Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting information

Pd-catalysed [3+2]-Cycloaddition towards the generation of bioactive bisheterocycles/Identification of COX-2 inhibitors via *in silico* analysis

Elagandhula Sathish,^a Arshad J. Ansari,^{ab} Gaurav Joshi,^c Akansha Pandit,^a Monika Shukla,^d Neha Kumari,^e Ashoke Sharon,^e Ved Prakash Verma,^{d*} Devesh M. Sawant^{a*}

^aDepartment of Pharmacy, Central university of Rajasthan, Bandarsindri, NH-, Ajmer-305801, Rajasthan, India

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar-140306, Punjab, India

^cSchool of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India.

^dDepartment of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India

^eDepartment of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, India-835215

Table of contents

S. No.	Contents	Page No.
1.	General Considerations	1
2.	Experimental section	2
3.	Crystallographic data	2
4.	Spectral data of synthesized compounds	4
5.	Molecular docking results	7
6.	Reference	9
7.	¹ H, ¹³ C NMR and HRMS spectra of all compounds	9

1. General considerations:

All the reactions were carried out in flame or oven dried glassware using anhydrous solvents unless otherwise indicated. All the reagents and some solvents such as anhyd. CH₃CN, anhyd. DMF were commercially procured from Aldrich, TCI and Alfa Aesar and used without further purification. Other solvents like THF and Toluene were freshly dried and distilled over Na/benzophenone and kept under an inert atmosphere and dichloromethane (DCM) (over P₂O₅) was freshly distilled before use. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 (400 MHz) spectrophotometer operating at 400 MHz for ¹H and 101 MHz for ¹³C experiments as solutions in CDCl₃; Spectra were recorded at 295 K in CDCl₃. Chemical shifts were calibrated to the residual proton and carbon resonance of the solvent, CDCl₃ (¹H δ 7.269; ¹³C δ 77.0). Spin multiplicities are described as s (singlet), bs (broad singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), sept (septet) and m (multiplet). Peaks at 1.26 ppm and 1.56 ppm in ¹H NMR spectra correspond to grease and moisture respectively whereas peak at 29.67 ppm in ¹³C NMR spectra corresponds to grease. Coupling constant (*J*) values are reported in hertz (Hz). Analytical TLC was performed using 2 x 4 cm plate coated with a 0.25 mm thickness of silica gel (60_{F-254} Merck), and visualization was accomplished with UV light or staining the plates with ethanolic p-anisaldehyde solution/ phosphomolybdic acid solution/ ninhydrin solution and heating to 120 °C. Mass spectra were recorded on Water Q-ToF-Micro Micromass. Vinyl ethylene carbonates¹ and *N*-hydroxymoyl chloride² were prepared according to reported literature.

2. Experimental Section:

2.1. General procedure for the [3+2] cycloaddition of Vinyl ethylene carbonate and *N*-hydroxymoyl chloride for the synthesis of the 3,5-substituted isoxazoles:

Vinyl ethylene carbonate (0.2 mmol) and *N*-hydroxymoyl chloride (0.24 mmol) were added into a clean oven dried reaction vial, dissolved in DMF and the mixture of contents was purged with nitrogen gas for 5 min. NaCl and $Pd_2(dba)_3$.CHCl₃ were added after 5 min and stirred at room temperature under inert atmosphere. Reaction progress was monitored on TLC. The reaction mixture was extracted with (3 X 50 ml) ethyl acetate and aqueous NH₄Cl solution further the organic layer was washed with cold water (50 ml) for three times. The organic layer was concentrated under reduced pressure and purified by passing through column.

2.2. Competitive experiment:

Competitive experiment was carried between electron donating methoxy substituted *N*-hydroxymoyl chlorides and electron withdrawing nitro substituted *N*-hydroxymoyl chlorides under standard reaction conditions with 1 equivalents of vinyl ethylene carbonate.

2.3. Radical trap experiment:

Radical trap experiment was carried by reacting (0.2 mmol) of vinyl ethylene carbonate **1a** and (0.24 mmol) of *N*-hydroxymoyl chloride under standard reaction conditions in presence of TEMPO.

3. Crystallographic data:

The shining crystal was obtained by the slow evaporation of the DCM and petroleum ether solvent. A suitable crystal was selected and examined in the instrument called Rigaku oxford diffractometer. The diffraction data were collected and solved by using Olex21. The structure was solved on olex22 with the method of charge flipping and refined with the ShelX3 refinement package using least-squares minimization. The crystal data confirms the molecular formula $C_{18}H_{14}CINO_4$ and is solved using triclinic space group P1.

Figure S1. ORTEP diagram with 30% ellipsoidal plot presenting the X-ray crystal structure of compound 3a.

Identification code	CCDC No 2151147	
Empirical formula	$C_{18}H_{14}ClNO_4$	
Formula weight	343.75	
Temperature	293 K	
Wavelength	0.71073	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.777 (4)	$\alpha = 110.956$ (10)
	B = 9.470 (4)	$\beta = 90.069 (10)$
	C = 10.205 (4)	$\gamma = 90.054$ (10)
Volume	792.1 (6)	
Z	2	
Density (calculated)	1.441 g/cm^3	
Absorption coefficient	0.263 mm ⁻¹	
F (000)	356	
Crystal size	0.2 X 0.2 X 0.3 mm ³	
Theta range for data collection	2.52 to 26.41°	
Index ranges	-10<=h<=10, -11<=k<=11,	
	12<=l<= 12	
Reflections collected	18576	
Independent reflections	4755 [R(int) = 0.0486]	
Completeness to theta	25.24°	
Absorption correction	Multi scan	
Max. and min. transmission	1.000 and 0.999	
Refinement method	ShelXL	
Data / restraints / parameters	6086/3/434	
Goodness-of-fit on F ²	1.128	

Table 1. Crystal data and structure refinement for 3a

Final R indices [I>2sigma(I)]	0.0486
R indices (all data)	0.0758
Extinction coefficient	0.0155 (19)
Largest diff. peak and hole	0.213 and -0.180

4. Spectral data of synthesized compounds:

(3a) 4-(3-(4-chlorophenyl)-4,5-dihydroisoxazol-5-yl)-4-phenyl-1,3-dioxolan-2-one:

127.8, 126.6, 125.5, 84.1, 83.3, 73.2, 36.7. **HRMS-ESI** (**m**/**z**): Calculated for C₁₈H₁₄ClNO₄ [M+H]⁺: 344.0684, found: 344.0690.

(3b) 4-(3-(4-nitrophenyl)-4,5-dihydroisoxazol-5-yl)-4-phenyl-1,3-dioxolan-2-one:

The general procedure was followed. White solid (68%), $R_f = 0.4$ (EtOAc/Hexane: 30/70) ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dt, J = 8.9, 2.0 Hz, 2H), 7.58 (dt, J = 8.9, 2.0 Hz, 2H), 7.44 (dt, J = 6.6, 1.8 Hz, 2H), 7.40 – 7.33 (m, 3H), 5.27 (dd, J = 11.1, 6.7 Hz, 1H), 5.07 (d, J = 8.8 Hz, 1H), 4.69 (d, J = 8.8 Hz, 1H), 3.50 (dd, J = 17.4, 11.1 Hz, 1H), 3.19 (dd, J = 17.4, 6.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 153.2, 148.8, 134.4,

134.1, 129.6, 128.9, 127.4, 125.5, 123.9, 83.9, 83.8, 73.2, 36.4. **HRMS-ESI (m/z):** Calculated for C₁₈H₁₄N₂O₆ [M+H]⁺: 355.0925, found: 355.0916.

(3c) 4-(3-(4-fluorophenyl)-4,5-dihydroisoxazol-5-yl)-4-phenyl-1,3-dioxolan-2-one:

The general procedure was followed. White solid (65%), $R_f = 0.5$ (EtOAc/Hexane: 10/80). ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.28 (m, 7H), 7.01 (t, J = 8.6 Hz, 2H), 5.16 (dd, J = 11.0, 6.9 Hz, 1H), 5.03 (d, J = 8.7 Hz, 1H), 4.66 (d, J = 8.7 Hz, 1H), 3.42 (dd, J = 17.3, 11.0 Hz, 1H), 3.11 (dd, J = 17.3, 6.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 153.4, 134.8, 129.4, 128.8, 128.7, 128.6, 125.5, 124.4, 116.1, 115.8, 84.1, 83.3, 73.17, 36.9. ¹⁹F NMR (471

MHz, CDCl₃) δ -108.89 (s). **HRMS-ESI** (m/z): Calculated for C₁₈H₁₄FNO₄ [M+H]⁺: 328.0980, found: 328.0984.

(3d) 4-(3-(4-bromophenyl)-4,5-dihydroisoxazol-5-yl)-4-phenyl-1,3-dioxolan-2-one:

The general procedure was followed. White solid (64%), $R_f = 0.5$ (EtOAc/Hexane: 15/75). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.41 (m, 4H), 7.41 – 7.33 (m, 3H), 7.29 (dt, J = 8.7, 1.9 Hz, 2H), 5.18 (dd, J = 11.0, 6.9 Hz, 1H), 5.02 (d, J = 8.8 Hz, 1H), 4.67 (d, J = 8.8 Hz, 1H), 3.42 (dd, J = 17.4, 11.0 Hz, 1H), 3.11 (dd, J = 17.4, 6.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 153.4, 134.8, 131.9, 129.4, 128.8, 128.0, 127.1, 125.5, 124.9, 84.2, 83.4,

73.0, 36.6. **HRMS-ESI (m/z):** Calculated for C₁₈H₁₅BrNO₄⁺ [M+H]⁺: 388.0179, found: 388.0186.

(3e) 4-(5-(2-oxo-4-phenyl-1,3-dioxolan-4-yl)-4,5-dihydroisoxazol-3-yl)benzonitrile:

The general procedure was followed. White solid (62%), $R_f = 0.5$ (EtOAc/hexane: 20/80). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 7.1 Hz, 2H), 7.35 (dt, J = 20.8, 7.1 Hz, 3H), 5.23 (dd, J = 11.0, 6.7 Hz, 1H), 5.04 (d, J = 8.8 Hz, 1H), 4.67 (d, J = 8.8 Hz, 1H), 3.45 (dd, J = 17.4, 11.1 Hz, 1H), 3.13 (dd, J = 17.4, 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 153.3, 134.6, 132.5, 132.4, 129.5, 128.9,

127.1, 125.5, 118.1, 113.9, 84.1, 83.9, 72.9, 36.2. **HRMS-ESI** (m/z): Calculated for C₁₉H₁₄N₂O₄⁺ [M+H]⁺: 335.1026, **found**: 335.1030.

(3f) 4-phenyl-4-(3-(4-(trifluoromethyl)phenyl)-4,5-dihydroisoxazol-5-yl)-1,3-dioxolan-2-one:

The general procedure was followed. White solid (62%), $R_f = 0.4$ (EtOAc/hexane: 15/85). ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 2H), 7.34 (t, J = 7.0 Hz, 1H), 5.22 (dd, J = 10.9, 6.8 Hz, 1H), 5.04 (d, J = 8.7 Hz, 1H), 4.67 (d, J = 8.7 Hz, 1H), 3.46 (dd, J = 17.4, 11.0 Hz, 1H), 3.15 (dd, J = 17.4, 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 153.3, 134.6,

129.5, 128.8, 126.9, 125.7, 125.7, 125.7, 125.6, 125.5, 84.0, 83.6, 73.1, 36.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.09 (s). HRMS-ESI (m/z): Calculated for C₁₉H₁₄F₃NO₄⁺ [M+H]⁺: 378.0948, found: 378.0952.

(3g) 4-phenyl-4-(3-(p-tolyl)-4,5-dihydroisoxazol-5-yl)-1,3-dioxolan-2-one:

The general procedure was followed. White solid (70%), $R_f = 0.5$ (EtOAc/Hexane: 10/90). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 8.1 Hz, 3H), 7.13 (d, J = 7.8 Hz, 2H), 5.14 (dd, J = 10.9, 7.1 Hz, 1H), 5.02 (d, J = 8.7 Hz, 1H), 4.65 (d, J = 8.7 Hz, 1H), 3.42 (dd, J = 17.3, 10.9 Hz, 1H), 3.10 (dd, J = 17.3, 7.1 Hz, 1H), 2.34 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 153.6, 140.9, 137.7, 129.5, 129.4,

129.3, 126.8, 125.7, 124.3, 85.4, 83.6, 73.0, 36.2, 21.5. **HRMS-ESI** (**m/z**): Calculated for $C_{19}H_{17}NO_4^+$ [M+H]⁺: 324.1230, found: 324.1236.

(3h) 4-(3-(4-methoxyphenyl)-4,5-dihydroisoxazol-5-yl)-4-phenyl-1,3-dioxolan-2-one:

The general procedure was followed. White solid (72%), $R_f = 0.5$ (EtOAc/Hexane: 30/70). ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.30 (m, 7H), 6.84 (d, J = 7.6 Hz, 2H), 5.14 (dd, J = 11.0, 7.0 Hz, 1H), 5.03 (d, J = 8.4 Hz, 1H), 4.66 (d, J = 8.2 Hz, 1H), 3.81 (s, 3H), 3.42 (dd, J = 16.7, 11.1 Hz, 1H), 3.10 (dd, J = 17.0, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 156.4, 153.5, 134.9, 129.3, 128.8, 128.2, 125.6, 120.6, 114.1, 84.4, 82.9, 73.1, 55.3, 37.1. HRMS-ESI (m/z): Calculated for C₁₉H₁₇NO₅⁺ [M+H]⁺: 340.1179, found:

340.1185.

(3i) 4-(3-(naphthalen-2-yl)-4,5-dihydroisoxazol-5-yl)-4-phenyl-1,3-dioxolan-2-one:

The general procedure was followed. White solid (68%), $R_f = 0.5$ (EtOAc/Hexane: 15/75). ¹**H NMR (400 MHz, CDCl₃) &** 7.85 – 7.80 (m, 2H), 7.78 (d, J = 8.6 Hz, 1H), 7.71 (dd, J = 10.2, 1.6 Hz, 2H), 7.57 – 7.51 (m, 2H), 7.51 – 7.45 (m, 2H), 7.38 (t, J = 7.1 Hz, 2H), 7.32 (d, J = 7.3 Hz, 1H), 5.23 (dd, J = 11.0, 7.0 Hz, 1H), 5.07 (d, J = 8.7 Hz, 1H), 4.69 (d, J = 8.7 Hz, 1H), 3.57 (dd, J = 17.3, 11.0 Hz, 1H), 3.27 (dd, J = 17.3, 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 153.5, 134.9, 134.1, 132.7, 129.4, 128.8, 128.6, 128.4, 127.8, 127.4, 127.1, 126.8, 125.7, 125.6, 123.2, 84.3, 83.4, 73.1, 36.8. HRMS-ESI (m/z): Calculated for C₂₂H₁₇NO₄⁺ [M+H]⁺: 360.1230, found: 360.1234.

(3j) 4-phenyl-4-(3-(thiophen-2-yl)-4,5-dihydroisoxazol-5-yl)-1,3-dioxolan-2-one:

The general procedure was followed. White solid (63%), $R_f = 0.5$ (EtOAc/Hexane: 15/85). ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.30 (m, 5H), 7.01 (d, J = 19.8 Hz, 2H), 5.16 (dd, J = 10.2, 7.4 Hz, 1H), 5.03 (d, J = 8.5 Hz, 1H), 4.66 (d, J = 8.3 Hz, 1H), 3.66 (s, 1H), 3.46 (dd, J = 16.8, 11.0 Hz, 1H), 3.14 (dd, J = 17.2, 7.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 153.4, 152.5, 134.75, 130.3, 129.6, 129.4, 128.9, 128.9, 127.3, 125.6, 84.2, 83.3, 73.2, 37.6. HRMS-ESI (m/z): Calculated for C₁₆H₁₃NO₄S⁺ [M+H]⁺: 316.0638, found: 316.0644.

(3k) 4-(4-bromophenyl)-4-(3-phenyl-4,5-dihydroisoxazol-5-yl)-1,3-dioxolan-2-one:

The general procedure was followed. White solid (70%), $R_f = 0.5$ (EtOAc/Hexane: 10/90). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 7.3 Hz, 2H), 7.39 (d, J = 7.0 Hz, 1H), 7.34 (t, J = 8.4 Hz, 4H), 5.14 (dd, J = 10.9, 7.2 Hz, 1H), 5.01 (d, J = 8.8Hz, 1H), 4.59 (d, J = 8.7 Hz, 1H), 3.48 (dd, J = 17.4, 11.0 Hz, 1H), 3.08 (dd, J = 17.4, 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 153.2, 134.0, 132.1, 130.8, 128.8, 127.9, 127.3, 126.6, 123.8, 83.8, 82.9, 73.2, 36.9. HRMS-ESI (m/z): Calculated for

 $C_{18}H_{14}BrNO_4^+$ [M+H]⁺: 388.0179, found: 388.0175.

(3l) 4-(4-methoxyphenyl)-4-(3-phenyl-4,5-dihydroisoxazol-5-yl)-1,3-dioxolan-2-one:

The general procedure was followed. White solid (68%), $R_f = 0.5$ (EtOAc/Hexane: 20/80). ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.43 (d, J = 6.9 Hz, 2H), 7.35 (m, 5H), 6.9 (d, J = 8.9 Hz, 2H), 5.14 (dd, J = 11.0, 7.3 Hz, 1H), 4.98 (d, J = 8.7 Hz, 1H), 4.62 (d, J = 8.7 Hz, 1H), 3.76 (s, 3H), 3.43 (dd, J = 17.3, 11.0 Hz, 1H), 3.11 (dd, J = 17.3, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 156.9, 153.6, 130.6, 128.7, 128.2, 126.9, 126.8, 126.7, 114.3, 84.3, 83.3, 73.2, 55.3, 36.9. HRMS-ESI (m/z): Calculated for

 $C_{19}H_{17}NO_5^+$ [M+H]⁺: 340.1179, found: 340.1185.

(3m) 4-(3-phenyl-4,5-dihydroisoxazol-5-yl)-4-(p-tolyl)-1,3-dioxolan-2-one:

The general procedure was followed. White solid (70%), $R_f = 0.5$ (EtOAc/Hexane: 20/80). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 5.3, 3.3 Hz, 2H), 7.40 – 7.29 (m, 5H), 7.13 (d, J = 8.0 Hz, 2H), 5.14 (dd, J = 11.0, 7.0 Hz, 1H), 5.03 (d, J = 8.7 Hz, 1H), 4.65 (d, J = 8.7 Hz, 1H), 3.42 (dd, J = 17.3, 11.0 Hz, 1H), 3.11 (dd, J = 17.3, 7.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.9, 153.6, 139.3, 132.0, 130.5, 129.5, 128.7, 128.3, 126.7, 125.4, 84.5, 83.4, 72.9, 36.8, 21.1. HRMS-ESI (m/z): Calculated for C₁₉H₁₇NO₄⁺ [M+H]⁺:

324.1230, **found**: 324.1236.

5. Molecular docking results

We revisited our synthetic **3j** and generated all the 4 enantiomers using LigPrep and thereafter performed the docking of all the generated enantiomers using the COX-2 receptor (PDB ID: 3LN1). The analysis results are represented in **Table S1**. The analysis reveals the enantiomeric binds with COX-2 with marginally distinct docking scores. The enantiomeric state (**I**) was found to possess highest binding affinity towards COX-2 receptor. So, considering this we do agree that enantiomeric form and chirality in general plays a major role in the drug discovery process. The individual binding pattern of other enantiomeric states (**I** - **IV**) is illustrated in **Figure S2**.

Table S1. Docking scores of generated enantiomers of 3j

Enantiomeric state	Docking score (Kcal/mol)	Docking Pose
(S)-4-phenyl-4-((R)-3-(thiophen-2-yl)-4,5-dihydroisoxazol-5-yl)-1,3- dioxolan-2-one (I)	-9.97	Figure S2A
(R)-4-phenyl-4-((S)-3-(thiophen-2-yl)-4,5-dihydroisoxazol-5-yl)-1,3- dioxolan-2-one (II)	-9.51	Figure S2B
(S)-4-phenyl-4-((S)-3-(thiophen-2-yl)-4,5-dihydroisoxazol-5-yl)-1,3- dioxolan-2-one (III)	-9.42	Figure S2C
(R)-4-phenyl-4-((R)-3-(thiophen-2-yl)-4,5-dihydroisoxazol-5-yl)-1,3- dioxolan-2-one (IV)	-9.31	Figure S3D

Figure S2 (A-D). Illustration of generated enantiomeric state of **3j** and their interaction with residual amino acids within the active domain of COX-2

Table S2. MMGBSA parameters to deduce binding affinity of **3j** in comparison to celecoxib for COX-2 active site (energy is provided in kcal/mol)

	MMGBSA	MMGBSA	MMGBSA	MMGBSA	MMGBSA
Code	Bind	Coulomb	Covalent	Lipo	Packing
3ј	-97.0419	21.20379	2.32556	-38.7804	-0.65907
Celecoxib	-60.1937	4.254314	8.648821	-46.9426	-0.74567

Molecule 1			
Ħ 🛛 📿 🄗			Water Solubility
	LIPO	Log S (ESOL) 📀	-4.03
		Solubility	2.92e-02 mg/ml ; 9.26e-05 mol/l
	FLEX	Class 📀	Moderately soluble
		Log S (Ali) 🔞	-4.75
		Solubility	5.64e-03 mg/ml ; 1.79e-05 mol/l
		Class 📀	Moderately soluble
	INSATU	Log S (SILICOS-IT) 📀	-4.73
		Solubility	5.91e-03 ma/ml : 1.87e-05 mol/l
		Class 📀	Moderately soluble
	INSOLU		Pharmacokinetics
SMILES O=C1OCC(O1)([(C@@H]1ON=C(C1)c1cccs1)c1ccccc1	GI absorption 🤨	High
Ph	vsicochemical Properties	BBB permeant 📀	No
Formula	C16H13NO4S	P-gp substrate 📀	No
Molecular weight	315.34 g/mol	CYP1A2 inhibitor 📀	No
Num. heavy atoms	22	CYP2C19 inhibitor 📀	Yes
Num. arom. heavy atoms	11	CYP2C9 inhibitor 📀	Yes
Fraction Csp3	0.25	CYP2D6 inhibitor 📀	No
Num. rotatable bonds	3	CYP3A4 inhibitor 📀	No
Num. H-bond acceptors	5	Log Kn (skin permeation) 📀	-5.89 cm/s
Num. H-bond donors	0	- p	Druglikeness
Molar Refractivity	84.32	Lipinski 🔞	Yes: 0 violation
TPSA 🥹	85.36 A ²	Ghose 🥹	Yes
	Lipophilicity	Veber 📀	Yes
Log P _{o/w} (ILUGP) 🧐	2.43	Egan 🔞	Yes
Log P _{o/w} (XLOGP3) 🥹	3.28	- Muegge ⁽²⁾	Yes
Log P _{o/w} (WLOGP) 📀	2.81	Bioavailability Score 📀	0.55
Log P _{o/w} (MLOGP) 🤨	1.88	,	Medicinal Chemistry
Log P _{o/w} (SILICOS-IT) 😣	4.50	PAINS ()	0 alert
Consensus Log P _{olw} 📀	2.98	Brenk 📀	0 alert
		Leadlikeness 📀	Yes
		Synthetic accessibility 🤨	4.24

Figure S3. Illustration of physicochemical descriptors, ADME parameters, pharmacokinetic properties, druglike nature and medicinal chemistry friendliness of compound **3j**. The analysis was done using SwissADME online server

6. References:

- Khan, A.; Zheng, R.; Kan, Y.; Ye, J.; Xing, J.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 6439-6442.
- Jiang, K. M.; Luesakul, U.; Zhao, S. Y.; An, K.; Muangsin, N.; Neamati, N.; Jin, Y.; Lin, J. ACS Omega. 2017, 2, 3123–31.

7. ¹H, ¹³C NMR and HRMS spectra of all compounds

0

 \cap

7.4687 7.4519 7.4519 7.4470 7.4470 7.4410 7.4410 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.4273 7.3551 7.3551 7.3551 7.3551 7.3551 7.3551 7.3551 7.3551 7.3551 7.3347 7.2789	5.0349 5.0130 4.6761	4.6542
	\bigvee	2

Br

 $\int_{3.4575}^{3.4577} 3.4302$ 3.4143 3.3868 3.33868 3.1275 3.1013 3.0840

 \mathbb{L}_{0}

7.6207 7.6169 7.6076 7.6037 7.5037 7.5132 7.5132 7.5132 7.4966 7.4966 7.4161 7.4161 7.4128 7.4128 7.4128 7.4128 7.4128 7.3826 7.3826 7.3828 7.3826 7.3783 7.37777 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.3783 7.37845 7.37845 7.377777777777777777777777777777777777	5.0321 4.6777 4.6601
	$^{\prime}$

3.4749 3.4528 3.4402 3.4180 3.11599 3.11599 3.1117 3.1117

0 C NC 3e, ¹H NMR CDCI₃

	7.5589 7.5727 7.5727 7.5726 7.5246 7.434 7.434 7.434 7.434 7.3387 7.3387 7.3387 7.3387 7.3387 7.3387 7.3386 7.3386 7.3386	$\int_{-5.0348} 5.2348$ 5.2211 5.2129 5.1993 5.0496 5.0322 4.6576 4.6576	3.4884 3.4663 3.4537 3.4537 3.4537 3.4537 3.4537 3.1363 3.1255 3.1255	
--	--	--	--	--

Ο C F₃C² 3f, ¹H NMR CDCI₃

7.8355 7.8159 7.8121 7.7939 7.7723 7.7723 7.7723 7.7723 7.7723 7.7723 7.7723 7.5395 7.5395 7.5395 7.4941 7.4941 7.4905 7.4905 7.4905 7.4905 7.3787 7.3787 7.3787 7.3783 7.3783 7.3783 7.3783 7.3787 7.3783 7.3783 7.3783 7.3787 7.3787 7.3787 7.3783 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3783 7.3787 7.3783 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.3787 7.7777 7.7787 7.7777 7.7777 7.7777 7.7777 7.7777 7.7777 7.77777 7.77777 7.77777 7.777777	5.2507 5.2331 5.2332 5.2056 5.0825 5.0608 4.7049 4.6832

0 \cap \sim 'N 3i, ¹H NMR CDCI₃

3.5084 3.5510 3.5553 3.5553 3.5553 3.2565 3.2369 3.2545 3.2545

0 Ń S 3j, ¹H NMR CDCI₃

7.4748 7.4714 7.4575 7.4576 7.4576 7.3959 7.3824 7.3824 7.3855 7.3838 7.3841 7.3284 7.3381 7.3284 7.3381 7.3284 7.3284 7.3284 7.3286 7.3296 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.3206 7.	5.1777 5.1590 5.1502 5.1314 4.9339 4.9722 4.6538 4.6538	3.4614 3.4339 3.4180 3.3904 3.1554 3.1554 3.1120 3.1120 3.0933	2.3119

HRMS Spectra

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5 Monoisotopic Mass, Even Electron Ions 0 1007 formula(e) evaluated with 11 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-40 H: 0-100 N: 0-10 O: 0-10 S: 0-2 CI: 1-1 Sample Name : DMS ES 02 035 A XEVO G2-XS QTOF IITRPR Test Name 1: TOF MS ES+ 030522_DMS_ES_02_035_A 8 (0.186) 1.80e+007 3a, HRMS CI 344.0690 100-Calculated [M+H]*: 344.0684 346.0654 Found: 344.0690 663.4547 % 338.3410 413.2659 475.4142 553.4594 686.4401 261.1301 180.0197 832.2423 868.8128 906.2615 0m/z 700 600 100 200 300 400 500 800 900 1000 -1.5 Minimum: Maximum: 10.0 50.0 2.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 344.0690 344.0690 0.0 0.0 11.5 1876.0 n/a n/a C18 H15 N 04 Cl

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

40

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

41

