Supporting Information

Computational Studies on the Possible Formation of Glycine via Open Shell Gas-Phase Chemistry in the Interstellar Medium

Sorakayala Thripati*

Department of Chemistry, Indian Institute of Science Education and Research Tirupati Andhra Pradesh – 517507, India

Email of the corresponding author: thripatis@gmail.com

List of Content

		Page
The proposed pre-reactant complexes are formed via a		S2-S4
sequential two-body collision not three-body/four-body		
Isomerization of HCOO/HO-CO via one-water molecule	Figure SI_1	S5
Energy barrier calculations method used in this work	Table SI_1 and SI_2	S5-S6
Comparing the energy barriers with different DFT methods	Table SI_3	S7-S8
Effect of temperature on the transition states energy barriers	Table SI_4	S8-S9
Comparing the TSs energy barriers in the gas-phase and	Table SI_5	S9-S10
implicit CPCM model.		
Method calibration with different DFT methods on representative TS	Figure SI_2 to SI_4	S11-S12
The computed electronic energies, Gibbs free energies and enthalpies for the TSs	Table SI_6	S12
TSs energy barriers without ZPE and ZPE	Table SI_7 and SI_8	S13-S14
The imaginary frequencies of the TSs in different levels of theory	Table SI_9	S15
The <s**2> values of the TSs in different levels of theory</s**2>	Table SI_10 to SI_12	S15-S17
The electronic energies for all investigated compounds		S17

IRCs for all the TSs given in the main text	S18-S28
Cartesian Coordinates of TSs and Magnitude of Imaginary	S29-S36
Frequencies	

In this work, We do not propose a three/four body collision. Instead, We are proposing a sequence of two body collisions as illustrated below with an example:

We deal with three bodies as part of this work. Yet, clearly three body collisions are highly improbable in low density gas-phase interstellar chemistry. In this context, we state explicitly that, we do not propose that the pre-reactant complexes are formed via a three-body collision. Instead, they are formed in a sequential order involving two body collisions. The exact sequence is insignificant because all of them lead to the same pre-reactant complex, and no barrier is encountered in the process as shown below. Once this pre-reactant complex is formed, further molecular reorganization occurring lead to the TS, which results in the product complexes. However, regardless of which sequence of two-body collision happen, the pre-reactant complex is always stabilized significantly.

We demonstrate details of the energetics for all possible sequences of two-body collisions resulting in the same stabilized pre-reactant complex. The same level of theory used in the figures corresponding to Path 3 (Figures 9 and 11 in the main text) are used here too. All energies are provided in kcal/mol.

Points to note are that: the barrierless formation of the pre-reactant complex is always exothermic via this sequential 2-body reaction, and the sequential 2-body reaction paves the way for what looks like a three/four body reaction.

Such a sequential arrangement of 2 body reactions effectively leading to a 3 (or even 4 body in some cases) has been espoused previously by our research group (and others) in the context of metal-ion mediated interstellar chemistry. A prominent reference includes (kindly see the SI of this paper too): Thripati and Ramabhadran, *J. Phys. Chem. A.* 2021, 125, 3457-3472.

1a. $HCOOH + OH + H_2O \rightarrow HO-CO + 2H_2O$

a. HCOOH + OH \rightarrow HCOO+ H ₂ O	$\Delta E = 8.1$
$HCOO+H_2O \rightarrow HO-CO+H_2O$	$\Delta E = 10.0$ (Isomerization with one water)
$HCOOH + OH + H_2O \rightarrow HO-CO + 2H_2O$	$\Delta E = 18.1$

1b. $HCOOH + OH + H_2O + H_2O \rightarrow HO-CO + 3H_2O$

$\Delta E = 8.1$
$\Delta E = 2.9$
$\Delta E = 7.1$ (Isomerization with two water)
$\Delta \mathbf{E} = 18.1$

2. HOCO radical + $CH_2NH + H_2 \rightarrow NH_2CH_2COOH + H$ radical

a. HOCO + CH ₂ NH \rightarrow HOCO_CH ₂ NH	$\Delta E = 13.1$
$HOCO CH_2NH + H_2 \rightarrow NH_2CH_2COOH + H$	$\Delta E = 3.2$
$HOCO + CH_2NH + H_2 \longrightarrow NH_2CH_2COOH + H$	$\Delta E = 16.3$

b. HOCO + $H_2 \rightarrow HOCO_H_2$	$\Delta E = 0.4$
$HOCO_H_2 + CH_2NH \rightarrow NH_2CH_2COOH + H$	$\Delta E = 15.9$
$HOCO + H_2 + CH_2NH \longrightarrow NH_2CH_2COOH + H$	$\Delta E = 16.3$
c. $CH_2NH + H_2 \rightarrow CH_2NH_H_2$	$\Delta E = 0.7$
$CH_2NH_H_2 + HOCO \rightarrow NH_2CH_2COOH + H$	$\Delta E = 17.1$
$CH_2NH + H_2 + HOCO \rightarrow NH_2CH_2COOH + H$	$\Delta E = 16.3$

3. HOCO radical + CH_2NH + $NH_3 \rightarrow NH_2CH_2COOH$ + NH_2 radical

$\overline{\text{HOCO} + \text{CH}_2\text{NH} + \text{NH}_3 \longrightarrow \text{NH}_2\text{CH}_2\text{COOH} + \text{NH}_2}$	$\Delta E =$	23.4
$HOCO_CH_2NH + NH_3 \rightarrow NH_2CH_2COOH + NH_2$	$\Delta E =$	10.2
a. HOCO + CH ₂ NH \rightarrow HOCO_CH ₂ NH	$\Delta E =$	13.1

b. HOCO + NH ₃ \rightarrow HOCO_ NH ₃	$\Delta E = 15.2$
$HOCO_NH_3 + CH_2NH \rightarrow NH_2CH_2COOH + NH_2$	$\Delta E = 8.1$
$HOCO + NH_3 + CH_2NH \longrightarrow NH_2CH_2COOH + NH_2$	$\Delta E = 23.4$

c. $CH_2NH + NH_3 \rightarrow CH_2NH_NH_3$	$\Delta E =$	4.4
$CH_2NH_NH_3 + HOCO \rightarrow NH_2CH_2COOH + NH_2$	$\Delta E =$	19.0
$\overline{\text{CH}_2\text{NH} + \text{NH}_3 + \text{HOCO}} \rightarrow \text{NH}_2\text{CH}_2\text{COOH} + \text{NH}_2$	$\Delta E =$	23.4

Isomerization of HCOO/HO-CO via one-water molecule

Isomerization of HCOO/HO-CO via one-water molecule

Figure_SI_1: This a valid alternative mechanism for Figure 7(iii), reaction with one water molecule but the energy barrier is not nil.

Energy barrier calculations method used in this work:

Table_SI_1: Energy barrier = Transition State – (Infinity Separated Reactants)

The following method has been used for the main text.

Transition States	Infinity Separated Reactants
COCH ₂ NH ₂ _H ₂ O_TS-III (Figure 3)	COCH ₂ NH ₂ and H ₂ O
CH ₂ COOH_NH ₃ _TS-III (Figure 6)	CH ₂ COOH and NH ₃
NHCH ₂ COOH_H ₂ _TS-V (Figure 11)	NHCH ₂ COOH and H ₂
NHCH ₂ COOH_NH ₃ _TS-VI (Figure 11)	NHCH ₂ COOH and NH ₃
NH ₂ CHCOOH_H ₂ _VII (Figure 12)	NH ₂ CHCOOH and H ₂
NH ₂ CHCOOH_NH ₃ _VIII (Figure 12)	NH ₂ CHCOOH and NH ₃
HCO_CH ₂ NH_TS-I	HCO and CH ₂ NH
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	HCO and CH ₂ NH
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	HCO, CH ₂ NH and 2H2O

CH ₃ _CO ₂ _TS-I	CH ₃ and CO ₂
CH ₃ COO_CH ₂ COOH_TS-II	CH ₃ and CO ₂
CH ₃ COO_CH ₂ COOH_PR_TS	CH ₃ and CO ₂ and 2H2O
HCOOH_OH_TS-I	HCOOH and OH
HCOO_HOCO_TS-II	НСОО
HCOO_HOCO-PR-TS-I	$HCOO, 2H_2O$
HOCO_CH ₂ NH_TS-III	HOCO and CH ₂ NH
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	HOCO and CH ₂ NH
NHCH ₂ COOH_NH ₂ CHCOOH- PR-TS-II	HOCO and CH ₂ NH, and 2H ₂ O

Table_SI_2: Energy barrier = Transition State - Infinity Separated Reactants The following method used for the supporting information.

Transition States	Infinity Separated Reactants
COCH ₂ NH ₂ H ₂ O_TS-III	HCO and CH ₂ NH and H ₂ O
CH ₂ COOH_NH ₃ _TS-III	CH ₃ and CO ₂ and NH ₃
NHCH ₂ COOH_H ₂ _TS-V	HOCO and CH ₂ NH and H ₂
NHCH ₂ COOH_NH ₃ _TS-VI	HOCO and CH ₂ NH and NH ₃
NH ₂ CHCOOH_H ₂ _VII	HOCO and CH ₂ NH and H ₂
NH ₂ CHCOOH_NH ₃ _VIII	HOCO and CH ₂ NH and NH ₃

Comparing the energy barriers with different DFT methods on representative TSs.

To validate our computational technique for obtaining the energy barriers, we have carried out single-point-energy calculations on representative TSs, and the energy values are shown in Table 1. This is in addition to the validation of the TS geometries themselves (presented in the SI). Overall, we observe, the same qualitative trend (UB2-PLYP(D3-BJ), UM06-2x, and U ω B97X-D) in the electronic energy barrier heights was noticed with respect to the B3-LYP(D3-BJ) method, and the energy values can be seen in Table 1. The analysis of energy values in Table 1 clearly indicates that our method (B3-LYP(D3-BJ)) is acceptable with respect to the other three DFT methods used in the paper.

Table_SI_3. Comparing the energy barriers with different DFT methods on representative TSs at the UCCSD(T)(FC)/aug-cc-pVTZ//UB3-LYP(D3-BJ)/aug-cc-pVTZ, UCCSD(T)(FC)/aug-cc-pVTZ//D3-BJ)//aug-cc-pVTZ, UCCSD(T)(FC)/aug-cc-pVTZ//UM06-2x/aug-cc-pVTZ, and UCCSD(T)(FC)/aug-cc-pVTZ//U ω B97X-D/aug-cc-pVTZ levels of theories. Where $\Delta E^{\neq} = E_{TS}-E_{Infinity separated reactants}$. The energy values (included zero-point corrections) are provided in kcal/mol.

	B3-LYP	B2-PLYP	M06-2x	ωB97X-D
	ΔE^{\neq}	ΔE^{\neq}	ΔE^{\neq}	$\Delta \mathrm{E}^{ eq}$
Glycine Precursor 1				
HCO_CH ₂ NH_TS-I	7.5	7.7	7.7	7.4
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	22.5	22.6	22.4	22.6
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	1.3	1.3	0.59	1.3
COCH ₂ NH ₂ _H ₂ O_TS-III	16.0	16.1	16.3	16.2
Glycine Precursor 2				
CH ₃ _CO ₂ _TS-I	21.2	20.6	20.6	21.4
CH ₃ COO_CH ₂ COOH_TS-II	46.5	45.8	46.1	46.9
CH ₃ COO_CH ₂ COOH_PR_TS	35.2	35.2	34.9	35.6
CH ₂ COOH_NH ₃ _TS-III	61.9	61.4	61.5	62.7
Glycine Path-3				
HCOOH_OH_TS-I	1.5	1.4	1.4	1.6
HCOO_HOCO_TS-II	20.6	18.9	18.6	18.8
HCOO_HOCO-PR-TS-I	11.2	12.7	13.0	12.9

HOCO_CH ₂ NH_TS-III	0.14	0.52	0.35	0.42
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	9.0	9.3	9.3	9.3
NHCH ₂ COOH_NH ₂ CHCOOH- PR-TS-II	12.8	12.4	12.2	12.6
NHCH ₂ COOH_H ₂ _TS-V	19.7	19.4	19.7	19.4
NHCH ₂ COOH_NH ₃ _TS-VI	9.7	9.3	9.3	9.3
NH ₂ CHCOOH_H ₂ _VII	24.7	25.0	25.3	24.7
NH ₂ CHCOOH_NH ₃ _VIII	11.7	12.0	12.2	12.0

Effect of temperature on the transition states energy barriers:

To check if there is a prominent temperature effect on TSs, we have performed calculations at different temperatures, using the UB3-LYP(D3-BJ)/aug-cc-pVTZ method to optimize. The thermal corrections have been taken from optimized TSs geometries with various temperature conditions and added to the electronic energy values. The TSs energy barriers are shown in Table 2 with various temperatures.

Upon glancing at Table 2, it becomes clear that for all the pathways, the temperature effect is minimal. What is especially satisfying is that pathway 3 leading to glycine is feasible in the ISM, regardless of the temperature range. With regards to the first pathway, a barrier of \sim 7 kcal/mol is involved in the first step. We reckon this should be feasible only at temperatures higher than 200 K. The second pathway is definitely not feasible for the generation of interstellar glycine. Moreover, once glycine is formed, we also reckon that alanine and serine should be readily formed at all the temperature ranges studied.

Table_SI_4: Relative electronic energies computed at T = 20K, 50K, 100K, 200K, 298.15K, 400K, and 500K ($\Delta_{rel}E_{20}$, $\Delta_{rel}E_{100}$, $\Delta_{rel}E_{200}$, $\Delta_{rel}E_{298.15}$, $\Delta_{rel}E_{400}$, and $\Delta_{rel}E_{500}$, respectively) for the TSs shown in the energy profile of Figure 1-15. The UB3-LYP(D3-BJ)/aug-cc-pVTZ level of theory used. Where $\Delta E^{\neq} = E_{TS}$ -E Infinity separated reactants.

	ΔE^{\neq}						
	20K	50K	100K	200K	298.15K	400K	500K
Glycine Precursor 1							

HCO_CH ₂ NH_TS-I	7.4	7.2	7.1	6.9	7.0	7.3	7.6
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	22.4	22.2	22.0	21.7	21.6	21.7	22.0
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	1.0	0.5	0.06	0.62	0.45	0.22	1.22
COCH ₂ NH ₂ _H ₂ O_TS-III	15.8	15.4	15.0	14.4	14.3	14.6	15.1
Glycine Precursor 2							
CH ₃ _CO ₂ _TS-I	21.1	20.9	20.7	20.4	19.5	20.3	20.4
CH ₃ COO_CH ₂ COOH_TS-II	46.4	46.2	45.9	45.4	44.4	45.1	45.2
CH ₃ COO_CH ₂ COOH_PR_TS	34.9	34.4	33.8	33.0	32.1	33.2	33.9
CH ₂ COOH_NH ₃ _TS-III	61.7	61.3	60.8	60.1	59.0	59.8	60.1
Glycine Path-3							
HCOOH_OH_TS-I	1.8	1.9	2.2	2.4	2.4	2.3	2.1
HCOO_HOCO_TS-II	18.2	18.2	18.2	18.3	18.3	18.4	18.3
HCOO_HOCO-PR-TS-I	13.8	14.1	14.6	15.0	15.0	14.7	14.2
HOCO_CH ₂ NH_TS-III	0.30	0.13	0.07	0.18	0.09	0.11	0.38
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	9.2	9.0	8.8	8.5	8.6	8.8	9.2
NHCH ₂ COOH_NH ₂ CHCOOH- PR-TS-II	12.9	13.4	14.0	14.6	14.5	13.9	12.9
NHCH ₂ COOH_H ₂ _TS-V	19.6	19.9	20.3	20.8	20.9	20.7	20.3
NHCH ₂ COOH_NH ₃ _TS-VI	9.6	9.9	10.2	10.4	10.2	9.6	8.9
NH ₂ CHCOOH_H ₂ _TS_VII	24.6	24.9	25.3	25.6	25.6	25.3	24.9
NH ₂ CHCOOH_NH ₃ _TS_VIII	11.7	12.0	12.2	12.3	12.1	11.5	10.7

Comparing the TSs energy barriers in the gas-phase and implicit CPCM model.

Whereas the liquids do not exist in the ISM, it shall be an instructive idea to compare the barriers in the gas-phase so that one could make a rough comparison of the interstellar reactions vis-à-vis, how these reactions could happen terrestrially. To calculate the electronic energy barrier in the gas-phase, UB3-LYP(D3-BJ)/aug-cc-pVTZ level of theory used and in the solution phase (UB3-LYP(D3-BJ)(CPCM))/aug-cc-pVTZ level of theory used. Table 3 clearly indicates that all the paths the TSs electronic energy barriers are of similar magnitude in the gas-phase and in the solution phase with the CPCM⁷⁴ model. Hence it is interesting that, our conclusions that we draw for interstellar reactions may be extended to terrestrial chemistry too, insofar as the implicit solvent model is reliable, noting the limitation that the continuum modeling could miss out on capturing some weak local interactions.

Table_SI_5. Comparing the energy barriers in the gas-phase and CPCM model. The TSs optimized by using UB3-LYP(D3-BJ)/aug-cc-pVTZ level of theory for the gas-phase and (UB3-LYP(D3-BJ)(CPCM))/aug-cc-pVTZ level of theory for the solution phase. Where $\Delta E^{\neq} = E_{TS}-E_{Infinity separated reactants}$, the energy values (included zero-point corrections) are provided in kcal/mol.

	Gas-Phase (ΔE^{\neq})	CPCM(ΔE [≠])
Glycine Precursor 1		
HCO_CH ₂ NH_TS-I	4.0	4.6
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	20.7	21.4
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	8.7	4.4
COCH ₂ NH ₂ _H ₂ O_TS-III	15.5	17.9
Glycine Precursor 2	Gas-Phase(ΔE [≠])	CPCM(ΔE [≠])
CH ₃ _CO ₂ _TS-I	16.1	14.0
CH ₃ COO_CH ₂ COOH_TS-II	43.6	39.7
CH ₃ COO_CH ₂ COOH_PR_TS	20.4	19.8
CH ₂ COOH_NH ₃ _TS-III	38.2	27.6
Glycine Path-3	Gas-Phase(ΔE [≠])	CPCM(∆E [≠])
HCOOH_OH_TS-I	6.6	4.1
HCOO_HOCO_TS-II	21.1	22.0
HCOO_HOCO-PR-TS-I	15.3	Unable to locate TS
HOCO_CH ₂ NH_TS-III	4.8	2.3
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	7.2	8.3
NHCH ₂ COOH_NH ₂ CHCOOH- PR-TS-II	20.0	15.1
NHCH ₂ COOH_H ₂ _TS-V	12.0	10.2
NHCH ₂ COOH_NH ₃ _TS-VI	14.3	11.5
NH ₂ CHCOOH_H ₂ _VII	15.1	13.7
NH ₂ CHCOOH_NH ₃ _VIII	16.0	13.8

Figure SI_2: Optimized TSs of HCO/CH₂NH (UB3LYP). The geometry being calibrated with two different DFT methods. Throughout, the aug-cc-pVTZ basis set was used for the optimization. All the resulting optimized geometries are similar. The UCCSD(T)(FC)/aug-cc-pVTZ level of theory is used for the single-point energy calculation. The electronic energy barriers (including zero-point corrections) are given below the structure and the values given in kcal/mol.

Figure SI_3: Optimized TSs of CH_3/CO_2 (UB3LYP). The geometry being calibrated with two different DFT methods. Throughout, the aug-cc-pVTZ basis set was used for the optimization. All the resulting optimized geometries are similar. The UCCSD(T)(FC)/aug-cc-pVTZ level of

theory is used for the single-point energy calculation. The electronic energy barriers (including zero-point corrections) are given below the structure and the values given in kcal/mol.

Figure SI_4: Optimized TSs of COOH radical/CH₂NH (UB3LYP). The geometry being calibrated with two different DFT methods. Throughout, the aug-cc-pVTZ basis set was used for the optimization. All the resulting optimized geometries are similar. The UCCSD(T)(FC)/aug-cc-pVTZ level of theory is used for the single point energy calculation. The electronic energy barriers (including zero-point corrections) are given below the structure and the values given in kcal/mol.

Table_SI_6. The computed TSs electronic energies, Gibbs free energies and enthalpies.

Glycine Precursor 1	ΔΕ+ΖΡΕ	$\Delta E + \Delta G$	ΔΕ+ΔΗ
HCO_CH ₂ NH_TS-I	7.5	17.1	6.5
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	22.5	32.8	21.0
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	13.4	29.6	- 2.2
COCH ₂ NH ₂ _H ₂ O_TS-III	16.0	35.9	13.1
Glycine Precursor 2	ΔΕ+ΖΡΕ	$\Delta E + \Delta G$	ΔΕ+ΔΗ
CH ₃ _CO ₂ _TS-I	21.2	25.5	19.7
CH ₃ COO_CH ₂ COOH_TS-II	46.5	51.8	44.6
CH ₃ COO_CH ₂ COOH_PR_TS	19.2	58.4	31.1
CH ₂ COOH_NH ₃ _TS-III	61.9	76.9	58.6

Glycine Path-3	ΔΕ+ΖΡΕ	ΔΕ+ΔG	ΔΕ+ΔΗ
HCOOH_OH_TS-I	- 1.5	7.0	- 2.8
HCOO_HOCO_TS-II	20.6	18.4	18.3
HCOO_HOCO-PR-TS-I	- 11.2	4.6	- 16.2
HOCO_CH ₂ NH_TS-III	0.1	10.9	- 0.9
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	9.0	20.1	7.7
NHCH ₂ COOH_NH ₂ CHCOOH-PR-TS-II	- 12.8	16.8	- 16.6
NHCH ₂ COOH_H ₂ _TS-V	- 19.7	- 2.4	- 22.3
NHCH ₂ COOH_NH ₃ _TS-VI	- 9.7	9.8	- 11.7
NH ₂ CHCOOH_H ₂ _VII	- 24.7	- 7.4	- 27.1
NH ₂ CHCOOH_NH ₃ _VIII	- 11.7	7.3	- 13.5

Table_SI_7. TSs energy barriers without ZPE and ZPE

	Without	With ZPE
Glycine Precursor 1		
HCO CH ₂ NH Pre-reactant	3.8	2.6
HCO CH ₂ NH TS-I	5.3	7.5
HCOCH ₂ NH Int-I	15.4	12.1
NHCH ₂ CHO NH ₂ CH ₂ CO TS-II	21.0	22.5
COCH ₂ NH ₂ Int-II	26.9	21.9
COCH ₂ NH ₂ H ₂ O_Int-III	33.9	26.8
COCH ₂ NH ₂ H ₂ O TS-III	9.9	16.0
Product (O-Protonated Glycine)	35.8	25.9
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_Reactant	30.9	23.0
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	2.6	1.3
COCH ₂ NH ₂ _PR_Product	45.0	35.6
Glycine Precursor 2		
CH ₃ _CO ₂ _Pre-reactant	1.1	0.2
CH ₃ _CO ₂ _TS-I	17.7	21.2
CH ₃ _CO ₂ _Int-I	11.2	15.9
CH ₃ COO_CH ₂ COOH_TS-II	44.8	46.5
CH ₂ COOH_Int-II	11.0	15.2
CH ₂ COOH_NH ₃ _Int-III	5.0	1.7
CH ₂ COOH_NH ₃ _TS-III	53.6	61.9
Product (O-Protonated Glycine)	9.8	19.5
CH ₃ COO_CH ₂ COOH_Pre-Reactant	12.3	3.6

CH ₃ COO_CH ₂ COOH_PR_TS	30.5	35.2
CH ₃ COO_CH ₂ COOH_PR_Product	13.5	4.1

Table_SI_8. TSs energy barriers without ZPE and ZPE

	Without ZPE	With ZPE
Glycine Path-3		
HCOOH_OH Pre-Reactant	10.4	8.2
HCOOH_OH TS-I	1.6	1.5
HCOO_H ₂ O_Int-I	10.9	9.0
HCOO_TS-II	21.5	0.9
HOCO_Int-III	16.5	3.1
HCOO_PR-PR-I	18.1	12.0
HCOO_PR_TS-I	15.7	11.2
HOCO_PR Product-I	35.7	28.0
HOCO_CH ₂ NH_Int-IV	12.8	11.2

HOCO_CH ₂ NH TS-III	1.4	0.14
NHCH ₂ COOH_Int-V	24.1	21.5
NHCH ₂ COOH_NH ₂ CHCOOH TS-IV	8.4	9.0
NH ₂ CHCOOH_Int-VI	44.8	41.2
NHCH ₂ COOH PR_ Reactant-II	59.1	52.3
NHCH ₂ COOH_NH ₂ CHCOOH PR_TS-II	16.7	12.8
NH ₂ CHCOOH_PR_Pd-II	40.9	33.2
NHCH ₂ COOH_H ₂ _Int-VII	37.7	34.1
NHCH ₂ COOH_H ₂ _TS-V	23.6	19.7
NH ₂ CH ₂ COOH_H_Int-VIII	35.8	29.9
NHCH ₂ COOH_NH ₃ Int-IX	29.3	25.6
NHCH ₂ COOH_NH ₃ TS-VI	11.4	9.7
NH ₂ CH ₂ COOH_NH ₂ _Int-X	23.9	20.1
NH ₂ CHCOOH_H ₂ _Int-XI	57.5	53.1
NH ₂ CHCOOH_H ₂ TS-VII	29.2	24.7
NH ₂ CH ₂ COOH_H_Int-XII	35.8	29.9
NH ₂ CHCOOH_NH ₃ _Int-XIII	51.9	46.8
NH ₂ CHCOOH_NH ₃ _TS-VIII	14.2	11.7
NH ₂ CH ₂ COOH_NH ₂ _Int-XIV	21.9	18.5

Table_SI_9. The imaginary frequencies of the TSs in different levels of theory in computed aug-cc-pVTZ basis-set using harmonic analysis.

	UB3-LYP	UB2-PLYP	UM06-2x	UωB97X-D
Glycine Precursor 1				
HCO_CH ₂ NH_TS-I	<i>i</i> 385.08 cm ⁻¹	<i>i</i> 521.11 cm ⁻¹	<i>i</i> 429.89 cm ⁻¹	<i>i</i> 471.96 cm ⁻¹
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	<i>i</i> 1968.32 cm ⁻¹	<i>i</i> 2175.92 cm ⁻¹	<i>i</i> 2119.86 cm ⁻¹	<i>i</i> 2123.79 cm ⁻¹
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	<i>i</i> 1170.66 cm ⁻¹	<i>i</i> 1121.39 cm ⁻¹	<i>i</i> 1401.44 cm ⁻¹	<i>i</i> 1228.74 cm ⁻¹
COCH ₂ NH ₂ H ₂ O_TS-III	<i>i</i> 1695.55 cm ⁻¹	<i>i</i> 1701.28 cm ⁻¹	<i>i</i> 1544.76 cm ⁻¹	<i>i</i> 1723.92 cm ⁻¹
Glycine Precursor 2				
CH ₃ _CO ₂ _TS-I	<i>i</i> 108.70 cm ⁻¹	<i>i</i> 649.06 cm ⁻¹	<i>i</i> 312.07 cm ⁻¹	<i>i</i> 253.82 cm ⁻¹
CH ₃ COO_CH ₂ COOH_TS-II	<i>i</i> 2022.58cm ⁻¹	<i>i</i> 2022.87 cm ⁻¹	<i>i</i> 1959.54 cm ⁻¹	<i>i</i> 2025.76 cm ⁻¹
CH ₃ COO_CH ₂ COOH_PR_TS	<i>i</i> 1349.55 cm ⁻¹	<i>i</i> 520.47cm ⁻¹	<i>i</i> 1291.2 cm ⁻¹	<i>i</i> 1315.06 cm ⁻¹
CH₂COOH_NH₃_TS-III	<i>i</i> 531.97 cm ⁻¹	<i>i</i> 587.60cm ⁻¹	<i>i</i> 627.54 cm ⁻¹	<i>i</i> 602.57 cm ⁻¹
Glycine Path-3				
Path-3	B3-LYP	B2-PLYP	M06-2x	ωB97X-D
HCOOH_OH_TS-I	<i>i</i> 1383.44 cm ⁻¹	<i>i</i> 1547.9258 cm ⁻¹	<i>i</i> 1445.15 cm ⁻¹	<i>i</i> 1496.16 cm ⁻¹
HCOO_HOCO_TS-II	<i>i</i> 1833.63 cm ⁻¹	<i>i</i> 1798.2241 cm ⁻¹	<i>i</i> 1722.05 cm ⁻¹	<i>i</i> 2123.79 cm ⁻¹
HCOO_HOCO-PR-TS-I	<i>i</i> 641.05 cm ⁻¹	<i>i</i> 613.4172 cm ⁻¹	<i>i</i> 346.08 cm ⁻¹	<i>i</i> 634.056 cm ⁻¹
HOCO_CH ₂ NH_TS-III	<i>i</i> 215.89 cm ⁻¹	<i>i</i> 267.5005 cm ⁻¹	<i>i</i> 259.213 cm ⁻¹	<i>i</i> 250.671 cm ⁻¹
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	<i>i</i> 1925.00 cm ⁻¹	<i>i</i> 1957.365 cm ⁻¹	<i>i</i> 1872.09 cm ⁻¹	<i>i</i> 1941.09 cm ⁻¹
NHCH ₂ COOH_NH ₂ CHCOOH- PR-TS-II	<i>i</i> 1146.10 cm ⁻¹	<i>i</i> 1138.2513 cm ⁻¹	<i>i</i> 1140.47 cm ⁻¹	<i>i</i> 1171.28 cm ⁻¹
NHCH ₂ COOH_H ₂ _TS-V	<i>i</i> 1336.06 cm ⁻¹	<i>i</i> 1533.2631 cm ⁻¹	<i>i</i> 1830.31 cm ⁻¹	<i>i</i> 1511.64 cm ⁻¹
NHCH ₂ COOH_NH ₃ _TS-VI	<i>i</i> 1693.51 cm ⁻¹	<i>i</i> 1659.2477 cm ⁻¹	<i>i</i> 1704.51 cm ⁻¹	<i>i</i> 1842.82 cm ⁻¹
NH ₂ CHCOOH_H ₂ _VII	<i>i</i> 617.60 cm ⁻¹	<i>i</i> 1213.8028 cm ⁻¹	<i>i</i> 1577.15 cm ⁻¹	<i>i</i> 1080.53 cm ⁻¹
NH ₂ CHCOOH_NH ₃ _VIII	<i>i</i> 357.73 cm ⁻¹	<i>i</i> 897.3583 cm ⁻¹	<i>i</i> 1160.19 cm ⁻¹	<i>i</i> 918.16 cm ⁻¹

Note: NP- Not Performed Calculation

Table_SI_10. The <S**2> values of the TSs in different levels of theory in computed aug-cc-pVTZ basis-set.

	UB3-LYP	UB2-PLYP	UM06-2x	UωB97X-D
	<s**2></s**2>	<s**2></s**2>	<s**2></s**2>	<s**2></s**2>
Glycine Precursor 1				
HCO_CH ₂ NH_TS-I	0.7666	0.8181	0.7695	0.7729
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	0.7643	0.784	0.7661	0.7664
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	0.7578	0.7723	0.7603	0.7599
COCH ₂ NH ₂ _H ₂ O_TS-III	0.7534	0.7566	0.7543	0.7537

Glycine Precursor 2				
CH ₃ _CO ₂ _TS-I	0.7559	0.7601	0.7581	0.7573
CH ₃ COO_CH ₂ COOH_TS-II	0.7592	0.773	0.7608	0.7601
CH ₃ COO_CH ₂ COOH_PR_TS	0.758	0.7668	0.7587	0.7578
CH ₂ COOH_NH ₃ _TS-III	0.7539	0.7576	0.7542	0.7542
Glycine Path-3				
HCOOH_OH_TS-I	0.7568	0.7629	0.7598	0.7573
HCOO_HOCO_TS-II	0.754	0.7622	0.7556	0.7549
HCOO_HOCO-PR-TS-I	0.7528	0.7571	0.7539	0.7533
HOCO_CH₂NH_TS-III	0.7644	0.8037	0.7669	0.7697
NHCH ₂ COOH_NH ₂ CHCOOH_TS-IV	0.7585	0.7715	0.7588	0.7591
NHCH ₂ COOH_NH ₂ CHCOOH- PR-TS-II	0.7544	0.7603	0.7549	0.7551
NHCH ₂ COOH_H ₂ _TS-V	0.7586	0.7695	0.76	0.7588
NHCH ₂ COOH_NH ₃ _TS-VI	0.7582	0.7705	0.7606	0.7595
NH ₂ CHCOOH_H ₂ _VII	0.7555	0.7634	0.759	0.7571
NH ₂ CHCOOH_NH ₃ _VIII	0.7569	0.7648	0.7606	0.7591

Table_SI_11. The electronic energies for all investigated compounds (in Hartrees)

	Zero-point	UCCSD(T)	UCCSD(T)+
	correction		Zero-point
	(B3-LYP(D3-BJ))		correction
Glycine Precursor 1			
HCO_CH ₂ NH_Pre-reactant	0.054676	-208.1787908	-208.1241148
HCO_CH ₂ NH_TS-I	0.056308	-208.1641038	-208.1077958
HCOCH ₂ NH_Int-I	0.058084	-208.1972577	-208.1391737
NHCH ₂ CHO_NH ₂ CH ₂ CO_TS-II	0.055094	-208.1389887	-208.0838947
COCH ₂ NH ₂ _Int-II	0.060667	-208.2155074	-208.1548404
COCH ₂ NH ₂ _H ₂ O_Int-III	0.08519	-284.5689343	-284.4837443
COCH ₂ NH ₂ H ₂ O_TS-III	0.083821	-284.4991237	-284.4153027
Product (O-Protonated Glycine)	0.089726	-284.5719939	-284.4822679
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_Reactant	0.107775	-360.9064967	-360.7987217
NHCH ₂ CHO_NH ₂ CH ₂ CO_PR_TS	0.101668	-360.8614704	-360.7598024
COCH ₂ NH ₂ PR_Product	0.110188	-360.9289479	-360.8187599
Glycine Precursor 2			
CH ₃ _CO ₂ _Pre-reactant	0.042078	-228.1059817	-228.0639037
CH ₃ _CO ₂ _TS-I	0.045304	-228.0757276	-228.0304236
CH ₃ _CO ₂ _Int-I	0.047427	-228.0862	-228.038773
CH ₃ COO_CH ₂ COOH_TS-II	0.042525	-228.0326334	-227.9901084
CH ₂ COOH_Int-II	0.046549	-228.0864435	-228.0398945

CH ₂ COOH_NH ₃ _Int-III	0.084773	-284.5926142	-284.5078412
CH ₂ COOH_NH ₃ _TS-III	0.087222	-284.4991237	-284.4119017
Product (O-Protonated Glycine)	0.089483	-284.5689671	-284.4794841
CH ₃ COO_CH ₂ COOH_Pre-Reactant	0.096148	-380.8083558	-380.7122078
CH ₃ COO_CH ₂ COOH_PR_TS	0.08991	-380.7400885	-380.6501785
CH ₃ COO_CH ₂ COOH_PR_Product	0.097336	-380.8103664	-380.7130304

Table_SI_12. The electronic energies for all investigated compounds (in Hartrees)

	Zero-point	UCCSD(T)	UCCSD(T)+
	correction		Zero-point
	(B3-LYP(D3-BJ))		correction
Glycine Path-3			
HCOOH_OH Pre-Reactant	0.045219	-265.1731921	-265.1279731
HCOOH OH TS-I	0.041888	-265.1591386	-265.1172506
HCOO_H ₂ O_Int-I	0.044766	-265.1739461	-265.1291801
HCOO Int-II	0.015809	-188.8254476	-188.8096386
HCOO_TS-II	0.014357	-188.7911252	-188.7767682
HOCO_Int-III	0.020899	-188.8517475	-188.8308485
HCOO_PR-PR-I	0.068053	-341.5389623	-341.4709093
HCOO_PR_TS-I	0.065457	-341.535172	-341.469715
HOCO_PR Product-I	0.070605	-341.5670242	-341.4964192
HOCO_CH ₂ NH_Int-IV	0.063187	-283.3524557	-283.2892687
HOCO_CH ₂ NH TS-III	0.063263	-283.3343689	-283.2711059
NHCH ₂ COOH_Int-V	0.064804	-283.3704589	-283.3056549
NHCH ₂ COOH NH ₂ CHCOOH TS-IV	0.061578	-283.3184916	-283.2569136
NH ₂ CHCOOH Int-VI	0.066409	-283.4035227	-283.3371137
NHCH ₂ COOH PR_ Reactant-II	0.115317	-436.1109081	-435.9955911
NHCH ₂ COOH_NH ₂ CHCOOH PR_TS-II	0.109269	-436.0432461	-435.9339771
NH ₂ CHCOOH_PR_Pd-II	0.113951	-436.0818359	-435.9678849
NHCH ₂ COOH_H ₂ _Int-VII	0.076438	-284.5458601	-284.4694221
NHCH ₂ COOH_H ₂ _TS-V	0.076896	-284.5234278	-284.4465318
NH ₂ CH ₂ COOH_H_Int-VIII	0.080132	-284.5429577	-284.4628257
NHCH ₂ COOH_NH ₃ Int-IX	0.100608	-339.8592269	-339.7586189
NHCH ₂ COOH_NH ₃ TS-VI	0.09765	-339.8308222	-339.7331722
NH ₂ CH ₂ COOH_NH ₂ _Int-X	0.100906	-339.850688	-339.749782
NH ₂ CHCOOH_H ₂ _Int-XI	0.077654	-284.5774216	-284.4997676
NH ₂ CHCOOH_H ₂ TS-VII	0.077918	-284.5323601	-284.4544421
NH ₂ CH ₂ COOH_H_Int-XII	0.080132	-284.5429577	-284.4628257
NH ₂ CHCOOH_NH ₃ _Int-XIII	0.103028	-339.8953652	-339.7923372
NH ₂ CHCOOH_NH ₃ _TS-VIII	0.098772	-339.8352572	-339.7364852
NH ₂ CH ₂ COOH NH ₂ Int-XIV	0.100183	-339.8474789	-339.7472959

IRCs for the glycine precursors 1, glycine precursor 2, glycine path 3.

The ub3lyp/aug-cc-pvtz irc=(calcfc,maxpoints=30, stepsize=5) level of theory used.

NHCH₂CHO_NH₂CH₂CO_TS-II

COCH₂NH₂H2O_TS-III

CH₃CO₂TS-I

	Mode #	Frequency	Infrared	
. 1	1	-109.70	22 1210	
	1	100.70	33.1210	
2	2	55.76	0.0336	
3	3	283.86	6.7274	
4	4	608.26	43.1799	
5	5	613.34	6.3408	
6	6	813.32	23,4520	
Rep Disp	eats: Endles	Start Animation Frames per tude:	Cyde: 48	Save Movie *
] SH] SH] M	iow Displacemen iow Dipole Deriv anual Displacem	nt Vectors vative Unit Vector ent:	Scale:	0.11 Save Structure.

Glycine Precursor 2

1.73 TS

The IRC calculation doesn't work, So, slightly moved the structure in the direction of imaginary vibration and optimized

Glycine Precursor 2 , 1.22 1.17 1.17 1.53 1.31 1.1 PR_TS Total Energy along IRC -381.415 (Hartree) -381.42 -381.425 rgy 1.52 1.18 -381.435 1.69 1.51 1.46 1.52 H H 1.60 -381.44 H -2 -1.5 -1 -0.5 0 0.5 1 1.5 Intrinsic Reaction Coordinate 2 PR_Pre_Reactant PR_Product $CH_{3}COO_CH_{2}COOH_PR_TS$

S24

Glycine Path 3

HCOO_HOCO-PR-TS-I

Glycine Path 3

L) G	2:M23:V1 - Vib	rations			-		×
Har	monic						
	Mode #	Frequency	Infrared				^
1		-1146.10	1364.0713				
2	2	72.42	1.6033				
3	3	82.57	0.3208				
4	4	102.59	3.3632				
5	5	217.58	45.4798				
6	6	244.13	15,9875				~
Anin	nate Vibration:						
	(Start Animation]	Save Movie	*		
Rep	eats: Endles	s 🔻 Frames per	Cyde: 48	Frame Delay	(msec):	20	٥
Disp	lacement Ampli	tude:					
	Distant		Carlas				
sn	ow Displacement	nt vectors	Scale:				
L) Sh	iow Dipole Deriv	ative Unit Vector	Scale:				
Ma	anual Displacem	ent:		-0.40	Sav	e Struct.	re
Scale	frequencies?	Don't scale 🔻	1.0000				
	Ck	Cance	al Spectra	Help	_		
	- CR	Carlo	a opecua	nep			

The IRC calculation doesn't work, So, slightly moved the structure in the direction of imaginary vibration and optimized

NHCH₂COOH_NH₂CHCOOH-PR-TS-II

The IRC calculation doesn't work, So, slightly moved the structure in the direction of imaginary vibration and optimized

NHCH₂COOH_NH₂CHCOOH-PR-TS-II

Glycine Path 3

NHCH₂COOH_H₂_TS-V

NHCH₂COOH_NH₃_TS-VI

NH₂CHCOOH_H₂_VII

Cartesian Coordinates of TSs and Magnitude of Imaginary Frequencies

The order of paths in which the coordinates are presented here is the same as that given in the main text. The same level of theory as described in the main text is used.

Glycine Precursors 1 HCO_CH₂NH_TS-I Imaginary Frequency = 385.0862i

02

С	0.94989500	0.13064700	0.45201400
0	1.76164200	-0.16392100	-0.34440600
С	-1.05323100	0.60124400	-0.15596800
Н	-0.75872100	0.92960100	-1.15344900
Ν	-1.55628000	-0.56657800	0.10921900
Н	-1.48238800	-1.18406200	-0.69923500
Н	0.84467500	-0.25068600	1.48708000
Н	-1.18271700	1.39121100	0.58003400

HCOCH₂NH_TS-II

Imaginary Frequency = 1968.3246i

0 2			
С	-0.59082000	-0.09490500	-0.21501800
0	-1.72812100	-0.12883800	0.11436700
С	0.62007200	0.73526200	0.01136500
Η	0.61277200	1.29099000	0.94837600
Ν	1.48370200	-0.50295100	-0.03293400
Н	1.51229100	-0.88875500	0.91467400
Н	0.26897400	-1.09325700	-0.51092200
Η	0.86951000	1.40024300	-0.81460000

HCOCH₂NH_PR_TS

Imaginary Frequency = 1170.6700i

02

С	-0.85697600	-1.05050400	0.57952600
Н	-1.80322600	-1.58404900	0.62975700
Ν	0.08010600	-1.56843600	-0.27948000
Н	-0.26953400	-2.02989400	-1.10701100
Н	-0.44234000	-0.82995800	1.56333500
0	1.10815300	1.69501500	0.20159200
Н	1.33614200	2.36959900	-0.44507100
Н	-0.33676900	1.18469300	0.08492700
0	-2.38738200	0.70540700	-0.34162900
Н	1.75332900	0.75815000	0.01156900
0	2.28435100	-0.38140600	-0.20569700
Н	1.14577200	-1.14299000	-0.24664200
Н	2.93208800	-0.60257500	0.46722000

COCH₂NH₂_H₂O_TS-III Imaginary Frequency = 1695.5538i

02			
С	0.89438500	-0.55256000	0.32596500
Η	1.06156100	-1.62076600	0.13845900
Ν	1.94061800	0.33540200	-0.17098300
Η	2.12859000	0.15381700	-1.14910500
С	-0.42386800	-0.24071600	-0.30528700
Ο	-1.50670300	-0.91548700	-0.12204300
Η	2.80252900	0.19654700	0.33963700
Η	0.81029800	-0.42174700	1.41057000
Ο	-1.03157900	1.16323900	0.21043900
Η	-1.87455600	0.31901600	0.13982300
Н	-1.02958600	1.80295500	-0.51374100

Glycine Precursors 2

CH₃_CO₂_TS-I Imaginary Frequency = 108.7065i

02			
С	-0.33852400	0.02810600	0.00001200
Ο	-0.51809700	1.23588900	0.00000200
Ο	-0.88860600	-1.04346600	0.00000200
С	1.38803700	-0.17086800	-0.00000200
Η	1.85461200	0.80287100	0.00009900

Н	1.55086500	-0.74271900	-0.90583200
Н	1.55106800	-0.74296900	0.90563600

CH₃CO₂_TS-II Imaginary Frequency = 2022.5880i

02 С 0.24408800 -0.06804700 -0.00000100 0 -0.17232400 1.21818100 0.00000100 0 0.00000000 1.36759100 -0.46877200 С -1.11753200 -0.67730300 0.00000000 Η -1.48895800 -1.09980600 -0.92598300 Η -1.34357200 0.67645400 0.0000800 -1.48895000 -1.09983000 0.92597500 Η

CH₃CO₂_PR_TS-III

Imaginary Frequency = 1349.5589i

Λ	2
υ	2

С	1.26775400	-0.10319200	-0.00915000
0	0.65214000	-1.20572800	-0.00535000
0	2.49595700	0.02834900	-0.10532200
С	0.60736800	1.25460500	0.14544000
Н	0.75630700	1.62202800	1.16002900
Н	-2.02028800	-0.15449700	-0.00889000
Н	1.00909900	1.97343000	-0.56466500
0	-1.75221600	-1.22878200	0.15543900
Н	-0.57490200	-1.22508200	0.07694900
Н	-2.13335200	-1.78135100	-0.53412200
0	-2.06527900	1.13910900	-0.22461400
Н	-0.54413100	1.17658800	-0.05857300
Н	-2.38828500	1.61682600	0.55031400

CH₂COOH_NH₃_TS-III Imaginary Frequency = 531.9789i

02			
С	0.61546600	-0.75020400	0.52693600
Η	0.55568900	-1.79108700	0.22523100
С	-0.61995300	0.04508100	0.37459600

0	-0.42341200	1.30396000	0.18465800
0	-1.61367900	-0.61407600	-0.37168000
Н	-2.18458100	0.08913200	-0.70541700
Н	1.08219300	-0.63753300	1.50169900
Ν	1.64843200	0.03931900	-0.43918600
Н	2.60188100	0.12048100	-0.10081700
Н	1.08627200	0.96370500	-0.36743200
Н	1.64317800	-0.30826500	-1.39198000

Glycine Path-3

HCOOH_OH_TS-I Imaginary Frequency = 1383.4455i

02

С	-1.01075900	0.10573400	-0.00125800
0	-0.29551500	1.12786400	-0.01334500
0	-0.56887100	-1.08111300	0.02204800
Н	0.59174100	-0.83133100	0.01236600
0	1.58714800	-0.09437500	-0.10156600
Н	1.78960300	0.33193400	0.74389100
Н	-2.09888600	0.24598000	-0.00580500

HCOO_TS-II

Imaginary Frequency = 1833.6259i

02

С	0.07887300	0.23756000	0.00003800
0	1.20281400	-0.10025300	-0.00003700
0	-1.13724900	-0.20640200	-0.00001500
Н	-0.99776400	1.02788300	0.00018600

HCOO_PR_TS

Imaginary \overline{F} requency = 641.0529i

02			
С	1.15579400	-0.08214900	-0.01129600
0	2.28399800	0.33514800	-0.02129100
0	0.55887300	-1.17897500	0.04035100
Η	-0.93166100	-1.09533500	0.06354200
0	-1.91314800	-0.74931900	0.08194200

Η	-0.01823300	1.06094500	-0.07376700
Η	-2.38101300	-1.10990200	-0.67838200
0	-1.03476100	1.48242600	-0.09194500
Η	-1.14583500	2.02982700	0.69719100
Н	-1.61772500	0.49312700	-0.01326200

COOH_CH₂NH_TS-III

Imaginary Frequency = 215.8982i

02

С	-0.87312600	-0.05902600	-0.02434000
0	-1.88531600	-0.65953700	-0.11157900
С	1.25185300	-0.83461600	0.16487500
Н	1.22955600	-1.67021000	-0.53237900
N	1.85099900	0.29473700	-0.06765000
Н	2.20547600	0.33913500	-1.02120400
Н	0.96130900	-1.06419600	1.18655000
0	-0.61610700	1.21146500	0.09349900
Н	0.38568600	1.27853700	0.14200900

$NHCH_2COOH_NH_2CHCOOH_TS\text{-}IV$

Imaginary Frequency = 1925.00i

02			
С	0.75234300	-0.66371300	0.01831900
Η	0.73928100	-1.72414300	-0.19069000
Ν	2.01051000	-0.00048000	-0.11316600
Η	1.51210200	-0.46988200	0.99036000
С	-0.50214700	0.09421400	-0.00184000
0	-0.56575800	1.30436500	0.01296700
0	-1.59160100	-0.71066100	-0.01997000
Η	-2.37058400	-0.13591700	-0.01032400
Η	1.80332800	1.00066000	-0.04003300

NHCH₂COOH_NH₂CHCOOH- PR-TS-II Imaginary Frequency = 1146.10i

02

С	0.24115500	-0.19961500	-0.57600800
Н	0.11712500	0.25057400	-1.55918800

Ν	-0.55376700	-1.27731500	-0.29326000
Н	-0.55132200	0.86784700	0.12844200
С	1.58281000	-0.12055300	0.00187400
0	2.00849700	-0.82595800	0.89307100
0	2.32425600	0.89221100	-0.53460300
Н	3.17028100	0.88891300	-0.06548800
Н	-0.14084500	-1.81234400	0.46990200
0	-1.46582000	1.46071300	0.57523600
Н	-2.25287700	0.75118100	0.30297800
Н	-1.57604300	2.28436600	0.08455500
0	-2.90790200	-0.35470300	-0.18308300
Н	-3.49592400	-0.80727700	0.42860000
Н	-2.01006000	-0.93915200	-0.29715700

NHCH₂COOH_H₂_TS-V Imaginary Frequency = 1336.06i

02			
С	-0.64875800	-0.75050900	-0.18376600
Η	-0.65029200	-1.52436800	0.58427200
Ν	-1.90143300	-0.02739400	-0.18086000
Η	-1.71073500	0.92896500	-0.49026400
Η	-0.55318900	-1.27989400	-1.13986900
С	0.59162400	0.10795800	-0.03389800
0	0.61056000	1.30855300	-0.10902700
0	1.69533900	-0.64225200	0.16558400
Η	2.45235300	-0.04019200	0.22218700
Η	-2.19544900	0.18424400	1.02514800
Η	-2.13705100	0.44790200	1.91807200

NHCH₂COOH_NH₃_TS-VI

Imaginary Frequency = 1693.51i

02			
С	0.12835800	1.10277800	-0.15089600
Η	0.04035300	1.24019500	-1.23021100
Ν	-1.18052600	1.11360100	0.45342300
Н	-1.11444200	0.72975500	1.39479600
Н	0.70964200	1.95910100	0.21211800
С	0.96860900	-0.13696700	0.09931500

0	0.64593200	-1.07674000	0.77979400
0	2.15550800	-0.06264500	-0.53983200
Н	2.64545800	-0.87475800	-0.34244300
Ν	-2.33750000	-0.77492800	-0.61320100
Н	-1.87357400	0.32874300	-0.18055600
Н	-1.64735300	-1.48223300	-0.35635200
Н	-3.12721700	-0.95129600	0.01088900

NH₂CHCOOH_H₂_VII

Imaginary Frequency = 617.60i

02

-			
С	0.72856300	-0.63464600	-0.09752900
Ν	1.91768500	0.15175300	-0.05332400
Н	0.67051900	-1.34532300	0.82724100
С	-0.55636900	0.14724600	-0.02276800
0	-0.63280300	1.32638700	0.21399800
0	-1.63463600	-0.64542400	-0.20066900
Н	-2.42296900	-0.09511000	-0.08359000
Н	1.73872800	1.07153200	0.32831600
Н	2.36616900	0.24290900	-0.95199200
Н	0.61855700	-2.13562600	1.80778800
Н	0.71154400	-1.32396100	-0.93934800

NH₂CHCOOH_NH₃_VIII Imaginary Frequency = 357.73i

02			
С	0.31375900	0.50395000	-0.59760000
Н	0.33468400	0.35816600	-1.67702500
Ν	0.43179900	1.87502100	-0.22883300
С	-0.88962500	-0.13490700	0.01741700
Ο	-1.46043600	0.27028900	0.99923300
Ο	-1.23775900	-1.27617800	-0.61948900
Η	-1.98131300	-1.65959000	-0.13171900
Η	0.15735800	2.03298500	0.73180200
Η	1.35048300	2.25376300	-0.40563300
Ν	2.39082800	-1.00933700	0.36970800
Η	1.98656000	-1.18993400	1.29440100
Η	2.21196800	-1.87828400	-0.14359000

Η