Electronic Supplementary Information

for

Bioinspired Total Synthesis of Boneratamides A-C

Kaito Ooka,^a Keisuke Nakanishi,^a Yutaro Udagawa,^a Yoshiyasu Ichikawa,^{*b} and Seijiro Hosokawa^{*a}

^a Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University,

3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

^b Faculty of Science, Kochi University,

Akebono-cho, Kochi 780-8520, Japan

Table of Contents

I.	Experimental Procedures and Characterization Data······1
II.	Comparison of synthetic (+)-axisonitrile-3 and boneratamide A-C methyl esters with those of
	natural substances (¹ H and ¹³ C NMR) · · · · · · · · · · · · · · · · · · ·
III.	¹ H and ¹³ C NMR Spectra ······ 35
IV.	Crystallographic Data for 15 , 19 and 28 · · · · · · · · · · · · · · · · · · ·
V.	Screening for cyclopropanation · · · · · · · · · · · · · · · · · · ·
VI.	A Plausible reaction mechanism for formation of boneratamide A
VII	. References · · · · · · · · · · · · · · · · · · ·

General Information

Melting points (Mp) were recorded on a Yanaco MP-S3 melting point apparatus and are not corrected. Optical rotations were measured on a JASCO P-2200 digital polarimeter at the sodium D line with a 100 mm path length cell, and are reported as follows: $[\alpha]_D^T$, concentration (g/100 mL), and solvent. Infrared spectra (IR), recorded on a JASCO FT/IR-460 spectrophotometer and Thermo Fisher Scientific Nicolet 6700 FT-IR spectrometer, are reported in wave number (cm⁻¹). Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on JEOL LA 500 (500 MHz), JEOL ECS-400 (400 MHz) and JEOL ECZ 500 (500 MHz) spectrometers. ¹H NMR chemical shifts ($\delta_{\rm H}$) are reported in parts per million (ppm) with the solvent resonance as the internal standard relative to chloroform ($\delta = 7.26$), CHD₂OD ($\delta = 3.31$), benzene ($\delta = 7.15$) and DMSO ($\delta = 2.50$). Data are reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broadened, m = multiplet), coupling constants (J, given in Hz) and number of protons. ¹³C NMR chemical shifts (δ) are recorded in parts per million (ppm) relative to the residual solvent peaks of CDCl₃ (δ = 77.16), CD₃OD (δ = 49.9), C₆D₆ (δ = 128.06) and DMSO-d₆ (δ = 39.5) as internal standards. High-resolution mass spectra (HRMS), measured on a BRUKER, FT-ICRMS, solariX XR, Thermo Fisher Scientific Exactive[™] Plus, JEOL JMS-GCMATEII and JEOL JMS-T100CS AccuTOF spectrometer, are reported in m/z. Reactions were monitored by thin-layer chromatography on glass plates 0.25 mm coated with silica gel 60 F₂₅₄ (MERCK 1.05715). Open-column chromatography was carried out with Silica gel 60 (particle size 0.063-0.200 mm, 70-230 mesh ASTM). Reactions were run under atmosphere of argon when the reactions were sensitive to moisture or oxygen. THF was distilled from LiAlH₄ before use. Dichloromethane was dried over molecular sieves 3 Å. Pyridine and triethylamine were stocked over anhydrous KOH. All other commercially available reagents were used as CH₂Cl₂

Experimental Section

(-)-(2S,5S)-5-Isopropyl-2-methylcyclohexanone [(-)-carvomenthone] (10). A solution of (S)-(+)-carvone (9) (60.0 g, 26.6 mmol) dissolved in methanol (240 mL) in the presence of platinum oxide (120 mg, 0.13 mol%) was vigorously stirred at room temperature under hydrogen atmosphere for 6.5 h. The solution was filtered on the pad of Celite and concentrated under reduced pressure to afford a mixture of (-)-carvomenthone (10) (57.4 g). This mixture was treated with a solution of sodium methoxide (5.0 M solution in methanol, 3.4 mL). After standing at room temperature for 3.5 h, the reaction mixture was diluted with water. The aqueous layer was extracted with ether (×2). The combined organic layers were washed with water and brine, and dried (Na₂SO₄). Concentration under reduced pressure gave the residue (55.75 g), which was subjected to Kugelrohr distillation (oven temperature 85 °C/0.1 mmHg) to afford (-)-carvomenthone (10) (53.5 g, trans:cis = 8:1, 87%). A portion of this product (25.0 g) was separated by silica-gel column chromatography (Et₂O/hexane 1:40 \rightarrow 1:20) to afford the trans-isomer 10 as a colorless liquid (15.0 g). The ¹H NMR data obtained for 10 were in agreement with values previously reported for *ent*-(+)-10.¹ $[\alpha]_D^{22} = -11.9$ (c = 3.17, EtOH) {Literature: $[\alpha]_D^{22} = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (\text{ddd}, J = -15.5 \ (c = 3, \text{ EtOH})^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (d dd)^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (d dd)^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (d dd)^1$ }; ¹H NMR (CDCl₃, 500 MHz): $\delta = 2.40 \ (d$ 13.0, 3.5, 2.5 Hz, 1H), 2.33 (dqd, J = 13.0, 6.5, 1.0 Hz, 1H), 2.13–2.01 (m, 2H), 1.85 (dddd, J = 12.5, 5.5, 2.5, 2.5 Hz, 1H), 1.61–1.51 (m, 2H), 1.44 (dddd, J = 13.0, 13.0, 11.5, 3.5 Hz, 1H), 1.30 (qd, J = 13.0, 3.5 Hz, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 13.0, 3.5 Hz, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 13.0, 3.5 Hz, 1H), 1.01 (d, J = 13.0, 3.5 6.5 Hz, 3H).

(*E*)-Ethyl 2-((2*S*,5*S*)-5-isopropyl-2-methylcyclohexylidene)acetate (11). A solution of (–)-carvomenthone (10) (9.90 g, 64.2 mmol) in THF (15 mL) was added to a solution of sodium trimethylphosphonoacetate {prepared from trimethylphosphonoacetate (43.2 g, 193 mmol) and sodium hydride (5.13 g; 60% in oil, washed with hexane, 128 mmol) in THF 80 mL)}. After heating at reflux for 3 h, The reaction mixture was cooled to room temperature and diluted with saturated aqueous NH₄Cl. The separated aqueous layer was extracted with Et₂O (×2), and the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford the product (18.4 g). A portion of this crude product (11.4 g) was purified by column chromatography on silica gel eluting with EtOAc/hexane (1:40) to afford **11** (7.95 g, 89%) as a colorless oil. The ¹H NMR data obtained for **11** were in agreement with values previously reported for *ent*-**11**.³ ⁻¹H NMR (CDCl₃, 500 MHz): $\delta = 5.54$ (brs, 1H), 4.16 (qd, *J* = 7.0, 2.0 Hz, 2H), 3.94 (brddd, *J* = 13.0, 2.5, 2.0 Hz, 1H), 2.18–2.04 (m, 1H), 1.94 (ddd, *J* = 12.5, 7.0, 2.0 Hz, 1H), 1.80–1.70 (m, 1H), 1.55–1.45 (m, 2H), 1.29 (t, *J* = 7.0 Hz, 3H), 0.90 (d, *J* = 7.0 Hz, 3H).

2-((3*R***,6***S***)-3-Isopropyl-6-methylcyclohex-1-enyl)ethanol (14).** To a solution of ester **11** (2.50 g, 11.1 mmol) dissolved in a mixture of methanol (16 mL) and water (12 mL) was added potassium hydroxide (4.06 g, 72.4 mmol). The solution was heated at 60 °C for 3 h and washed with Et_2O (×3). The aqueous layer was acidified with 6 N HCl, and extracted with EtOAc (×3). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford the crude product **12** (2.44 g), which was used for the subsequent reactions without purification.

A solution of 2,2,6,6-tetramethylpiperidine (15 mL, 89.1 mmol) in THF (46 mL) was degassed by three freeze-thaw cycles. To this solution cooled to -20 °C (a sodium chloride/ice bath) under argon atmosphere was added a solution of *n*-butyllithium (1.15 M in hexane, 39 mL, 44.6 mmol) dropwise. The solution was warmed to 0 °C and stirred at 0 °C for 50 minutes. To this solution was added 12 (2.44 g) in THF (10 mL) at 0 °C. The cooling bath was removed and stirring continued at room temperature for 5 h. The reaction mixture was acidified with aqueous 6 N HCl, and the separated aqueous layer was extracted with ether (\times 3). The combined organic layer was extracted with aqueous 1 N NaOH. The separated aqueous layer was washed with Et₂O (×3), acidified with 6 M HCl, and extracted with EtOAc (×3). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford the crude product 13 (2.29 g), which was used for the subsequent reactions without purification. To a suspension of lithium aluminum hydride (1.27 g, 33.4 mmol) in Et₂O (45 mL) cooled to 0 °C under nitrogen atmosphere was added a solution of 13 (2.29 g) in Et₂O (15 mL). The cooling bath was removed and stirring was continued for 5 h at room temperature. The reaction mixture was cooled to 0 °C and treated with several drops of ethanol to quench the reaction and aqueous potassium sodium (+)-tartrate tetrahydrate solution (12.6 g). After stirring at room temperature for 1 h, the solution was filtered on the pad of Celite. The separated aqueous layer was extracted with Et₂O (×3). The combined organic extracts were dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford crude residue, which was purified by silica-gel column chromatography (EtOAc/hexane 1:7) to provide 14 (1.54 g, 12.5 mmol, 76% for three steps) as a pale yellow oil. The ¹H and ¹³C NMR data obtained for 14 are in good agreement with values previously reported.¹ $[\alpha]_D^{23} = -39.6$ (c = 1.15, CH₂Cl₂) {Literature reported for ent-(+)-14: $[\alpha]_D^{25} = +39.3$ (c = 1, CH₂Cl₂)¹}{Literature reported for *ent*-(+)-14: $[\alpha]_D^{20} = +34$ (*c* = 2.20, CHCl₃)²}; IR (KBr): $v_{max} = 3327, 2956, 2930, 2871, 1463,$ 1446, 1385, 1367, 1043 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta = 5.39$ (brs, 1H), 3.71–3.57 (m, 2H), 2.47–2.39 (m, 1H), 2.17 (dq, J = 8.5, 7.0 Hz, 1H), 2.14–2.06 (m, 1H), 1.97–1.90 (m, 1H), 1.84 (dddd, *J* = 9.5, 5.0, 4.5, 2.0 Hz, 1H), 1.66 (dddd, *J* = 10.0, 5.0, 5.0, 1.0 Hz, 1H), 1.61–1.51 (m, 1H), 1.23 (dddd, J = 11.0, 9.5, 6.5, 2.0 Hz, 1H), 1.19 (dddd, J = 10.5, 9.5, 6.5, 2.0 Hz, 1H), 0.99 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 138.2, 129.0, 60.4, 42.3, 38.1, 32.3, 32.2, 32.0, 24.7, 19.9, 19.7, 19.4;$ HRMS (ESI): m/z calcd for C₁₂H₂₃O [M+H]⁺, 183.1743, found 183. 1745.

3-((3R,6S)-3-Isopropyl-6-methylcyclohex-1-enyl)propanenitrile (17). To a solution of p-toluenesulfonyl chloride (3.92 g, 20.6 mmol), 4-dimethylaminopyridine (251 mg, 2.05 mmol) and triethylamine (4.4 mL, 32 mmol) dissolved in CH₂Cl₂ (75 mL) cooled to 0 °C was added a solution of 14 (2.50 g, 13.7 mmol) in CH₂Cl₂ (5.0 mL). After stirring at room temperature for 2 h, saturated aqueous NaHCO₃ was added. The separated aqueous layer was extracted with Et₂O (×3). The combined organic layers were dried over Na₂SO₄. Concentration under reduced pressure gave 16, which was successively dissolved in DMSO (75 mL). This solution was treated with sodium cyanide (1.21 g, 24.7 mmol), and heated at 80 °C for 2 h. After cooling to room temperature, the reaction mixture was diluted with H₂O and extracted with EtOAc (×3). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford a residue, which was purified by silica-gel column chromatography (EtOAc/hexane 1:10) to provide 17 (2.39 g, 12.5 mmol, 91% for two steps) as a pale yellow oil. 2-((3*R*,6*S*)-3-Isopropyl-6-methylcyclohex-1-enyl)ethyl 4-methylbenzenesulfonate (16): $[\alpha]_D^{24} =$ -23.4 (*c* = 2.66, CHCl₃); IR (KBr): *v*_{max} = 2957, 2929, 2871, 1599, 1463, 1362, 1177, 961, 909, 815 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ = 7.79 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.27 (brs, 1H), 4.07 (ddd, J = 14.5, 9.5, 8.0 Hz, 1H), 4.06 (ddd, J = 14.5, 9.5, 7.5 Hz, 1H), 2.45 (s, 1H), 2.44–2.36 (m, 1H), 2.28 (ddd, J = 14.0, 8.0, 7.5 Hz, 1H), 2.01–1.92 (m, 1H), 1.88–1.81 (m, 1H), 1.77 (dddd, *J* = 10.0, 5.0, 4.5, 2.0 Hz, 1H), 1.60 (dddd, *J* = 10.0, 5.0, 4.5, 1.0 Hz, 1H), 1.50 (qd, J = 6.5, 1.5 Hz, 1H), 1.15 (dddd, J = 11.0, 10.0, 6.5, 2.0 Hz, 1H), 1.13 (dddd, J = 11.5, 10.0, 6.5, 1.0 Hz, 1H), 0.90 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.5 Hz, 3H), 0.81 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ = 144.7, 136.7, 133.4, 129.8, 129.1, 127.9, 69.4, 42.2, 34.2, 32.3, 32.2, 24.3, 21.7, 19.8, 19.7, 19.3; HRMS (ESI): m/z calcd for C₁₉H₂₈O₃NaS [M+Na]⁺, 359.1655, found 359.1650. Compound 17: $[\alpha]_D^{25} = -26.1$ (*c* = 2.20, CHCl₃); IR (KBr): $v_{max} =$

2957, 2931, 2871, 2246, 1463, 1445, 1385, 1368 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ = 5.41 (brs, 1H), 2.51–2.26 (m, 4H), 2.16–2.06 (m, 1H), 1.96–1.89 (m, 1H), 1.86 (dddd, *J* = 10.0, 5.5, 5.0, 2.0 Hz, 1H), 1.66 (dddd, *J* = 10.0, 5.5, 5.0, 1.5 Hz, 1H), 1.59 (qd, *J* = 7.0, 1.5 Hz, 1H), 1.25 (dddd, *J* = 11.5, 10.0, 6.0, 2.0 Hz, 1H), 1.21 (dddd, *J* = 12.0, 10.0, 6.0, 1.5 Hz, 1H), 0.99 (d, *J* = 7.0 Hz, 3H), 0.91 (d, *J* = 7.0 Hz, 3H), 0.87 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz) δ = 138.4, 128.4, 119.7, 42.2, 32.3, 32.0, 31.9, 30.6, 21.3, 19.8, 19.6, 19.3, 16.5; HRMS (ESI): m/z calcd for C₁₃H₂₂N [M+H]⁺, 192.1747, found 192.1748.

Ethyl 3-((3R,6S)-3-isopropyl-6-methylcyclohex-1-enyl)propanoate (19). A solution of 17 (1.80 g, 9.40 mmol) and potassium hydroxide (2.64g, 47.0 mmol) dissolved in a mixture of EtOH (25 mL) and H₂O (25 mL) was heated at 100 °C for 22 h. After cooling to room temperature, the reaction mixture was extracted with Et_2O (×3). The aqueous layer was acidified with 1 M HCl (10 mL), and then extracted with EtOAc (×3). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to afford crude carboxylic acid 18, which was dissolved in DMF (62 mL). To this solution was added solid K₂CO₃ (6.49 g, 47.0 mmol). After stirring at room temperature for 1 h, ethyl bromide (0.84 mL, 11.3 mmol) was added. The reaction mixture was stirred at room temperature for 2 h, diluted with H₂O, neutralized with 1 M HCl, and then extracted with a 3:1 mixture of hexane and EtOAc (×3). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (EtOAc/hexane 1:30) to provide 19 (1.84 g, 97% calculated based on consumed 18) and recovered 18 (275 mg, 15%). 3-((3R,6S)-3-Isopropyl-6-methylcyclohex-1-en-1-yl)propanoic acid (18): $[\alpha]_D^{25} = -3.9$ (c = 4.30, CHCl₃); IR (KBr): $v_{max} = 2957$, 2930, 2872, 2660, 1713, 1445, 1297, 934 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ = 5.32 (brs, 1H), 2.55–2.27 (m, 4H), 2.16–2.07 (m, 1H), 1.94–1.87 (m, 1H), 1.87–1.79 (m, 1H), 1.67–1.59 (m, 1H), 1.55 (qd, *J* = 7.0, 1.5 Hz, 1H), 1.21 (dddd, J = 12.0, 10.0, 6.0, 2.0 Hz, 1H),1.18 (dddd, J = 12.5, 10.0, 6.0, 2.0 Hz, 1H), 0.99 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 7.0 Hz, 3H); ¹³C NMR $(CDCl_3, 100 \text{ MHz}) \delta = 180.2, 140.1, 126.5, 77.4, 77.1, 76.8, 42.1, 33.1, 32.4, 32.3, 32.3, 30.0,$ 24.5, 19.7, 19.7, 19.3; HRMS (ESI): m/z calcd for C13H21O2 [M-H]-, 209.1547, found 209.1538. The characterization data obtained for compound 19 are in agreement with values

previously reported.⁴ Compound **19**: $[\alpha]_D^{25} = -10.9 (c = 3.18, CHCl_3)$; IR (KBr): $\nu_{max} = 2957$, 2931, 2872, 1739, 1463, 1445, 1369, 1162, 1045 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta = 5.30$ (brs, 1H), 4.12 (q, J = 7.0 Hz, 2H), 2.50–2.27 (m, 4H), 2.15–2.06 (m, 1H), 1.92–1.78 (m, 2H), 1.66–1.59 (m, 1H), 1.57–1.49 (m, 1H), 1.25 (t, J = 7.0 Hz, 3H), 1.24–1.15 (m, 2H), 0.99 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 173.7$, 140.5, 126.0, 60.3, 42.1, 33.4, 32.4, 32.3, 30.2, 24.6, 19.7, 19.4, 14.3; HRMS (ESI): m/z calcd for C₁₅H₂₇O₂ [M+H]⁺, 239.2006, found 239.2004.

4-((3R,6S)-3-Isopropyl-6-methylcyclohex-1-enyl)-1-(phenylperoxythio)butan-2-one (20). Methyl phenyl sulfone (4.22 g, 27.0 mmol) was dissolved in toluene and the solvent is removed azeotropically by rotary evaporation (\times 3). After this procedure followed by drying under vacuum, methyl phenyl sulfone was dissolved in THF (85 mL). To this solution cooled to -78 °C under nitrogen atmosphere, n-butyllithium (1.5 M solution in hexane, 15.4 mL, 23.2 mmol) was added. The solution was warmed to 0 °C and stirred at 0 °C for 30 min. To this solution cooled to -78 °C was added a solution of ester 19 (1.84 g, 7.72 mmol) in THF (5.0 The reaction mixture was stirred at -78 °C for 30 min and warmed at 0 °C. After mL). stirring at 0 °C for 30 min, saturated aqueous ammonium chloride was added. The separated aqueous layer was extracted with EtOAc (×3). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel eluting with EtOAc/hexane (1:4) to afford 20 (2.72g, quant.) as a colorless oil. The characterization data obtained for 20 are in agreement with values previously reported.4

1-Diazo-4-((3R,6S)-3-isopropyl-6-methylcyclohex-1-enyl)-1-(phenylperoxythio)butan-2-one (7). To a solution of 20 (4.22 g, 12.1 mmol) and *p*-acetamidobenzenesulfonyl azide (3.20 g, 13.3 mmol) dissolved in acetonitrile (120 mL) cooled to 0 °C was added triethylamine (5.10 mL, 36.3 mmol) dropwise under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 16 h and then filtered through a pad of Celite. The filtered cake was washed with a 1:5 mixture of EtOAc and hexane. The combined filtrate was concentrated under reduced pressure, and the resulting crude product was purified by silica-gel column chromatography (EtOAc/hexane, 1:5) to afford 7 (4.04 g, 89%) as a yellow oil. The characterization data obtained for compound 7 are in agreement with values previously reported.⁴

(3b*R*,4*R*,7*S*,7a*S*)-4-Isopropyl-7-methyl-3a-(phenylsulfonyl)octahydro-3*H*-cyclopenta[1,3]cy clopropa[1,2]benzen-3-one (8). To a solution of bis-(5-fluoro-(*N*-methylsalicyl aldiminato))copper (II) (21) (63 mg, 0.17 mmol) in toluene (60 mL) was added a solution of diazo compound 7 (800 mg, 2.14 mmol) dissolved in toluene (20 mL). The solution was heated at 80 °C for 15 h under nitrogen atmosphere, cooled to room temperature and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (EtOAc/hexane 1:8 and EtOAc/ toluene 1:30) to afford 8 (344 mg, 46%) as a white solid. The characterization data obtained for compound 8 are in agreement with values previously reported.⁴

Separation of cyclopropane intermediate 8 and its ent-epimer

ent-Epimer of 8 is an intermediate in our previously reported synthesis of exigurin.⁴

A solution of the substance to be examined was spotted on a 0.25 mm E. Merck silica plate (60F-254). The plate was inserted into a developing chamber containing a mixture of v/v 8:1 hexane/ethyl acetate. After the solvent had risen to near the top of the plate, the plate was removed from the developing chamber and the solvent front was marked with a pencil. The resulting plate was returned to the chamber, developed, removed from the chamber, and allow the solvent to evaporate. After one more cycle of this process, we observed two cleanly separated spots (line 2).

Lane 1: Cyclopropane intermediate **8** Lane 2: Co-spot. Lane 3: *ent*-epimer

Visualizing agent: *p*-anisaldehyde

(1R,5S,6S,7R,10S)-6-Azido-7-isopropyl-10-methyl-1-(phenylsulfonyl)spiro[4.5]decan-2-one (22). To a solution of 8 (610 mg, 1.77 mmol) dissolved in DMF (24 mL) were added sodium 38.9 mmol), magnesium perchlorate azide 5.30 (2.53)g, (1.18 g, mmol) and tetrabutylammonium hydrogen sulfate (7.20 g, 21.2 mmol). The mixture was heated under nitrogen atmosphere at 100 °C for 14 h. After cooling to room temperature, the reaction mixture was diluted with water (125 mL) and then extracted with EtOAc (×3). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (EtOAc/hexane 1:6) to afford 22 (528 mg, 88%, calculated based on consumed 8) as a white solid and recovered 8 (76 mg, 12%). Mp 40–41 °C; $[\alpha]_D^{25} = -36.3$ (*c* = 1.54, CHCl₃); IR (KBr): $v_{max} = 2961, 2928, 2881, 2101, 1747,$ 1448, 1311, 1141, 712 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ = 7.80–7.76 (m, 2H), 7.72–7.67 (m, 1H), 7.60–7.54 (m, 2H), 4.80 (s, 1H), 3.61 (s, 1H), 2.87–2.66 (m, 2H), 2.41–2.29 (m, 1H), 2.20–2.12 (m, 2H), 2.04–1.94 (m, 2H), 1.76–1.63 (m, 2H), 1.50 (ddd, *J* = 14.0, 6.0, 3.0 Hz, 1H), 1.34–1.22 (m, 1H), 1.14 (d, J = 6.5 Hz, 3H), 1.11–1.03 (m, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.61 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 209.0$, 137.8, 134.4, 129.1, 128.9, 75.5, 68.9, 54.0, 37.9, 36.7, 33.4, 31.5, 30.5, 24.2, 20.9, 20.4, 17.1; HRMS (ESI): m/z calcd for C₂₀H₂₇O₃N₃NaS [M+Na]⁺, 412.1665, found 412.1664.

(5S,6S,7R,10S)-6-Azido-7-isopropyl-10-methyl-1-(phenylsulfonyl)spiro[4.5]dec-1-en-2-yl trifluoromethanesulfonate (23). To a solution of 22 (519 mg, 1.33 mmol) in 1,2-dimethoxyethane (24 mL) was added sodium hydride (55% dispersion in mineral oil, 240 mg, 6.65 mmol). The mixture was heated under nitrogen atmosphere at 40 °C for 30 min. After cooling to 0 °C, trifluoromethanesulfonic anhydride (0.75mL, 2.66 mmol) was added dropwise. After stirring at 0 °C for 3 h, saturated aqueous NH₄Cl was added. The separated aqueous layer was extracted with EtOAc (×3), and the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (EtOAc/hexane 1:7) to furnish 23 (643 mg, 93%). Mp 93–94 °C; $[\alpha]_D^{25} = +15.3$ (*c* = 1.39, CHCl₃); IR (KBr): $v_{max} = 2959$, 2925, 2872, 2102, 1607, 1434, 1331, 1217, 1152, 950, 812 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ = 7.99–7.94 (m, 2H), 7.68–7.62 (m, 1H), 7.59–7.54 (m, 2H), 4.06 (brs, 1H), 2.81 (ddd, J = 13.0, 9.0, 6.5 Hz, 1H), 2.66 (ddd, J = 18.0, 9.0, 5.5 Hz, 1H), 2.25 (ddd, J = 13.5, 9.5, 6.5 Hz, 1H), 2.14–2.04 (m, 2H), 2.00–1.53 (m, 5H), 1.49–1.38 (m, 1H), 1.17 (d, J = 6.5 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 157.2$, 142.2, 138.1, 133.9, 129.2, 127.8, 119.8, 116.1, 68.6, 61.8, 44.3, 36.2, 34.0, 29.6, 29.3, 23.3, 21.5, 21.0, 17.5, 14.2; HRMS (ESI): m/z calcd for $C_{21}H_{26}O_5N_3F_3NaS_2$ [M+Na]⁺, 544.1158, found 544.1159.

(5S,6S,7R,10S)-6-Azido-7-isopropyl-2,10-dimethyl-1-(phenylsulfonyl)spiro[4.5]dec-1-ene

(24). To a solution of 23 (420 mg, 0.805 mmol) in 1,4-dioxane (7.0 mL, argon was bubbled through the solution for 60 min) was added tetrakis(triphenylphosphine)palladium (93 mg, 0.81 mmol). After stirring at room temperature for 5 min under argon atmosphere, potassium carbonate (333 mg, 2.42 mmol) and trimethylboroxine (0.12 mL, 0.81 mmol) were added. The reaction mixture was heated at 110 °C for 1 h, diluted with THF and filtered through a pad of silica-gel. Concentration of the filtrate under reduced pressure followed by purification by silica-gel column chromatography (EtOAc/hexane 1:12) provided 24 (304 mg, 98%) as a white solid. Mp 123–124 °C; $[\alpha]_D^{25} = +15.1$ (c = 1.74, CHCl₃); IR (KBr): $v_{max} = 2960$, 2931, 2871, 2098, 1463, 1446, 1302, 1146, 725, 689 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.91-7.87$ (m, 2H), 7.60–7.49 (m, 3H), 4.00 (brs, 1H), 2.54 (ddd, J = 18.0, 7.5, 7.5 Hz, 1H), 2.45 (ddd, J = 17.5, 7.5, 6.0 Hz, 1H), 2.17 (ddd, J = 13.0, 8.0, 6.5 Hz, 1H), 2.04 (ddd, J = 13.0, 8.0, 6.0 Hz, 1H), 1.95 (s, 3H), 1.92–1.78 (m, 3H), 1.72–1.31 (m, 4H), 1.13 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 162.1$, 144.3, 140.7, 132.7, 129.2, 126.3, 69.0, 64.9, 44.0, 37.8, 36.2, 35.9, 29.5, 29.1, 23.4, 21.4, 20.8, 18.6, 17.5; HRMS (ESI): m/z calcd for C₂₁H₂₉O₂N₃NaS [M+Na]⁺, 410.1873, found 410.1871.

N-((5R,6S,7R,10S)-7-isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-yl)formamide (26). To a suspension of magnesium powder (941 mg, 38.7 mmol, activated by washing with 1N HCl and acetone before use) in MeOH (7.5 mL) under nitrogen atmosphere was added a solution of 24 (300 mg, 0.77 mmol) in THF (2.1 mL). The solution was heated to reflux for 30 min, diluted with EtOAc and then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to give crude amine 25, which was dissolved in EtOAc (15 mL). The solution was treated with acetic formic anhydride (0.15 mL, 1.94 mmol). After stirring at room temperature for 60 min, saturated aqueous NaHCO₃ was added. The separated aqueous layer was extracted with EtOAc (×3), and the combined organic layer was dried (Na₂SO₄). Concentration under reduced pressure gave a residue, which was purified by silica-gel column chromatography (EtOAc/hexane 1:3 \rightarrow 1:2) to provide 26 (167 mg, 86% for two steps). Formamide 26 exists as a mixture of amide rotamers on the ¹H and ¹³C NMR time scale. When two rotamers are observed, signals for the minor rotamers are given in braces. (5R, 6S, 7R, 10S)-7-Isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-amine (25): $[\alpha]_D^{25} = +14.2 \ (c = 1.5)$ 1.18, CHCl₃); IR (KBr): $v_{max} = 2955$, 2925, 2870, 1613, 1462, 1375, 846, 819 cm⁻¹; ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta = 5.30 \text{ (brs, 1H)}, 2.72 \text{ (brs, 1H)}, 2.22-2.15 \text{ (m, 1H)}, 1.83-1.77 \text{ (m, 1H)},$ 1.74 (d, J = 1.0 Hz, 3H), 1.72–1.64 (m, 2H), 1.51–1.38 (m, 2H), 1.37–1.16 (m, 6H), 1.14–1.03 (m, 1H), 0.91 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H), 0.74 (d, J = 6.5 Hz, 3H); ¹³C NMR $(CDCl_3, 100 \text{ MHz}) \delta = 141.8, 126.8, 58.7, 58.0, 45.3, 36.6, 35.2, 34.1, 31.8, 29.4, 24.4, 21.5,$ 20.7, 17.1, 16.4; HRMS (ESI): m/z calcd for $C_{15}H_{28}N$ [M+H]⁺, 222.2216, found 222.2216. Compound **26**: Mp 96–98 °C; $[\alpha]_D^{25} = -13.9$ (c = 1.55, CHCl₃); IR (KBr): $v_{max} = 3306$, 3044, 2957, 2929, 2870, 1659, 1538, 1463, 1384, 739 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta = 8.27$ (d,

 $J = 1.5 \text{ Hz}, 1\text{H}, \{8.05 \text{ (d, } J = 12.0 \text{ Hz}, 1\text{H})\}, \{5.72-5.64 \text{ (m, 1H)}\}, 5.57-5.49 \text{ (m, 1H)}, 5.26 \text{ (brs}, 1\text{H}), 4.23 \text{ (brd, } J = 11.5 \text{ Hz}, 1\text{H}), \{3.30 \text{ (brdd, } J = 11.5, 2.5 \text{ Hz}, 1\text{H})\}, 2.32-2.08 \text{ (m, 2H)}, \{2.32-2.08 \text{ (m, 2H)}\}, 1.89-1.81 \text{ (m, 2H)}, \{1.89-1.81 \text{ (m, 2H)}\}, \{1.75 \text{ (brs, 3H)}\}, 1.73 \text{ (brs, 3H)}, \{1.72-1.61 \text{ (m, 1H)}\}, 1.64 \text{ (ddd, } J = 13.5, 9.5, 4.0 \text{ Hz}, 1\text{H}), 1.53-1.47 \text{ (m, 1H)}, \{1.53-1.47 \text{ (m, 1H)}\}, 1.43-1.25 \text{ (m, 4H)}, \{1.43-1.25 \text{ (m, 4H)}\}, 1.22-1.10 \text{ (m, 1H)}, \{1.22-1.10 \text{ (m, 1H)}\}, 0.92 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{H}), \{0.90 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H})\}, 0.88 \text{ (d, } J = 6.0 \text{ Hz}, 3\text{H}), \{0.85 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H})\}, 0.77 \text{ (d, } J = 6.5 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 100 \text{ MHz}) \delta = \{164.4\}, 161.1, \{143.8\}, 143.6, \{125.2\}, 125.1, \{59.5\}, 58.1, \{57.9\}, 54.0, 44.3, \{44.1\}, \{36.2\}, 36.1, \{36.0\}, 35.7, \{34.7\}, 33.7, 31.6, \{31.3\}, 29.6, \{28.8\}, 25.4, \{25.1\}, 21.3, 21.0, \{20.8\}, \{20.7\}, 17.1, \{17.0\}, 16.3, \{16.2\}; \text{HRMS} \text{ (ESI): m/z calcd for C}_{16}\text{H}_{28}\text{ON} \text{ [M+H]}^+, 250.2165, \text{found } 250.2165.$

(+)-Axisonitrile- 3 (4). To a solution of 26 (165 mg, 0.66 mol) and triethylamine (0.65 mL, 4.63 mmol) dissolved in CH₂Cl₂ (2.4 mL) cooled to -20 °C was added triphosgene (118 mg, 0.40 mmol). After stirring at -20 °C for 10 min, the reaction mixture was warmed to 0 °C and then treated with saturated aqueous of NaHCO₃ and CH₂Cl₂. After vigorous stirring at 0 °C for 1 h, the separated aqueous layer was extracted with EtOAc (×3). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (EtOAc/hexane 1:10) to afford (+)-axisonitrile-3 (4) (133 mg, 87%) as a white crystalline mass. Mp 99–100 °C (Literature: 101–103 °C⁵) (Literature: 99–102 °C⁶) (Literature: 94–95°C⁷); $[\alpha]_D^{22} = +89.2$ (c = 1.0, CHCl₃) {Literature: $[\alpha]_D^{22} =$ +68.4 (c = 1, CHCl₃)⁵} {Literature: $[\alpha]_D^{22} = +43.4$ (c = 0.006, CHCl₃)⁶} {Literature: $[\alpha]_D^{22} = -43.4$ +54.4 (c = 0.10, CHCl₃)⁷}; IR (KBr): $v_{max} = 2959$, 2920, 2893, 2853, 2133, 1655, 1458, 1442, 1373, 1328 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ = 5.13 (q, J = 1.0 Hz, 1H), 3.59 (brs, 1H), 2.28–2.20 (m, 2H), 1.98–1.92 (m, 2H), 1.84–1.76 (m, 2H), 1.74 (brs, 3H), 1.59 (qd, J = 6.5, 2.5 Hz, 1H), 1.54-1.48 (m, 1H), 1.40-1.27 (m, 1H), 1.21-1.10 (m, 2H), 0.94 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.76 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 155.7$ (t), 144.8, 123.7, 64.6 (t), 57.1, 43.8, 35.9, 35.0, 34.4, 31.2, 29.8, 24.9, 20.8, 20.4, 17.0, 16.1; HRMS (ESI): m/z calcd for $C_{16}H_{29}N_2$ [M+NH₄]⁺, 249.2325, found 249.2325.

Boneratamide A methyl ester (1b). A solution of L-glutamic acid 1-methyl ester (27) (10 mg, 0.065 mmol) and acetone (0.030 mL, 0.43 mmol) in MeOH (0.60 mL) under nitrogen atmosphere was heated at 50 °C for 60 min. To this mixture was added (+)-axisonitrile-3 (4) (10 mg, 0.043 mmol). After stirring at 50 °C for 60 min and at 80 °C for 120 min, the reaction mixture was cooled to room temperature and diluted with H₂O. The aqueous layer was extracted with EtOAc (×3), and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The resulting crude mixture of 1a and 1b was dissolved in a mixture of benzene (0.40 mL) and methanol (0.20 mL), and then treated with trimethylsilyldiazomethane (2.0 M solution in ether, 0.21mL, 0.42 mmol). After stirring at room temperature for 16 h, the solution was concentrated under reduced pressure to afford a crude product, which was purified by silica-gel chromatography (EtOAc/hexane 1:3) to furnish boneratamide A methyl ester (1b) (14 mg, 73%) as a white solid. Mp 165-166 °C (recrystallized from AcOEt/hexane); $[\alpha]_{D}^{28} = +2.6$ (c = 1.31, CH₂Cl₂), $[\alpha]_{D}^{20} = +8.8$ (c = 1.73, MeOH); IR (KBr): v_{max} = 3366, 2956, 2929, 2871, 1732, 1708, 1673, 1530, 1463, 1439, 1393, 1220, 1180 cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ = 7.51 (d, *J* = 10.5 Hz, 1H), 5.41 (q, *J* = 1.0 Hz, 1H) 1H), 4.66 (dd, J = 10.5, 2.5 Hz, 1H), 3.76 (dd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 2.66 (ddd, J = 10.0, 1.5 Hz, 1H), 3.16 (s, 3H), 3.16 (s, 3 13.5, 9.5, 5.5 Hz, 1H), 2.47–2.37 (m, 1H), 2.21–2.04 (m, 3H), 1.95–1.88 (m, 1H), 1.86–1.68 (m, 3H), 1.79 (ddd, J = 16.5, 9.5, 1.5 Hz, 1H), 1.66 (s, 3H), 1.62 (d, J = 1.0 Hz, 3H), 1.51–1.39 (m, 3H), 1.36–1.25 (m, 2H), 1.24 (s, 3H), 1.17 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 6.5 Hz, 6H); ¹³C NMR (C₆D₆, 100 MHz) δ = 175.5, 175.3, 175.1, 143.7, 126.3, 60.5, 58.9, 56.3, 45.6, 36.6, 35.6, 34.1, 32.4, 32.0, 30.2, 30.1, 25.6, 23.3, 23.1, 21.8, 17.2, 17.1, 14.4; HRMS (ESI): m/z calcd for $C_{25}H_{41}O_4N_2$ [M+H]⁺, 433.3061, found 433.3061.

Boneratamide A (1a). A suspension of L-glutamic acid (5) (11 mg, 0.072 mmol), acetone (0.10 mL, 1.30 mmol) and MeOH (0.60 mL) in a sealed test tube under nitrogen atmosphere was heated at 50 °C for 2 h. To this mixture was added (+)-axisonitrile-3 (4) (10 mg, 0.043 mmol) at room temperature. The reaction mixture was heated at 50 °C for 90 min and then at 80 °C for 12 h . After cooling at room temperature, concentration under reduced pressure afforded a residue, which was purified by silica-gel chromatography (CHCl₃/MeOH 7:1) to furnish boneratamide A (1a) (14 mg, 76%) as a white solid. Mp 222–223 °C; $[\alpha]_D^{28} = +13.8$ (c = 0.54, CH₂Cl₂); IR (KBr): $v_{max} = 3330$, 2956, 2927, 2870, 1716, 1654, 1541, 1463, 1386, 1229 cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ = 7.36–7.22 (m, 1H), 5.31 (brs, 1H), 4.50 (brd, J = 10.0 Hz, 1H), 4.04 (brd, J = 9.5 Hz, 1H), 2.37–2.06 (m, 5H), 1.91–1.65 (m, 5H), 1.63 (brs, 3H), 1.49 (brs, 3H), 1.40–1.25 (m, 5H), 1.23 (brs, 3H), 1.15 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H); ¹H NMR (CDCl₃, 400 MHz) $\delta = 6.31$ (brd, J = 10.5 Hz, 1H), 5.24 (brs, 1H), 4.41 (d, J = 8.5 Hz, 1H), 4.16 (dd, J = 10.5, 2.5 Hz, 1H), 2.55–2.08 (m, 6H), 1.96–1.87 (m, 1H), 1.79-1.71 (m, 1H), 1.74 (brs, 3H), 1.68 (s, 3H), 1.65-1.50 (m, 3H), 1.48 (s, 3H), 1.38-1.26 (m, 2H), 1.24–1.12 (m, 1H), 1.04–0.92 (m, 1H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.89 (d, *J* = 6.5 Hz, 3H), 0.78 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 176.3$, 175.4, 175.3, 143.6, 125.4, 60.2, 58.5, 58.4, 56.1, 44.9, 36.3, 35.6, 33.6, 31.8, 30.0, 29.8, 29.5, 25.9, 25.7, 25.2, 23.1, 21.4, 17.1, 16.5; HRMS (ESI): m/z calcd for C₂₄H₃₉O₄N₂ [M+H]⁺, 419.2904, found 419.2904.

Methyl esters of boneratamide B (2b) and C (3b). A solution of L-glutamic acid 1-methyl ester (27) (8 mg, 0.048 mmol) and acetaldehyde (0.075 mL, 1.30 mmol) in MeOH (0.30 mL) was stirred at room temperature for 60 min. To this mixture was added a solution of axisonitrile-3 (4) (10 mg, 0.043 mmol) dissolved in a mixture of benzene (0.025 mL) and methanol (0.10 mL). The reaction mixture was stirred at room temperature for 3 h, and then diluted with water. The aqueous layer was extracted with EtOAc (×3), and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure to afford a residue, which was dissolved in a mixture of benzene (0.44 mL) and methanol (0.21 mL). The solution was treated with trimethylsilyldiazomethane (2.0 M solution in ether, 0.21mL, 0.42 mmol), stirred at room temperature for 12 h and then concentrated under reduced pressure. The crude product was purified by silica-gel chromatography (EtOAc/hexane 1:2) to furnish boneratamide B methyl ester (2b) (7.1 mg, 39%) as a colorless oil and boneratamide C methyl ester (3b) (2.8 mg, 15%) as a white solid. Boneratamide B methyl ester (2b): $[\alpha]_D^{26} = +15.2$ $(c = 2.15, \text{CH}_2\text{Cl}_2), \ [\alpha]_D^{26} = +19.9 \ (c = 2.07, \text{CHCl}_3); \text{IR (KBr): } \nu_{\text{max}} = 3338, 2955, 2930, 2871,$ 1746, 1667, 1537, 1438, 1416, 1204, 1179 cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) $\delta = 6.92$ (d, J =10.5 Hz, 1H), 5.30 (q, J = 1.5 Hz, 1H), 4.48 (dd, J = 10.5, 2.5 Hz, 1H), 4.46 (q, J = 7.0 Hz, 1H), 4.11 (dd, J = 9.5, 2.0 Hz, 1H), 3.22 (s, 3H), 2.31–2.21 (m, 2H), 2.16–2.08 (m, 2H), 1.87 (ddd, J = 17.0, 10.0, 2.5 Hz, 1H, 1.75-1.62 (m, 4H), 1.61 (d, J = 1.0 Hz, 3H), 1.53-1.40 (m, 3H), 1.37 (m, 3H)(d, J = 7.0 Hz, 3H), 1.32 - 1.27 (m, 1H), 1.20 - 1.12 (m, 2H), 1.11 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H)6.5 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz) $\delta = 175.4$ 173.2, 170.5, 142.8, 126.0, 58.7, 58.6, 55.0, 52.9, 51.6, 44.8, 36.0, 35.2, 33.4, 32.0, 29.7, 29.5, 25.3, 24.1, 21.4, 21.0,

16.7, 16.5, 14.2; HRMS (ESI): m/z calcd for C₂₄H₃₉O₄N₂ [M+H]⁺, 419.2904, found 419.2904. Boneratamide C methyl ester (**3b**): Mp 103–104 °C (recrystallized from benzene/hexane); $[\alpha]_D^{26}$ = -29.5 (*c* = 1.00, CH₂Cl₂), $[\alpha]_D^{27}$ = -35.7 (*c* = 1.00, CHCl₃); IR (KBr): v_{max} = 3339, 2954, 2927, 2870, 1746, 1666, 1541, 1438, 1208, 1178 cm⁻¹; ¹H NMR (C₆D₆, 400 MHz) δ = 7.21 (d, *J* = 11.0 Hz, 1H), 5.32 (q, *J* = 1.5 Hz, 1H), 4.53 (q, *J* = 7.0 Hz, 1H), 4.46 (brd, *J* = 11.0 Hz, 1H), 3.86 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.34 (s, 3H), 2.34–2.03 (m, 4H), 1.84 (ddd, *J* = 17.0, 9.5, 3.5 Hz, 1H), 1.82–1.76 (m, 1H), 1.77 (ddd, *J* = 13.0, 9.0, 4.0 Hz, 1H), 1.64–1.60 (m, 2H), 1.59 (d, *J* = 1.0 Hz, 3H), 1.53–1.50 (m, 1H), 1.46–1.35 (m, 2H), 1.34 (d, *J* = 7.0 Hz, 3H), 1.33–1.27 (m, 2H), 1.17 (d, *J* = 6.5 Hz, 3H), 1.15–1.10 (m, 1H), 0.98 (d, *J* = 6.5 Hz, 3H), 0.84 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz) δ = 175.8 172.3, 170.0, 143.1, 126.3, 59.2, 58.0, 55.3, 53.3, 51.9, 45.2, 36.2, 35.4, 33.7, 32.3, 29.8, 29.4, 25.5, 23.8, 22.3, 21.4, 17.0, 16.8, 14.7; HRMS (ESI): m/z calcd for C₂₄H₃₉O₄N₂ [M+H]⁺, 419.2904, found 419.2904.

(R)-1-((S)-1-(((5R,6S,7R,10S)-7-isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-yl) Methyl amino)-1-oxopropan-2-yl)-5-oxopyrrolidine-2-carboxylate (28) and methyl (R)-1-((R)-1 -(((5R,6S,7R,10S)-7-isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-yl)amino)-1-oxopropan-2yl)-5-oxopyrrolidine-2-carboxylate (29). A solution of D-glutamic acid (ent-5) (9.5 mg, 0.065 mmol) and acetaldehyde (0.075 mL, 1.30 mmol) in MeOH (0.30 mL) was stirred at room temperature for 3 h. To this mixture was added a solution of (+)-axisonitrile-3 (4) (10 mg, 0.043 mmol) dissolved in a mixture of benzene (0.050 mL) and methanol (0.10 mL). The reaction mixture was stirred at room temperature for 19 h and diluted with water. The aqueous layer was extracted with EtOAc (×3), and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure to afford a residue, which was dissolved in a mixture of benzene (0.44 mL) and methanol (0.22 mL). The solution was treated with trimethylsilyldiazomethane (2.0 M solution in ether, 0.21 mL, 0.42 mmol), stirred at room temperature for 20 h and then concentrated under reduced pressure. The crude product was purified by silica-gel chromatography (EtOAc/hexane 1:2) to furnish 28 (9.2 mg, 51%) as a white solid and 29 (3.8 mg, 21%) as a colorless oil.

Methyl (*R*)-1-(((*S*)-1-(((*SR*,6*S*,7*R*,10*S*)-7-isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-yl)amino) -1-oxopropan-2-yl)-5-oxopyrrolidine-2-carboxylate (**28**): Mp 70–71 °C; $[\alpha]_D^{25} = -51.1$ (*c* = 1.77, CH₂Cl₂); IR (KBr): $v_{max} = 3341$, 2955, 2930, 2871, 1746, 1667, 1538, 1438, 1415, 1205, 1179 cm⁻¹; ¹H NMR (C₆D₆, 500 MHz) $\delta = 6.78$ (brd, *J* = 10.5 Hz, 1H), 5.28 (q, *J* = 1.5 Hz, 1H), 4.59 (q, *J* = 7.0 Hz, 1H), 4.44 (dd, *J* = 11.0, 2.0 Hz, 1H), 4.19 (dd, *J* = 9.5, 1.5 Hz, 1H), 3.22 (s, 3H), 2.34–2.25 (m, 2H), 2.18–2.04 (m, 2H), 1.87 (ddd, *J* = 17.0, 9.5, 2,5 Hz, 1H), 1.78–1.63 (m, 3H), 1.53–1.41 (m, 3H), 1.36 (d, J = 7.0 Hz, 3H), 1.35–1.16 (m, 3H), 1.14–1.07 (m, 1H), 1.04 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.5 Hz, 3H), 0.81 (d, J = 6.5 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz) $\delta = 175.8$, 173.7, 170.6, 170.5, 143.3, 126.2, 58.9, 58.5, 55.3, 52.7, 51.9, 45.1, 36.3, 35.4, 33.7, 32.2, 30.1, 29.7, 25.6, 24.4, 21.6, 21.4, 17.1, 16.8, 14.6, 14.4; HRMS (ESI): m/z calcd for C₂₄H₃₉O₄N₂ [M+H]⁺, 419.2904 , found 419.2904.

Methyl (*R*)-1-(((*R*)-1-(((5R,6S,7R,10S)-7-isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-yl)amino) -1-oxopropan-2-yl)-5-oxopyrrolidine-2-carboxylate (**29**): $[\alpha]_{D}^{26} = +8.4$ (*c* = 0.60, CH₂Cl₂); IR (KBr): $\nu_{max} = 3336$, 2955, 2928, 2871, 1748, 1689, 1664, 1541, 1438, 1419, 1209, 1178 cm⁻¹; ¹H NMR (C₆D₆, 500 MHz) δ = 7.22 (brd, *J* = 10.5 Hz, 1H), 5.33 (q, *J* = 1.5 Hz, 1H), 4.50 (q, *J* = 7.0 Hz, 1H), 4.42 (dd, *J* = 10.5, 2.5 Hz, 1H), 3.89 (dd, *J* = 8.5, 3.0 Hz, 1H), 3.36 (s, 3H), 2.40–2.33 (m, 1H), 2.28 (ddd, *J* = 17.0, 10.0, 10.0 Hz, 1H), 2.22–2.14 (m, 2H), 1.84 (ddd, *J* = 17.0, 9.5, 3.5 Hz, 1H), 1.83 (ddd, *J* = 17.0, 4.5, 4.5 Hz, 1H), 1.79–1.70 (m, 2H), 1.64 (s, 3H), 1.55–1.38 (m, 4H), 1.33 (d, *J* = 7.0 Hz, 3H), 1.31–1.15 (m, 3H), 1.13 (d, *J* = 6.5 Hz, 3H), 0.91 (d, *J* = 6.5 Hz, 3H), 0.88 (d, *J* = 6.5 Hz, 3H);¹³C NMR (C₆D₆, 100 MHz) δ = 175.8, 172.3, 170.0, 143.0, 126.6, 58.7, 58.3, 55.5, 53.3, 52.0, 45.4, 36.6, 35.4, 33.8, 32.4, 30.1, 29.9, 25.7, 23.9, 21.8, 21.4, 17.1, 17.0, 14.8, 14.4; HRMS (ESI): m/z calcd for C₂₄H₃₉O₄N₂ [M+H]⁺, 419.2904 , found 419.2904.

(+)-axisonitrile-3 (4)

¹ H NMR (δ) Synthetic Sample (400 MHz, CDCl ₃)	¹ H NMR (δ) Natural Sample ⁶ (400 MHz, CDCl ₃)
5.13 (1H, q, <i>J</i> = 1.0)	5.11 (1H, br s, H-1)
3.59 (1H, brs)	3.57 (1H, br s, H-6)
2.20–2.28 (2H, m)	2.21 (2H, m, H-3a, H-3b)
1.92–1.98 (2H, m)	1.93 (2H, m, H-4a, H-4b)
1.76–1.84 (2H, m)	1.77 (2H, m, H-8a, H-10)
1.74 (3H, brs)	1.72 (3H, br s, H-14)
1.59 (1H, qd, <i>J</i> = 6.5, 2.5)	1.57 (1H, m, H-11)
1.48–1.54 (1H, m)	1.48 (1H, m, H-9a)
1.27–1.40 (1H, m)	1.33 (1H, ddd, <i>J</i> = 13.0, 13.0, 4.0)
1.10–1.21 (2H, m)	1.13 (1H, m, H-7)
_	1.04 (1H, m, H-9b)
0.94 (3H, d, <i>J</i> = 6.5)	0.92 (3H, d, <i>J</i> = 6.6, H-12)
0.91 (3H, d, <i>J</i> = 6.5)	0.89 (3H, d, <i>J</i> = 6.6, H-13)
0.76 (3H, d, <i>J</i> = 7.0)	0.74 (3H, d, <i>J</i> = 7.0, H-15)

Coupling constants, J_{H-H} (in Hz), are given in parentheses.

(+)-axisonitrile-3 (4)

	¹³ C NMR (δ)	13 C NMR (δ)	
Position	(100 MHz, CDCl ₃)	(100 MHz, CDCl ₃)	Δδ
1	123.7	123.6	+0.1
2	144.8	144.8	0
3	35.9	35.8	+0.1
4	35.0	34.9	+0.1
5	57.1	57.0	+0.1
6	64.6	64.5	+0.1
7	43.8	43.8	0
8	24.9	24.9	0
9	31.2	31.2	0
10	34.4	34.3	+0.1
11	29.8	29.7	+0.1
12	20.8	20.7	+0.1
13	20.4	20.3	+0.1
14	17.0	16.9	+0.1
15	16.1	16.0	+0.1
16	156.4	155.6	-0.2

Comparison of ¹H NMR data of synthetic and isolated boneratamide A methyl ester

methyl ester of boneratamide A (1b)			
Position	¹ H NMR (δ) Synthetic Sample (400 MHz, C ₆ D ₆)	¹ H NMR (δ) Natural Sample ⁸ (500 MHz, C ₆ D ₆)	
1	4.66 (dd, <i>J</i> = 10.5, 2.5)	4.65 (dd, <i>J</i> = 10.4, 2.3)	
2	***	1.42–1.50 (m)	
3a	**	1.68 (m)	
3b	1.88–1.95 (m)	1.91 (dm, $J = 12.1$)	
4a	****	1.28 (m)	
4b	**	1.70 (m)	
5	**	1.81 (m)	
6			
7a	*	2.07 (ddd, <i>J</i> = 13.7, 9.3, 4.3)	
7b	2.66 (ddd, <i>J</i> = 13.5, 9.5, 5.5)	2.65 (ddd, <i>J</i> = 13.7, 9.8, 5.9)	
8a	*	2.14 (m)	
8b	2.37–2.47 (m)	2.42 (m)	
10	5.41 (q, J = 1.0)	5.41 (brs)	
11	***	1.42–1.50	
12	1.17 (d, <i>J</i> = 6.5)	1.17 (d, <i>J</i> = 6.4)	
13	0.98 (d, $J = 6.5$)	0.98 (d, <i>J</i> = 6.4)	
14	0.98 (d, J = 6.5)	0,97 (d, <i>J</i> = 6.5)	
15	1.62 (d, $J = 1.0$)	1.62 (brs)	
16 NH	7.51 (d, <i>J</i> = 10.5)	7.49 (d, <i>J</i> = 10.4)	
18			
21a	1.79 (ddd, <i>J</i> = 16.5, 9.5, 1.5)	1.79 (ddd, <i>J</i> = 16.4, 9.5, 1.9)	
21b	*	2.14 (m)	
22a	****	1.30 (m)	
22b	***	1.42–1.50	
23	3.76 (dd, <i>J</i> = 10.0, 1.5)	$3.78 (\mathrm{dd}, J = 9.8, 1.5)$	
25	1.66 (s)	1.66 (s)	
26	1.24 (s)	1.25 (s)	
OMe	3.16 (s)	3.17 (s)	

*2.04–2.21(m), 3H; **1.68–1.86 (m), 3H; ***1.39–1.51 (m), 3H; ****1.25–1.36 (m), 2H.

Comparison of ¹³C NMR data of synthetic and isolated boneratamide A methyl ester

$\frac{13 \text{ C NMR } (\delta)}{13 \text{ C NMR } (\delta)}$				
Position	Synthetic Sample	Natural Sample ⁸	$\Delta\delta$ (nnm)	
1	55.4	55.3	+0.1	
2	45.5	45.6	-0.1	
3	25.6	25.7	-0.1	
4	32.6	32.7	-0.1	
5	35.6	35.6	0	
6	59.1	59.2	-0.1	
7	33.9	33.9	0	
8	36.6	36.6	0	
9	143.6	143.6	0	
10	126.4	126.4	0	
11	30.3	30.3	0	
12	21.7	21.7	0	
13	21.6	21.6	0	
14	17.1	17.1	0	
15	17.1	17.2	-0.1	
16	-	_		
17	172.8	172.7	+0.1	
18	60.9	60.9	0	
19	_	_		
20	174.1	174.0	+0.1	
21	30.0	30.0	0	
22	24.5	24.5	0	
23	57.7	57.8	-0.1	
24	175.7	175.5	+0.2	
25	23.7	23.8	-0.1	
26	25.6	25.6	0	
OMe	52.3	52.2	+0.1	

methyl ester of boneratamide B (2b) ¹H NMR (δ) ¹H NMR (δ) Synthetic Sample Natural Sample⁸ Position (400 MHz, C₆D₆) (500 MHz, C₆D₆) 1 4.48 (dd, *J* = 10.5, 2.5) 4.48 (dd, J = 10.8, 2.6)2 1.27-1.32 (m) 1.28 (m) **** 1.14 (m) 3a 3b *** 1.73 (m) **** 4a 1.12 (m) **** 4b 1.49 (m) *** 5 1.61 (m) 6 7a *** 1.71 (m) ** 7b 2.12 (m) 8a ** 2.11 (m) * 8b 2.28 (m) 10 5.30 (q, J = 1.5)5.30 (brs) **** 11 1.47 (m) 1.11 (d, J = 7.0) 12 1.11 (d, J = 6.6)13 0.90 (d, J = 6.5)0.90 (d, J = 6.7)14 0.86 (d, J = 6.5)0.86 (d, J = 6.6)15 1.61 (d, J = 1.0)1.61 (brs) 16 NH 6.92 (d, *J* 10.5) 6.91 (d, J = 10.8)18 4.46 (q, J = 7.0)4.46 (q, J = 7.2)1.87 (ddd, J = 17.0, 10.0, 2.5)1.87 (ddd, J = 16.6, 9.6, 2.4)21a * 21b 2.26 (m) **** 22a 1.42 (m) *** 22b 1.67 (m) 23 4.11 (dd, J = 9.5, 2.0) 4.11 (dd, *J* = 9.5, 1.8) 25 1.37 (d, J = 7.0)1.37 (d, J = 7.2)OMe 3.22 (s) 3.22 (s)

*2.21–2.31(m), 2H; **2.08–2.16 (m), 2H; ***1.62–1.75 (m), 4H; ****1.40–1.53 (m), 3H; ****1.12–1.20 (m), 2H. 31

methyl ester of boneratamide B (2b)

	^{13}C NMR (δ)	13 C NMR (δ)	
Position	(100 MHz, C ₆ D ₆)	(125 MHz, C ₆ D ₆)	Δδ (ppm)
1	55.0	55.2	-0.2
2	44.8	45.1	-0.3
3	25.3	25.7	-0.4
4	32.0	32.2	-0.2
5	35.2	35.6	-0.4
6	58.7	59.0	-0.3
7	33.4	33.6	-0.2
8	36.0	36.3	-0.3
9	142.8	143.1	-0.3
10	126.0	126.2	-0.2
11	29.7	30.0	-0.3
12	21.4	21.7	-0.3
13	21.0	21.3	-0.3
14	16.5	16.8	-0.3
15	16.7	17.0	-0.3
16	_	_	
17	170.3	170.2	+0.1
18	52.9	53.3	-0.4
19	_	_	
20	175.4	175.6	-0.2
21	29.5	29.7	-0.2
22	24.1	24.3	-0.2
23	58.6	58.8	-0.2
24	173.3	173.4	-0.1
25	14.2	14.1	+0.1
OMe	51.6	51.9	-0.3

Comparison of ¹H NMR data of synthetic and isolated boneratamide C methyl ester

methyl ester of boneratamide C (3b)			
Position	¹ H NMR (δ) Synthetic Sample (400 MHz, C ₆ D ₆)	¹ H NMR (δ) Natural Sample ⁸ (500 MHz, C ₆ D ₆)	
1	4.46 (brd $J = 10.8$)	4.46 (bd, <i>J</i> = 10.9)	
2	****	1.32 (m)	
3a	****	1.30 (m)	
3b	1.76–1.82 (m)	1.78 (m)	
4a	1.10–1.15 (m)	1.14 (m)	
4b	1.50–1.53 (m)	1.51 (m)	
5	**	1.61 (m)	
6			
7a	1.77 (ddd, <i>J</i> = 13.0, 9.0, 4.0)	1.76 (ddd, <i>J</i> = 13.2, 9.2, 3.9)	
7b	*	2.18 (m)	
8a	*	2.10 (m)	
8b	*	2.31 (m)	
10	5.32 (q, J = 1.5)	5.32 (br)	
11	**	1.61 (m)	
12	1.17 (d, $J = 6.5$)	1.17 (d, J=6.4)	
13	0.98 (d, $J = 6.5$)	0.98 (d, <i>J</i> = 6.7)	
14	0.84 (d, J = 6.5)	0.84 (d, <i>J</i> = 6.6)	
15	1.59 (d, <i>J</i> = 1.0)	1.59 (brs)	
16 NH	7.21 (d, J = 11.0)	7.20 (d, <i>J</i> = 10.9)	
18	4.53 (q, <i>J</i> = 7.0)	4.52 (q, <i>J</i> = 7.3)	
21a	1.84 (ddd, <i>J</i> = 17.0, 9.5, 3.5)	1.84 (ddd, $J = 16.8, 9.6, 3.3$)	
21b	*	2.27 (m)	
22a	***	1.42 (m)	
22b	***	1.45 (m)	
23	3.86 (dd, J=9.0, 3.0)	3.86 (dd, <i>J</i> = 8.8, 2.8)	
25	1.34 (d, J = 7.0)	1.34 (d, <i>J</i> = 7.2)	
OMe	3.34 (s)	3.34 (s)	

 $*2.03-2.34\ (m),\ 4H;\ **1.60-1.64\ (m),\ 2H;\ ***1.35-1.46\ (m),\ 2H;\ ****1.27-1.33\ (m),\ 2H.$

Comparison of ¹³C NMR data of synthetic and isolated boneratamide C methyl ester

methyl ester of boneratamide C (3b)

	¹³ C NMR (δ) Synthetic Sample	13 C NMR (δ) Natural Sample ⁸	
Position	(100 MHz, C ₆ D ₆)	(125 MHz, C ₆ D ₆)	Δδ (ppm)
1	55.3	55.4	-0.1
2	45.2	45.3	-0.1
3	25.5	25.5	0
4	32.3	32.3	0
5	35.4	35.5	-0.1
6	59.2	58.9	+0.3
7	33.7	33.7	0
8	36.2	36.3	-0.1
9	143.1	143.5	-0.4
10	126.3	126.5	-0.2
11	29.4	29.4	0
12	22.3	22.3	0
13	21.4	21.4	0
14	16.8	17.1	-0.3
15	17.0	17.2	-0.2
16	_	-	
17	170.0	170.0	0
18	53.3	53.5	-0.2
19	_	-	
20	175.8	175.9	-0.1
21	29.8	29.9	-0.1
22	23.8	23.7	+0.1
23	58.0	58.1	-0.1
24	172.3	172.4	-0.1
25	14.7	14.4	+0.3
OMe	51.9	52.0	-0.1

200.00				
190.0	North Party Party			
0 180.0			4	
)0 170.			ЭЩ ЭЩ	
00 160				
0.00 15				
0.00 1				
40.00 1				
30.00				128.968
120.00	A STATE OF			
110.00				
100.00				
90.00				
) 80.0				/ 77.424
0 70.				- 77.100 76.785
00 00				60.672
.00 50				60.414
).00 4				42.308 38.590 38.113
0.00	The second			$= \begin{array}{c} 32.287 \\ 32.230 \\ 32.154 \\ 32.040 \end{array}$
30.00		-		$ \begin{array}{c} 32.040 \\ 30.886 \\ 30.085 \\ -24.698 \end{array} $
20.00				24.098 20.426 19.893 19.740
10.00				19.664 19.435 19.263
0.00				

200.00 190.00 180.0	 2 2	
00 170.00 160		
0.00 150.00 1		
140.00 130.		138.357
00 120.00		128.403
110.00 100.0		
0 90.00 8		
0.00 70.00		77.416 77.100 76.774
60.00 5		
50.00 40.0		42.151
0 30.00		32.274 32.044 31.948 30.607
20.00 10.		$ \begin{array}{c} 24.293 \\ 19.800 \\ 19.599 \\ 19.292 \\ 16.457 \end{array} $
00 0.00		

200.00 190.00	Yingin Managaran Sala ang Pangaran Sala	
180.00	A Marcalana and	
170.00		
) 160.0		
0 150.0		
0 140.		
00 130		
.00 120	n selection and the selection of the sel	
.00 110		
0.00 10		
0.00 90		
0.00 8		
0.00		77.426 77.100 76.784
70.00		
60.00		
50.00		
40.00	relation of the second se	42.141 / 33.126 // 32.360
30.00		
20.00		
) 10.0		17.203
0 0.00		
1		

200.0	المحادثات أربعهم محادثهم والع		
0 190.00	مهدلدي بالتهدادي ويحمد ماستعدادها	19 OEt	
180.00 17	المعالمات مركاتك تعدلها المستعد السافة		173.650
0.00 160.0	يد إعالانا فالقامين بمارتدأ، بلالة ناميد		
0 150.00	دأحد عطالهمأهماء باللقد مساعدتا ومن		
140.00 13	م مأمانين و والمحمد المان المحمد الم		140.483
0.00 120.0	ويلفانك ويروني والمستحدث والمط		126.027
0 110.00	فعدد بالكسد تتاريخ بسالقصه كازم كالمالة		
100.00 90.	فلنائ بمالحان لمشبطان المارية والمراجع		
00 80.00	سف مأعناه ممتابا لنشع تعابلنانه لف		77.416
70.00	لعدنال هانديد الدايلة والمعدما أتساهه		76.774
50.00 5 0.	وميفارك خالسة لاستطاقه بالتجاعالاتهن		60.306
00 40.00	متلده والمستركبة والمستركبة والمستركبة		42.141
30.00	andra - min. alt methods also		33.375 32.417 32.264 30.156
20.00 10.	and a straight statement		24.609 19.733 19.350 14.320
00 0.00	يتعلمهم المحمد عارف المتعملية والمار		

200.00 190.00 180.00 1			(+)-axisonitrile-3 (4)
70.00 16			
0.00 150			155.706
0.00 140.			144.871
00 130.0			
0 120.0			123.651
0 110.00			
100.00			
90.00			
80.00			
70.00 (64.550
50.00 5			57.106
50.00 4			43.837
0.00 30		_	35.876
).00 20.			34.420 31.249 29.773 24.945
.00 10.			20.825 20.375 17.041 16.140
0.00			10.536

X-ray crystallographic structure of 1b

CCDC 2144949 Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value

D_{calc}

F₀₀₀ μ(CuKα) C₂₅H₄₀N₂O₄ 432.60 colorless, block 0.700 X 0.350 X 0.300 mm orthorhombic Primitive a = 7.9942(2) Åb = 10.5274(3) Åc = 29.6819(8) Å $V = 2497.98(12) \text{ Å}^3$ P2₁2₁2₁ (#19) 4 1.150 g/cm³ 944.00

6.154 cm⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation	CuK α (λ = 1.54187 Å) graphite monochromated
Voltage, Current	50kV, 100mA
Temperature	-180.0 ⁰ C
Detector Aperture	460.0 x 256.0 mm
Data Images	450 exposures
ω oscillation Range (χ=54.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=90.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=180.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=270.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=10.0, φ=60.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰

Detector Position	127.40 mm
Pixel Size	0.100 mm
2θ _{max}	136.4 ⁰
No. of Reflections Measured	Total: 28338 Unique: 4564 (R _{int} = 0.0711) Parsons quotients (Flack x
parameter). 1004	
Corrections	Lorentz-polarization Absorption (trans. factors: 0.710 - 0.831)

C. Structure Solution and Refinement

Structure Solution Version 2014/4)	Direct Methods (SHELXT
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0758 · P) ² + 1.0018 · P]
2Fc ²)/3	where P = (Max(Fo ² ,0) +
$2\theta_{max}$ cutoff	136.4 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4564
No. Variables	280
Reflection/Parameter Ratio	16.30
Residuals: R1 (I>2.00 σ (I))	0.0468
Residuals: R (All reflections)	0.0479
Residuals: wR2 (All reflections)	0.1305
Goodness of Fit Indicator	1.051
Flack parameter (Parsons' quotients = 1834)	0.09(7)

Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.62 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.40 e ⁻ /Å ³

X-ray crystallographic structure of 3b

CCDC 2144950 Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value

D_{calc}

F₀₀₀ μ(CuKα) C₂₇H₄₁N₂O₄ 457.63 colorless, block 0.600 X 0.500 X 0.300 mm monoclinic C-centered a = 17.0655(8) Å b = 10.6435(5) Å c = 16.6001(8) Å $\beta = 116.597(8)$ ^O $V = 2696.1(3) Å^3$ C2 (#5) 4 1.127 g/cm³ 996.00 5.969 cm⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation	CuK α (λ = 1.54187 Å) graphite monochromated
Voltage, Current	50kV, 100mA
Temperature	-100.0 ⁰ C
Detector Aperture	460.0 x 256.0 mm
Data Images	180 exposures
ω oscillation Range (χ=54.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=90.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=180.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=270.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=0.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰

Detector Position	127.40 mm
Pixel Size	0.100 mm
20 _{max}	136.5 ⁰
No. of Reflections Measured	Total: 15545 Unique: 4797 (R _{int} = 0.0333) Parsons quotients (Flack x
parameter): 2053	
Corrections	Lorentz-polarization Absorption (trans. factors: 0.671 - 0.836)

C. Structure Solution and Refinement

Structure Solution Version 2014/4)	Direct Methods (SHELXT
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.1032 · P) ² + 1.5528 · P]
2Fc ²)/3	where P = (Max(Fo ² ,0) +
2θ _{max} cutoff	136.5 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4797
No. Variables	299
Reflection/Parameter Ratio	16.04
Residuals: R1 (I>2.00 σ (I))	0.0543
Residuals: R (All reflections)	0.0559
Residuals: wR2 (All reflections)	0.1571
Goodness of Fit Indicator	1.064
Flack parameter (Parsons' quotients = 2053)	0.11(5)

Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.63 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.39 e ⁻ /Å ³

X-ray crystallographic structure of 28

CCDC 2183045	
Empirical formula	$C_{24}H_{40}N_2O_5$
Formula weight	436.58
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P21
a/Å	13.2329(2)
b/Å	6.99870(10)
c/Å	14.9696(3)
a/°	90
β/°	115.326(2)
γ/°	90
Volume/ų	1253.13(4)
Z	2
$ ho_{calc}g/cm^3$	1.157
µ/mm ⁻¹	0.646
F(000)	476.0
Crystal size/mm ³	0.361 × 0.137 × 0.047
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	6.532 to 149.21
Index ranges	-15 ≤ h ≤ 16, -7 ≤ k ≤ 8, -18 ≤ l ≤ 18
Reflections collected	15311
Independent reflections	4609 [$R_{int} = 0.0346$, $R_{sigma} = 0.0347$]
Data/restraints/parameters	4609/1/290

Goodness-of-fit on F^2 Final R indexes [I>= 2σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ Flack parameter 1.041 $R_1 = 0.0315$, $wR_2 = 0.0815$ $R_1 = 0.0332$, $wR_2 = 0.0826$ 0.24/-0.20 -0.08(8)

Catalyst Screening for Cyclopropanation^a

Entry	Catalyst (mol%)	Solvent	Temperature	Time	Yield (%) ^b
1	copper (II) catalyst 1 (8)	toluene	80 °C	15 h	46
2	copper ($\rm I\!I$) catalyst 1 (8) - BF ₃ \cdot OEt ₂ (1)	toluene	r.t. to 80 $^\circ \mathrm{C}$	4 h	20
3	$Cu(acac)_2(2)$	toluene	80 °C	6 h	33
4 ⁹	$Cu(acac)_2(1) - BF_3 \cdot OEt_2(1)$	$\mathrm{CH}_2\mathrm{Cl}_2$	r.t.	6 h	49
5 ⁹	$CuOTf(C_6H_6)_{0.5}$ (2)	CH_2Cl_2	r.t. to 40 $^\circ \rm C$	6 h	no reaction
6	$CuOTf(C_6H_6)_{0.5}$ (5)	toluene	80 °C	18 h	18
7	CuOAc (2) - $BF_3 \cdot OEt_2(1)$	CH_2Cl_2	r.t.	68 h	<5
8	$Cu(OTf)_2(2)$	CH_2Cl_2	r.t.	68 h	<5
9	$Cu(OTf)_2(2) - BF_3 \cdot OEt_2(1)$	CH_2Cl_2	r.t.	48 h	<5
10	$Cu(TFA)_2(2)$	toluene	80 °C	48 h	8
11	$Cu(TFA)_2$ (2) - BF ₃ ·OEt ₂ (1)	$\mathrm{CH}_2\mathrm{Cl}_2$	r.t.	24 h	22
12	Cu powder (60)	toluene	80 °C	3 h	<5
13	CuCl (100)	toluene	80 °C	3 h	45
14	CuBr (100)	toluene	80 °C	18 h	33
15	CuI (100)	toluene	80 °C	20 h	25
16^{10}	$[RuCl_2(C_6H_6)]_2$ (1)	CH_2Cl_2	r.t. to 40 $^\circ \rm C$	3 d	no reaction
17^{11}	ruthenium (II) catalyst $2(1)$	CH_2Cl_2	r.t. to 40 $^\circ \rm C$	3 d	<5
18	Rh ₂ (OAc) ₄ (5)	CH_2Cl_2	r.t.	5 min	42
19	$Rh_2(OAc)_4(5)$	$ClCH_2CH_2Cl$	r.t.	5 min	38
20	$Rh_2(OAc)_4(1)$	toluene	r.t.	30 min	46
21	$Rh_2(Opiv)_2$ (1)	$\mathrm{CH}_2\mathrm{Cl}_2$	r.t.	5 min	0
22	$Rh_2(Opiv)_2$ (1)	toluene	-40 °C	30 min	0
23	$Pd(OAc)_2$ (2)	CH_2Cl_2	r.t.	39 h	no reaction
24 ¹²	$Pd(OAc)_2$ (5)	toluene	80 °C	21 h	15
25 ¹²	$Pd(PPh_3)_4$ (5)	toluene	80 °C	21 h	13
26	PdCl ₂ (10)	toluene	80 °C	24 h	27

^aAll reactions were performed on 10 mg scale and run under nitrogen atmosphere. ^bIsolated yields.

A Plausible reaction mechanism for formation of boneratamide A

References

- 1. A. Fürstner and P. Hannen, *Chem. Eur. J.*, 2006, **12**, 3006-3019.
- 2. E. J. Corey and D. Y. Gin, *Tetrahedron Lett.*, 1996, **37**, 7163-7166.
- 3. C. Fehr, B. Winter and I. Magpantay, *Chem. Eur. J.*, 2009, **15**, 9773-9784.
- S. Hosokawa, K. Nakanishi, Y. Udagawa, M. Maeda, S. Sato, K. Nakano, T. Masuda and Y. Ichikawa, *Org. Biomol. Chem.*, 2020, 18, 687-693.
- B. Di Blasio, E. Fattorusso, S. Magno, L. Mayol, C. Pedone, C. Santacroce and D. Sica, *Tetrahedron*, 1976, **32**, 473-478.
- 6. P. Jumaryatno, B. L. Stapleton, J. N. A. Hooper, D. J. Brecknell, J. T. Blanchfield and M. J. Garson, *J. Nat. Prod.*, 2007, **70**, 1725-1730.
- 7. K. Tamura, A. Nakazaki and S. Kobayashi, *Synlett*, 2009, 2449-2452.
- 8. D. E. Williams, B. O. Patrick, A. Tahir, R. Van Soest, M. Roberge and R. J. Andersen, J. Nat. Prod., 2004, 67, 1752-1754.
- E. Tayama, K. Horikawa, H. Iwamoto and E. Hasegawa, *Tetrahedron Lett.*, 2014, 55, 3041-3044.
- R. Chanerika, H. B. Friedrich and M. L. Shozi, *Appl. Organomet. Chem.*, 2020, 34, e5361.
- 11. S. Chanthamath, K. Phomkeona, K. Shibatomi and S. Iwasa, *Chem. Commun.*, 2012, **48**, 7750-7752.
- 12. S. Chen, J. Ma and J. Wang, *Tetrahedron Lett.*, 2008, **49**, 6781-6783.