 476.0042, Found: 476.0047.

Optical Rotation: $[\alpha]_D^{20} = +49^\circ$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 2989, 1653, 1616, 1585, 1434, 1197, 1086, 1050, 824.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.093 min (minor), t_R = 7.907 min (major).

(R_a)-1-(4-bromo-1-((3-bromophenyl)imino)-1H-isochromen-3-yl)naphthalen-2-ol (5e)

Appearance: white solid.

Yield: 87%, 22.7 mg.

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.22 (s, 1H), 8.46 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.88 – 7.78 (m, 4H), 7.67 (ddd, J = 8.4, 6.3, 2.3 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.41 (d, J = 2.9 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.9 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.10 – 7.02 (m, 2H). ¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.8, 150.8, 148.8, 148.7, 134.3, 134.1, 133.4, 133.1, 131.1, 130.5, 129.3, 129.2, 128.5, 128.4, 127.3, 126.7, 126.5, 125.2, 124.5, 124.4, 122.7, 122.6, 119.3, 114.0, 106.8.

HRMS (ESI): C₂₅H₁₅Br₂NO₂+H, Calc: 521.9487, Found: 521.9699.

Optical Rotation: $[\alpha]_D^{20} = +142^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2989, 1646, 1608, 1584, 1435, 1285, 1195, 977, 824.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.830 min (minor), t_R = 6.873 min (major).

(Ra)-1-(4-bromo-1-(m-tolylimino)-1H-isochromen-3-yl)naphthalen-2-ol (5f)

Yield: 80%, 18.2 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.10 (s, 1H), 8.45 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.88 – 7.75 (m, 4H), 7.65 (t, J = 8.3 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 7.05 – 6.91 (m, 3H), 6.69 (d, J = 7.2 Hz, 1H), 2.08 (s, 3H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 154.7, 149.4, 148.8, 146.9, 138.8, 134.0, 133.9, 133.6, 132.9, 130.4, 129.4, 129.2, 128.4, 128.3, 126.6, 125.8, 125.3, 124.7, 124.4, 120.7, 119.3, 114.3, 106.5, 21.4.

HRMS (ESI): C₂₅H₁₈BrNO₂+H, Calc: 456.0590, Found: 456.0594.

Optical Rotation: $[\alpha]_D^{20} = +107^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2972, 1645, 1609, 1579, 1436, 1328, 1286, 1075, 794.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.310 min (minor), t_R = 7.523 min (major).

(R_a)-1-(4-bromo-1-((3-chlorophenyl)imino)-1H-isochromen-3-yl)naphthalen-2-ol (5g)

Appearance: white solid.

Yield: 64%, 15.2 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.17 (s, 1H), 8.46 (d, J = 7.7 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.90 - 7.78 (m, 4H), 7.67 (t, J = 8.3 Hz, 1H), 7.53 - 7.48 (m, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.31 - 7.21 (m, 2H), 7.12 (d, J = 7.7 Hz, 2H), 6.91 (dt, J = 7.1, 2.0 Hz, 1H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.8, 148.7, 134.5, 134.3, 134.1, 133.5, 133.1, 130.8, 130.5, 129.3, 129.2, 128.5, 128.4, 126.7, 125.3, 124.6, 124.5, 124.4, 123.6, 122.3, 119.3, 114.0, 106.9.

HRMS (ESI): C₂₅H₁₅BrClNO₂+H, Calc: 476.0016, Found: 476.0047.

Optical Rotation: $[\alpha]_D^{20} = +57^\circ$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 2988, 1645, 1609, 1576, 1436, 1285, 1196, 1073, 824.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.627 min (minor), t_R = 6.440 min (major).
(R_a)-1-(4-bromo-1-((4-fluorophenyl)imino)-1H-isochromen-3-yl)naphthalen-2-ol (5h)

Appearance: white solid.

Yield: 84%, 19.3 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.17 (s, 1H), 8.46 (d, J = 7.9 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.89 – 7.77 (m, 4H), 7.64 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.9 Hz, 1H), 7.27 – 7.19 (m, 2H), 6.88 (t, J = 8.8 Hz, 2H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 161.4(d, *J* = 242.4 Hz), 154.8, 149.8, 148.6, 143.1, 133.9, 133.9, 133.4, 133.0, 130.4, 129.3, 129.2, 128.4, 128.4, 126.7, 125.6(d, *J* = 8.1 Hz), 124.5(d, *J* = 8.1 Hz), 119.3, 115.8(d, *J* = 23.2 Hz), 114.2, 106.7.

19F NMR (376 MHz, Acetone-*d*₆): δ -120.82.

HRMS (ESI): C₂₅H₁₅BrFNO₂+H, Calc: 460.0311, Found: 460.0343.

Optical Rotation: $[\alpha]_D^{20} = +62^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2972, 1645, 1588, 1504, 1436, 1283, 1196, 1076, 811.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.537 min (minor), t_R = 6.773min (major).

(R_a)-1-(4-bromo-1-((4-chlorophenyl)imino)-1H-isochromen-3-yl)naphthalen-2-ol (5i)

Appearance: white solid.

Yield: 89%, 21.2 mg.

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.14 (s, 1H), 8.46 (d, J = 7.8 Hz, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.89 – 7.77 (m, 4H), 7.69 – 7.63 (m, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.23 – 7.08 (m, 4H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.8, 154.7, 150.4, 148.7, 145.9, 134.2, 134.0, 133.4, 133.1, 130.5, 129.4, 129.2, 129.2, 128.5, 128.4, 126.7, 125.4, 124.6, 124.5, 119.3, 119.2, 114.1, 106.8.

HRMS (ESI): C₂₅H₁₅BrClNO₂+H, Calc: 475.9892, Found: 476.0047.

Optical Rotation: $[\alpha]_D^{20} = +74^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2989, 1648, 1613, 1486, 1280, 1203, 1073, 949, 822.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wave length = 254 nm), $t_R = 4.507 \text{ min (minor)}$, $t_R = 6.787 \text{ min (major)}$.

(*R_a*)-1-(4-bromo-1-((3,4-dimethylphenyl)imino)-1*H*-isochromen-3-yl)naphthalen-2-ol (5j)

Appearance: white solid.

Yield: 88%, 20.7 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.11 (s, 1H), 8.50 (d, J = 8.9 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.83 (t, J = 5.0 Hz, 3H), 7.74 (d, J = 7.7 Hz, 1H), 7.70 – 7.61 (m, 1H), 7.53 – 7.44 (m, 1H), 7.39 – 7.29 (m, 1H), 7.23 (d, J = 8.9 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 6.76 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 7.6 Hz, 1H), 2.13 (d, J = 6.4 Hz, 6H).

¹³**C NMR** (125 MHz, Acetone-*d*₆): δ 154.6, 145.9, 137.6, 133.9, 133.9, 133.5, 132.8, 130.4, 129.3, 129.2, 129.0, 128.4, 128.2, 126.6, 126.1, 125.7, 125.7, 124.5, 124.4, 119.6, 119.3, 114.4, 106.4, 20.4, 14.4.

HRMS (ESI): C₂₇H₂₀BrNO₂+H, Calc: 470.0734, Found: 470.0750.

Optical Rotation: $[\alpha]_D^{20} = +121^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2971, 1652, 1626, 1584, 1435, 1278, 1051, 818, 746.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 6.000min (minor), t_R = 8.813 min (major).

(*R_a*)-1-(4-bromo-1-((4-chloro-2-methylphenyl)imino)-1*H*-isochromen-3-yl)naphthalen-2-ol (5k)

Appearance: white solid.

Yield: 82%, 20.1 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.12 (s, 1H), 8.49 (d, J = 7.9 Hz, 1H), 7.92 – 7.78 (m, 4H), 7.74 (d, J = 8.4 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 8.9 Hz, 1H), 7.05 (d, J = 6.4 Hz, 2H), 6.89 (d, J = 5.7 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.8, 150.0, 149.0, 144.9, 134.2, 134.0, 134.0, 133.4, 133.3, 132.9, 130.5, 129.2, 128.6, 128.5, 128.2, 126.6, 125.2, 124.4, 124.3, 123.5, 119.2, 114.1, 106.5, 18.2.

HRMS (ESI): C₂₆H₁₇BrClNO₂+H, Calc: 490.0192, Found: 490.0204.

Optical Rotation: $[\alpha]_D^{20} = +56^\circ$ (*c* = 1, acetone).

IR (KBr, cm⁻¹): 2973, 1654, 1513, 1433, 1277, 1195, 1071, 975, 819.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 7.517min (minor), t_R = 13.047 min (major).

(R_a)-1-(4-bromo-1-(mesitylimino)-1H-isochromen-3-yl)naphthalen-2-ol (5l)

Appearance: white solid.

Yield: 90%, 21.8 mg.

¹**H NMR** (400 MHz, Acetone-*d*₆): δ 9.07 (s, 1H), 8.56 (d, *J* = 7.9 Hz, 1H), 7.93 – 7.78 (m, 4H), 7.73 – 7.62 (m, 2H), 7.46 (t, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 8.1 Hz, 1H), 7.20 (d, *J* = 9.0 Hz, 1H), 6.63 (s, 2H), 2.08 (s, 6H), 2.03 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.6, 149.3, 148.9, 143.0, 134.0, 133.8, 133.4, 132.7, 132.2, 130.3, 129.2, 129.2, 129.0, 128.6, 128.2, 128.0, 126.5, 125.0, 124.3, 124.2, 119.2, 114.4, 106.2, 20.7, 18.4.

HRMS (ESI): C₂₈H₂₂BrNO₂+H, Calc: 484.0898, Found: 484.0797.

Optical Rotation: $[\alpha]_D^{20} = +32^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2969, 1656, 1621, 1433, 1276, 1196, 1069, 977, 760.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.520 min (minor), t_R =7.440 min (major).

(R_a)-1-(4-bromo-7-chloro-1-(phenylimino)-1H-isochromen-3-yl)naphthalen-2-ol (5m)

Appearance: white solid.

Yield: 99%, 23.4 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.32 (s, 1H), 8.42 (d, J = 2.2 Hz, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.87 – 7.77 (m, 4H), 7.51 – 7.45 (m, 1H), 7.37 – 7.31 (m, 2H), 7.21 (d, J = 9.8 Hz, 2H), 7.13 (t, J = 7.9 Hz, 2H), 6.96 – 6.88 (m, 1H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.9, 149.4, 148.4, 146.4, 135.6, 133.8, 133.4, 133.0, 132.8, 129.4, 129.2, 129.2, 128.7, 128.3, 127.6, 127.2, 125.0, 124.5, 124.4, 123.9, 119.4, 113.9.

HRMS (ESI): C₂₅H₁₅BrClNO₂+H, Calc: 476.0028, Found: 476.0047.

Optical Rotation: $[\alpha]_D^{20} = +104^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2989, 1651, 1583, 1471, 1278, 1192, 1066, 975, 817.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 4.633 min (minor), t_R = 6.537 min (major).

(*R_a*)-1-(4-bromo-7-methyl-1-(phenylimino)-1*H*-isochromen-3-yl)naphthalen-2-ol (5n)

Appearance: white solid.

Yield: 98%, 22.3 mg.

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.11 (s, 1H), 8.30 (s, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.74 (dd, J = 18.0, 8.4 Hz, 2H), 7.62 (d, J = 8.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.35 (s, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.23 – 7.05 (m, 4H), 6.88 (s, 1H), 2.59 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.7, 149.7, 147.8, 147.0, 140.8, 134.9, 133.6, 132.8, 131.5, 129.3, 129.3, 129.2, 128.4, 128.2, 126.6, 125.4, 124.5, 124.5, 124.4, 123.7, 119.3, 114.2, 106.6, 21.4.

HRMS (ESI): C₂₅H₁₆BrNO₂+H, Calc: 456.0594, Found: 456.0594.

Optical Rotation: $[\alpha]_D^{20} = +122^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 3071, 1724, 1652, 1584, 1514, 1208, 1046, 974, 818.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.590 min (minor), t_R =9.920 min (major).

(R_a)-1-(4-bromo-7-methoxy-1-(phenylimino)-1H-isochromen-3-yl)naphthalen-2-ol (50)

Appearance: white solid.

Yield: 74%, 17.5 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.11 (s, 1H), 8.30 (s, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.74 (dd, J = 18.0, 8.4 Hz, 2H), 7.62 (d, J = 8.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.35 (s, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.23 – 7.05 (m, 4H), 6.88 (s, 1H), 2.59 (s, 3H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 169.4, 161.6, 154.8, 149.7, 147.0, 146.3, 135.1, 134.1, 133.7, 132.8, 129.3, 129.3, 129.2, 128.5, 128.2, 127.3, 127.0, 124.6, 124.5, 124.4, 119.3, 114.2, 110.8, 106.4, 56.3.

HRMS (ESI): C₂₆H₁₈BrNO₂+H, Calc: 472.0505, Found: 472.0543.

Optical Rotation: $[\alpha]_D^{20} = +87^\circ$ (*c* = 1, acetone). **IR (KBr, cm⁻¹):** 3071, 1724, 1652, 1514, 1279, 1208, 1046, 974, 818. **HPLC analysis:** Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, *t*_R = 8.033 min (minor), *t*_R = 14.350 min (major).

(*R_a*)-1-(4-bromo-1-(phenylimino)-1*H*-isochromen-3-yl)-7-phenylnaphthalen-2-ol (5p)

Appearance: white solid.

Yield: 91%, 23.6 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 9.23 (s, 1H), 8.47 (d, J = 8.1 Hz, 1H), 8.01 (s, 1H), 7.95 (dd, J = 8.7, 2.6 Hz, 2H), 7.85 – 7.77 (m, 2H), 7.66 (t, J = 6.8 Hz, 4H), 7.44 – 7.38 (m, 2H), 7.35 – 7.27 (m, 2H), 7.18 (d, J = 8.3 Hz, 2H), 7.09 (t, J = 7.8 Hz, 2H), 6.94 – 6.81 (m, 1H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 155.3, 149.7, 148.7, 146.9, 142.0, 141.0, 134.0, 134.0, 133.7, 132.8, 130.4, 130.0, 129.8, 129.6, 129.4, 128.5, 128.4, 128.3, 128.3, 126.7, 124.6, 124.0, 123.7, 122.4, 119.4, 114.5, 106.8.

HRMS (ESI): C₃₁H₂₀BrNO₂+H, Calc: 518.0721, Found: 518.0750.

Optical Rotation: $[\alpha]_D^{20} = +30^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 2989, 1648, 1589, 1497, 1333, 1249, 1195, 1075, 955.

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, t_R = 5.473 min (minor), t_R = 7.747 min (major)

(Ra)-1-(4-bromo-1-(phenylimino)-1H-isochromen-3-yl)-6-phenylnaphthalen-2-ol (5q)

Appearance: white solid.

Yield: 86%, 22.3 mg.

¹**H NMR** (400 MHz, Acetone- d_6): δ 9.26 (s, 1H), 8.48 (d, J = 7.3 Hz, 1H), 8.14 (s, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.91 – 7.81 (m, 4H), 7.77 (dd, J = 7.1, 1.5 Hz, 2H), 7.67 (t, J = 8.3 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H), 7.19 (d, J = 8.3 Hz, 2H), 7.12 (t, J = 7.9 Hz, 2H), 6.93 – 6.84 (m, 1H).

¹³**C NMR** (100 MHz, Acetone-*d*₆): δ 154.9, 149.5, 148.7, 147.0, 142.0, 137.0, 134.0, 133.3, 132.7, 130.4, 129.9, 129.6, 129.4, 128.4, 128.2, 127.9, 127.6, 126.9, 126.7, 125.8, 125.3, 124.6, 123.7, 119.8, 115.4, 114.2, 106.6.

HRMS (ESI): $C_{31}H_{20}BrNO_2+H$, Calc: 518.0741, Found: 518.0750. **Optical Rotation:** $[\alpha]_D^{20} = +37^\circ$ (c = 1, acetone). **IR (KBr, cm⁻¹):** 2923, 1652, 1587, 1489, 1445, 1198, 1039, 948, 832. **HPLC analysis:** Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $t_R = 5.773$ min (minor), $t_R = 8.017$ min (major).

General procedure and spectral data for the synthesis of 6

To a solution of 4 (316 mg) and Et_3N (4 equiv) in DCM (10 mL) was added Tf_2O (4 equiv) slowly at room temperature. Then the reaction mixture was stirred for 2 h at room temperature. After the reaction performed completely, the solvent was removed under vacuum and residue was purified by flash column chromatography (petroleum ether/EA 1:15) to give the pure desired product **6** (408 mg, 98% yield) as a while solid.

Spectral data for axially chiral isocoumarin 6

(R_a) -1-(4-iodo-1-oxo-1H-isochromen-3-yl)naphthalen-2-yl trifluoromethanesulfonate (6)

Appearance: white solid.

Yield: 98%, 408 mg.

¹**H** NMR (400 MHz, Acetone- d_6): δ 8.39 (d, J = 9.2 Hz, 1H), 8.34 (d, J = 7.8 Hz, 1H), 8.20 – 8.14 (m, 1H), 8.12 – 8.01 (m, 2H), 7.95 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.79 – 7.66 (m, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 161.4, 149.4, 145.8, 138.2, 137.1, 134.5, 133.6, 132.4, 132.1, 131.4, 130.6, 130.0, 129.7, 128.9, 127.0, 126.7, 121.8, 120.2, 117.8, 83.6.

HRMS (ESI): C₂₀H₁₀F₃IO₅S+H, Calc: 546.9351, Found: 546.9319.

Optical Rotation: $[\alpha]_D^{20} = +51^\circ (c = 1, \text{ acetone}).$

IR (KBr, cm⁻¹): 3104, 1784, 1677, 1564, 1235, 1002, 987, 853, 801.

HPLC analysis: Chiralcel IG-H (Hexane/*i*-PrOH = 8:2, flow rate = 1.0 mL/min, t_R = 8.793 min (minor), t_R = 11.707 min (major).

2-(2-(methoxymethoxy)naphthalen-1-yl)ethynyl)-N-phenylbenzamide (7)

¹**H NMR** (400 MHz, CDCl₃): δ 9.51 (s, 1H), 8.25 (dd, J = 15.0, 7.8 Hz, 2H), 7.89 – 7.77 (m, 3H), 7.62 (d, J = 8.2 Hz, 2H), 7.53 (p, J = 7.5 Hz, 2H), 7.43 (p, J = 8.3, 7.6 Hz, 3H), 7.28 (q, J = 7.2 Hz, 2H), 7.11 (t, J = 7.5 Hz, 1H), 4.99 (s, 2H), 3.33 (s, 3H), 0.80 (d, J = 643.7 Hz, 26H). ¹³**C NMR** (100 MHz, CDCl₃): δ 164.5, 157.4, 138.0, 135.1, 134.2, 133.8, 131.2, 131.0, 130.6, 129.1, 129.0, 129.0, 128.3, 127.7, 125.1, 124.9, 124.7, 121.3, 120.2, 115.7, 106.5, 96.4, 94.9, 91.7, 56.2. **IR (KBr, cm⁻¹):** 3324, 3221, 1654, 1508, 1328, 1200, 831, 743, 621. **HRMS (ESI):** C₂₇H₂₁NO₃+H, Calc: 408.1611, Found: 408.1594.

4-iodo-3-(2-(methoxymethoxy)naphthalen-1-yl)-N-phenyl-1H-isochromen-1-imine (8)

Appearance: yellow solid.

Yield: 98%, 26.1 mg

¹**H** NMR (400 MHz, Acetone- d_6): δ 8.42 (d, J = 7.2 Hz, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.61 (t, J = 8.3 Hz, 1H), 7.53 (dd, J = 14.2, 8.8 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.17 – 7.00 (m, 4H), 6.94 – 6.79 (m, 1H), 5.42 – 5.16 (m, 2H), 3.37 (s, 3H).

¹³C NMR (100 MHz, Acetone-*d*₆): δ 154.3, 151.9, 149.7, 147.1, 135.4, 134.3, 133.0, 132.8, 131.4, 130.5, 130.2, 129.4, 129.2, 128.5, 125.4, 124.9, 124.5, 123.6, 121.0, 116.9, 95.7, 81.7, 56.6. IR (KBr, cm⁻¹): 3114, 1712, 1498, 1488, 1398, 1198, 987, 888, 798.

HRMS (ESI): C₂₇H₂₀INO₂+H, Calc: 534.0581, Found: 534.0561.

X-ray Structure of 3a

Tmin,Tmax 0.427,0.530		0.620,1.000			
Tmin'	0.295				
Correction method= # Reported T Limits: Tmin=0.620 Tmax=1.000 AbsCorr =					
MULTI-SCAN					
Data completeness= 1.77/	0.92	Theta(max)= 76.753			
R(reflections)= 0.0260(83	348)	wR2(reflections)= 0.0698(8565)			
S = 1.095	Npar= 551				

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**.

Click on the hyperlinks for more details of the test.

Alert level B PLAT420_ALERT_2_B D-H Bond Without Acceptor O50H50 Check	. Please
Alert level C	
<u>PLAT918_ALERT_3_C</u> Reflection(s) with I(obs) much Smaller I(calc).	1 Check
<pre>PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers</pre>	1 Check
• Alert level G	
PLAT007 ALERT 5 G Number of Unrefined Donor-H Atoms	2 Report
PLAT142_ALERT_4_G s.u. on b - Axis Small or Missing 0.00010 A	.ng.
PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing 0.00010 A	.ng.
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	123 Note
<u>PLAT978_ALERT_2_G</u> Number C-C Bonds with Positive Residual Density.	3 Info

0 **ALERT level A** = Most likely a serious problem - resolve or explain

1 ALERT level B = A potentially serious problem, consider carefully

2 ALERT level C = Check. Ensure it is not caused by an omission or oversight

5 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

2 ALERT type 2 Indicator that the structure model may be wrong or deficient

2 ALERT type 3 Indicator that the structure quality may be low

3 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

References

 Xu, T.; Chen, K.; Zhu, H. Y.; Hao, W. J.; Tu, S. J.; Jiang, B. Yb(OTf)₃-Catalyzed Alkyne-Carbonyl Metathesis-Oxa-Michael Addition Relay for Diastereoselective Synthesis of Functionalized Naphtho[2,1-b]furans. *Org. Lett.* 2020, *22*, 2414-2418.

Copies of HPLC spectrum

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

10	0.0						
	0.0		11-5.//3		r		
-10							
	0.0 2.0	4.0	6.0 Tin	8.0 ne (min)	10.0	12.0	14.0 15.0
Integ	ration Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		5.773	0.448	2.488	2.40	4.08	n.a.
2		8.067	18.198	58.547	97.60	95.92	n.a.
Total	:		18.645	61.035	100.00	100.00	

400 200 1 - 4.470 0 -200 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Integration-Results Height mAU 146.600 1660.866 Area mAU*min PeakName RetentionTime RelativeArea RelativeHeight Amount min 4.470 6.227 % 5.53 94.47 n.a. n.a. % 20.038 342.590 8.11 91.89 n.a. Total: 362.628 1807.466 100.00 100.00

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min)

14.196

43.570

100.00

100.00

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min)

	0.0 1.0	2.0 3.0	4.0	5.0 6.0	7.0	8.0 9.0	10.0
			Tim	ie [min]			
Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		4.570	2.866	16.826	1.99	3.60	n.a.
2		7.143	141.278	450.992	98.01	96.40	n.a.
Total:			144.144	467.818	100.00	100.00	

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

68.855

140.804

100.00

100.00

2 Total:

62.389

93.982

100.00

100.00

2 Total:

HPLC analysis: Chiralcel IB-H (Hexane/*i*-PrOH = 8:2, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

1 - 4.520

6.0

Area mAU*min 1.437 41.526

42.963

4.0

Retention Time

min 4.520 7.440

20-

-20

0.0

Total:

Integration Results
No. Peak Name

2.0

8.0 Time [min]

> Height mAU 7.835 118.453

126.288

12.0

Relative Height

% 6.20 93.80

100.00

10.0

Relative Area

% 3.35 96.65

100.00

14.0

Amount

n.a. n.a. n.a.

15.0

35.772

92.826

100.00

100.00

HPLC analysis: Chiralcel IC-H (Hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min)

HPLC analysis: Chiralcel IG-H (Hexane/*i*-PrOH = 8:2, flow rate = 1.0 mL/min)

