Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

For

Photoredox-catalyzed Fluorodifluoroacetylation of Alkenes with FSO₂CF₂CO₂Me and Et₃N·3HF

Song Zou^a, Xuewei Luo^a, Chao Chen^{*a}, and Chanjuan Xi^{*a,b}

^aMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,

Department of Chemistry, Tsinghua University, Beijing 100084, China.

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

Email: cjxi@tsinghua.edu.cn.

List of the Contents

1.	General Information	S2
2.	General Procedures for Synthesis of Products	S2
3.	Control Experiment with TEMPO	S3
4.	Control Experiment of the Turn on and off the Light	
5.	Fluorescence Quenching Experiments	S4
6.	Spectral Data for All Products	
7.	References	S12
8.	Copies of ¹ H, ¹³ C{ ¹ H}, ¹⁹ F NMR Spectra for Compound 4 and 5	S13

1. General Information

Unless otherwise noted, all the reactions were carried out in oven-dried sealed tube with Teflon-lined-septum under N₂ atmosphere. All materials were obtained from commercial sources and used as received. Super dry acetonitrile with molecular sieves in it was used in the reaction. ¹H NMR, ¹³C{¹H}NMR, and ¹⁹F NMR spectra were recorded on 400 MHz at ambient temperature with CDCl₃ as the solvent. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of CDCl₃ (7.26), to the carbon resonance of CDCl₃ (77.16). Coupling constants (*J*) were given in Hertz (Hz).The term m, q, t, d, and s referred to multiplet, quartet, triplet, doublet, and singlet. The reaction was monitored by GC-MS if applicable. Column chromatography was performed with silica gel (200-300 meshes). Thin layer chromatography (TLC) was visualized using UV light. Fluorescence quenching experiments were measured on an Ahilent Technologies Cary Eclipse Fluorescence Spectrophotometer. Highresolution mass spectra were recorded on electrospray mass spectrometer (ESI-TOF).

2. General Procedures for Synthesis of Products:

General procedures for synthesis of products 4: A sealed tube equipped with a stirrer bar was charged with 6 mg fac-Ir(ppy)₃ (3.5 mol%), which was degassed and refilled with N₂ for 3 times. The alkenes **1a-1r** (0.2 mmol, 1.0 equiv.), Chen reagent (FSO₂CF₂CO₂Me) (46.1 mg, 0.24 mmol, 1.2 equiv.), Et₃N·3HF (193.9 mg, 1.6 mmol, 8.0 equiv.) and dry CH₃CN (4 mL) were added under N₂. The reaction mixture was irradiated for 36 h at room temperature by 3 W blue LEDs. The reaction was quenched by H₂O and the aqueous layer was extracted with ethyl acetate (EA) in twice. The combined organic layer dried by MgSO₄ and concentrated in vacuo. The residue was purified by chromatography on silica gel to give product **4a-4r**, which were identified by ¹H, ¹³C, and ¹⁹F NMR.

3. Control Experiment with TEMPO

A sealed tube equipped with a stirrer bar was charged with 6 mg *fac*-Ir(ppy)₃ (3.5 mol%) and TEMPO (109.2 mg, 0.7 mmol, 3.5 equiv.), which was degassed and refilled with N₂ for 3 times. 1-(*tert*-Butyl)-4-vinylbenzene **1a** (0.2 mmol, 1.0 equiv.), Chen reagent (FSO₂CF₂CO₂Me) (46.1 mg, 0.24 mmol, 1.2 equiv.), Et₃N·3HF (193.9 mg, 1.6 mmol, 8.0 equiv.) and dry CH₃CN (4 mL) were added under N₂. The mixture was irradiated for 36 h at room temperature by 3 W blue LEDs. The reaction was quenched by H₂O and the aqueous layer was extracted with ethyl acetate (EA) in twice. The combined organic layer dried by Na₂SO₄ and concentrated in vacuo and the residue was purified by chromatography on silica gel to afford product **5** in 45% isolated yield.

4. Control Experiment of the Turn on and off the Light

Fig S1. The experiment of turn on and off the light

To insight on reaction mechanism, an oven-dried Schleck tube charged with 6 mg *fac*-Ir(ppy)₃ (3.5 mol%), which was degassed and refilled with N₂ for 3 times. 1-(*tert*-butyl)-4-vinylbenzene **1a** (32.1 mg, 0.2 mmol, 1.0 equiv.), dodecane (34.0 mg 0.2 mmol, 1.0 equiv.), FSO₂CF₂CO₂Me (46.1 mg, 0.24 mmol, 1.2 equiv.), Et₃N·3HF (193.9 mg, 1.6 mmol, 8.0 equiv.) and dry CH₃CN (4mL) were added under N₂. The mixture

was alternately irradiated with 3 W blue LEDs and set in dark totally for 72 h. The yield of **4a** was confirmed by GC analysis of the crude sample using dodecane as internal standard.

5. Fluorescence Quenching Experiments

Fig S2. Fluorescence quenching experiment between photocatalyst and substrate

Fluorescence quenching experiments were measured on an Ahilent Technologies Cary Eclipse Fluoresence Spectrophotometer. The complex *fac*-Ir(ppy)₃ was excited at 375 nm and the emission spectrum max = 518 nm was recorded. Gradient dilution to get 1.0 x 10⁻⁴ M *fac*-Ir(ppy)₃ solution in CH₃CN, 0.25 M FSO₂CF₂CO₂Me (**2**) solution in CH₃CN and 0.25 M styrene (**1b**) solution in CH₃CN, 0.25 M Et₃N·3HF (**3a**) solution in CH₃CN, 2.0 mL 1.0 x 10⁻⁴ M *fac*-Ir(ppy)₃ solution in CH₃CN and a stirrer bar were added into the 2.0 mL quartz cuvette covered with Teflon cap. 1.0 x 10⁻² mL 0.25 M FSO₂CF₂CO₂Me solution, 0.25 M styrene (**1b**) solution, 0.25 M Et₃N·3HF (**3a**) solution were added, separately. And then, the emission spectrum of the solution was collected at each addition.

6. Spectral Data for All Products

Methyl 4-(4-(*tert*-butyl)phenyl)-2,2,4-trifluorobutanoate (4a): colorless oil liquid, 46.7 mg (81% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.42 (d, J = 8.0Hz, 2H), 7.27 (dd, J = 8.2, 1.1 Hz, 2H), 5.71 (ddd, J = 48.0, 9.9, 2.6 Hz, 1H), 3.84 (s, 3H), 3.19 – 2.79 (m, 1H), 2.72 – 2.37 (m, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.3 (t, J = 32.3 Hz), 152.5, 135.2, 135.0, 125.8, 125.6, 125.6, 117.0 –112.0 (m), 89.5 – 87.8 (m), 53.6, 42.4 (q, J = 23.9 Hz), 34.8, 31.37. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.6 (dt, J = 23.8, 12.3 Hz), -105.0 – -110.5 (m), -167.1 – -175.3 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₅H₂₀F₃O₂⁺ 289.1410, found 289.1412.

Methyl 2,2,4-trifluoro-4-phenylbutanoate (4b): colorless oil liquid, 34.3 mg (74% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.9-7.8 (m, 4H), 7.52 – 7.51 (m, 2H), 7.44 7.42 (m, 1H), 7.38-7.32 (m, 3H), 7.28 – 7.25 (m, 1H), 5.76 (ddd, J = 46.0, 8.0, 2.4 Hz, 1H), 3.85 (s, 3H), 3.03 – 2.92 (m, 1H), 2.68 – 2.56 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.3 (t, J = 30.5 Hz), 135.5, 135.3, 133.6, 133.1, 129.0, 128.3, 127.9, 126.9, 126.8, 125.1, 122.8, 117.0-112.0 (m), 89.8 – 88.0 (m), 53.7, 42.5 (q, J = 22.0 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.5 (dt, J = 24.5, 11.6 Hz), -106.5 – -107.3 (m), -174.2 – -174.4 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₁H₁₂F₃O₂⁺ 233.0784, found 233.0785.

FMethyl2,2,4-trifluoro-4-(p-tolyl)butanoate(4c):MeCF2CO2Mecolorless oil liquid, 41.3 mg (84% yield). ¹H NMR (400
MHz, CHLOROFORM-D) δ 7.23 – 7.18 (m, 4H), 5.68(ddd, J = 49.0, 10.5, 2.8 Hz, 1H), 3.84 (s, 3H), 2.96 – 2.83 (m, 1H), 2.59 – 2.43 (m,1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.2 (t, J = 28.0 Hz),139.2, 135.2, 135.0, 129.5, 125.8, 125.7, 117.0-112.0 (m), 89.5 – 87.8 (m), 53.6, 42.4(q, J = 21.5 Hz), 21.3. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.5 (dt, J = 26.0,

10.0 Hz), -106.7 – -107.4 (m), -172.2 – -172.4 (m). HRMS (ESI) $[M+H]^+$ Calcd for $C_{12}H_{14}F_3O_2^+$ 247.0940, found 247.0939.

Methyl 2,2,4-trifluoro-4-(4-methoxyphenyl)butano-
ate (4d): colorless oil liquid, 36.7 mg (70% yield). 1H
NMR (400 MHz, CHLOROFORM-D) δ 7.27 (d, J =
8.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 5.67 (ddd, J = 46.0, 8.0, 2.5 Hz, 1H), 3.84 (s,
3H), 3.80 (s, 3H), 2.98 - 2.83 (m, 1H), 2.59 - 2.40 (m, 1H). 13C NMR (101 MHz,
CHLOROFORM-D) δ 164.2 (t, J = 30.0 Hz), 160.4, 130.1, 129.9, 127.5, 127.5, 114.2,
116.0-113.0 (m), 89.4 - 87.7 (m), 55.4, 53.6, 42.3 (q, J = 18.0 Hz). 19F NMR (376 MHz,
CHLOROFORM-D) δ -102.6 (dt, J = 28.0, 11.5 Hz), -106.7 - -107.5 (m), -168.5 - -
168.8 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₂H₁₄F₃O₃⁺ 263.0890, found 263.0891.

Methyl 4-([1,1'-biphenyl]-4-yl)-2,2,4-trifluorobutanoate (4e): colorless oil liquid, 56.1 mg (91% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.62 – 7.57 (m,

4H), 7.46 – 7.34 (m, 5H), 5.78 (ddd, J = 42.5, 11.0, 2.8 Hz, 1H), 3.86 (s, 3H), 3.03 – 2.85 (m, 1H), 2.66 – 2.47 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.2 (t, J = 28.0 Hz), 142.3, 140.4, 137.1, 136.9, 129.0, 127.8, 127.6, 127.3, 126.2, 126.1, 116.9-111.9 (m), 89.4 – 87.7 (m), 53.7, 42.6 (q, J = 18.0 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.5 (dt, J = 30.2, 10.0 Hz), -106.6 – -107.4 (m), -173.9 – 174.1 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₇H₁₆F₃O₂⁺ 309.1097, found 309.1095.

48.5, 10.0, 2.0 Hz, 1H), 3.86 (s, 3H), 2.94 – 2.88 (m, 1H), 2.48 (d, *J* = 4.0 Hz, 2H), 1.89 – 1.82 (m, 1H), 0.90 (s, 3H), 0.89 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ

164.3 (t, J = 26.0 Hz), 143.1, 143.0, 135.5, 129.6, 125.7, 125.6, 117.0, 114.5-112.0 (m), 89.6 - 87.8 (m), 53.6, 45.2, 42.4 (q, J = 18.0 Hz), 30.3, 22.4. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.6 (dt, J = 28.5, 8.0 Hz), -106.7 - -107.5 (m), -172.2 - -172.4 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₄H₁₈F₃O₂⁺ 275.1253, found 275.1254.

6.89 (d, J = 8.0 Hz, 2H), 5.66 (ddd, J = 49.0, 11.5, 2.0 Hz, 1H), 4.05 – 4.00 (m, 2H), 3.84 (s, 3H), 2.95 – 2.89 (m, 1H), 2.59 – 2.43 (m, 1H), 1.42 – 1.39 (m, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.2 (t, J = 28.0 Hz), 159.8, 129.9, 129.7, 127.5, 127.5, 117.0 – 112.0 (m), 114.4, 89.4 – 87.7 (m), 63.6, 53.6, 42.7 (q, J = 20.5 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.6 (dt, J = 30.5, 9.0 Hz), -106.7 – -107.6 (m), -168.3 – -168.5 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₃H₁₆F₃O₃⁺ 277.1046, found 277.1048.

Methyl 4-(4-acetoxyphenyl)-2,2,4-trifluorobutanoate (4h): colorless oil liquid, 35.4 mg (61% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.36 (d, J = 8.0

Hz, 2H), 7.13 (d, *J* =8.0 Hz, 2H), 5.75 (ddd, *J* = 49.0, 11.5, 2.4 Hz, 1H), 3.86 (s, 3H), 3.48 (d, *J* = 11.0 Hz, 1H), 2.95 – 2.80 (m, 1H), 2.62 – 2.43 (m, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 169.5, 169.4, 164.1 (t, *J* = 28.0 Hz), 151.0 (t, *J* = 20.0 Hz), 137.4, 135.7, 135.5, 127.6, 127.4, 127.0, 126.9, 122.2, 122.0 – 114.3 (m), 89.0 – 87.3 (m), 53.7, 50.7, 42.9 – 42.1 (m), 41.2 – 40.7 (m), 21.2. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.6 (dt, *J* = 29.0, 10.0 Hz), -106.7 – -107.5 (m), -172.2 – -172.4 (m). HRMS (ESI) [M+H]⁺ Calcd for $C_{13}H_{14}F_{3}O_{4}$ ⁺ 291.0839, found 291.0837.

(400 MHz, CHLOROFORM-D) δ 7.38 – 7.35 (m, 2H), 7.30 – 7.25 (m, 2H), 5.70 (ddd, J = 49.0, 11.0, 2.5 Hz, 1H), 3.87 (s, 3H), 2.92 – 2.80 (m, 1H), 2.59 – 2.4 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.6 (t, J = 28.0 Hz), 129.2, 129.0, 127.6, 127.1, 127.0, 88.9 – 87.1 (m), 53.7, 42.3 (q, J = 15.0 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.5 (dt, J = 30.2, 9.0 Hz), -106.6 – -107.4 (m), -174.7 – -175.0 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₁H₁₁ClF₃O₂⁺ 267.0394, found 267.0393.

Methyl 2,2,4-trifluoro-4-(4-fluorophenyl)butanoate (4j): colorless oil liquid, 29.0 mg (58% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.34 – 7.32 (m, 2H),

7.11 – 7.06 (m, 2H), 5.72 (ddd, J = 49.0, 11.5, 2.4 Hz, 1H), 3.87 (s, 3H), 2.92 – 2.82 (m, 1H), 2.57 – 2.41 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 161.7 (t, J = 24.0 Hz), 128.2, 128.0, 127.8, 127.7, 127.6, 116.0 – 115.6 (m), 115.8, 89.1 – 87.3 (m), 53.8, 42.5 (q, J = 18.0 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.7 (dt, J = 26.0, 9.0 Hz), -106.6 – -107.4 (m), -112.0 – -113.4 (m), -172.2 – -172.5 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₁H₁₁F₄O₂⁺251.0690, found 251.0691.

F
MeMethyl 2,2,4-trifluoro-4-(o-tolyl)butanoate (4k): colorless
oil liquid, 41.8 mg (85% yield). ¹H NMR (400 MHz,
CHLOROFORM-D) δ 7.40 – 7.38 (m, 1H), 7.27 – 7.24 (m,
2H), 7.19 – 7.17 (m, 1H), 5.90 (ddd, J = 46.0, 8.0, 2.0 Hz, 1H), 3.87 (s, 3H), 2.92 – 2.80
(m, 1H), 2.57 – 2.35 (m, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D)
δ 164.3 (t, J = 20.5 Hz), 136.4, 136.2, 134.4, 134.3, 130.9, 129.0, 126.6, 125.3, 125.2,
117.0 – 112.0 (m), 87.0 – 85.3 (m), 53.6, 42.7 (q, J = 16.0 Hz), 18.8. ¹⁹F NMR (376
MHz, CHLOROFORM-D) δ -102.7 (dt, J = 29.0, 10.0 Hz), -107.0 – -107.8 (m), -178.0
– -178.3 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₂H₁₄F₃O₂⁺ 247.0940, found 247.0941.

Methyl2,2,4-trifluoro-4-mesitylbutanoate(4l):colorless oil liquid, 49.3 mg (90% yield). 1 H NMR (400MHz, CHLOROFORM-D) δ 6.83 (s, 2H), 6.11 (ddd, J =

42.0, 8.0, 2.0 Hz, 1H), 3.87 (d, J = 4.0 Hz, 3H), 3.14 – 3.09 (m, 1H), 2.44 – 2.36 (m, 1H), 2.34 (s, 6H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.2 (t, J = 24.0 Hz), 138.5, 135.8, 135.8, 131.0, 130.8, 130.3, 116.3-113.0 (m), 87.2 – 86.0 (m), 53.6, 40.5 (q, J = 14.0 Hz), 20.9, 20.1 20.0. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.6 (dt, J = 26.0, 4.0 Hz), -106.7 – -107.5 (m), -172.2 – -172.4 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₄H₁₈F₃O₂⁺ 275.1253, found 275.1255.

Methyl 2,2,4-trifluoro-4-(naphthalen-2-yl)butanoate (4m): colorless oil liquid, 50.2 mg (89% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.89 – 7.81 (m,

4H), 7.52 – 7.51 (m, 2H), 7.44 – 7.42 (m, 1H), 5.88 (ddd, J = 42.0, 8.0, 2.0 Hz, 1H), 3.85 (s, 3H), 3.03 – 2.93 (m, 1H), 2.68 – 2.56 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.3 (t, J = 24.0 Hz), 135.5, 135.3, 132.6, 132.0, 129.0, 128.3, 127.9, 126.9, 126.8, 125.1, 122.8, 116.9-111.9 (m), 89.8 – 88.0 (m), 53.7, 42.6 (q, J =15.0 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.5 (dt, J = 24.0, 6.0 Hz), -106.5 – -107.3 (m), -174.2 – -174.4 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₅H₁₄F₃O₂⁺ 283.0940, found 283.0937.

Ph F CF₂CO₂Me Methyl 2,2,4-trifluoro-4,4-diphenylbutanoate (4n): colorless oil liquid, 37.6 mg (61% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.38 – 7.29(m, 10H), 3.68 (s, 3H), 3.42 – 3.30 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.1 (t, J = 24.0 Hz), 142.1, 141.9, 128.5, 128.3, 125.2, 125.2, 116.9-111.9 (m), 89.6 – 87.8 (m), 97.0, 95.2, 53.4, 42.2 (q, J = 12.0 Hz). ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -99.9 – -100.0 (m), -149.5 – -149.6 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₇H₁₆F₃O₂⁺ 309.1097, found 309.1098.

Methyl 2,2-difluoro-3-(fluoro(phenyl)methyl)hexanoate (40): colorless oil liquid, 39.5 mg (72% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.44 – 7.25(m, 5H), 4.78 – 4.72

(m, 1H), 4.63 (d, J = 8.0 Hz, 1H), 3.66 (s, 3H), 1.83 – 1.68 (m, 1H), 1.54 – 1.42 (m, 1H), 1.34 – 1.25 (m, 2H), 0.88 – 0.85 (m, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 165.2 (t, J = 22.0 Hz), 135.2, 130.0, 129.2, 128.7, 128.5, 126.8, 118.7 – 113.6 (m), 83.0 – 82.9 (m), 53.5, 53.4, 50.1 (q, J = 14.0 Hz), 25.6, 19.9, 13.9. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -111.1 (dt, J = 24.0, 10.0 Hz), -115.3 – -116.0 (m), -180.8 – 181.1 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₄H₁₈F₃O₂⁺ 275.1253, found 275.1252.

Methyl 2,2,4-trifluoro-3,4-diphenylbutanoate (4p) and methyl 2,2,4trifluoro-3,4-diphenylbutanoate

(**4p'**): colorless oil liquid, 41.9 mg (68% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.40 – 7.19 (m, 20H), 5.94 – 5.76 (m, 1H), 5.32 (d, *J* = 8.0 Hz, 1H), 3.80 – 3.69 (m, 2H), 3.57 (s, 3H), 3.55 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.6 (t, *J* = 22.0 Hz), 134.86, 130.94, 130.11, 129.89, 129.78, 129.65, 129.37, 129.23, 129.09, 128.97, 128.95, 128.88, 128.79, 128.72, 128.56, 128.39, 128.32, 128.28, 126.92, 126.86, 126.34, 126.21, 126.09, 125.96, 82.0 – 81.5 (m), 56.6 (q, *J* = 12.0 Hz), 53.58, 51.05, 49.86. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -101.3 – -105.0 (m), -169.1 – -169.3 (m), -184.6 – -184.8 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₇H₁₆F₃O₂⁺ 309.1097, found 309.1098.

Methyl 2,2-difluoro-2-(1-fluoro-2,3-dihydro-1H-inden-2-

yl)acetate (4q): colorless oil liquid, 33.2 mg (68% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 – 7.45 (m, 1H), 7.38 – 7.33 (m, 2H), 7.31 – 7.25 (m, 1H), 6.21 (ddd, J = 49.0,

11.0, 2.0 Hz, 1H), 3.88 (s, 3H), 3.33 - 3.25 (m, 2H), 3.09 - 3.03 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.0 (t, J = 22.0 Hz), 140.8, 140.7, 138.6, 138.5, 130.3, 130.2, 127.7, 127.7, 125.4, 125.1, 118.1-113.1 (m), 96.2 - 94.4 (m), 53.7, 50.9 (q, J = 14.0 Hz), 30.1. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -111.1 (dt, J = 26.0, 4.0 Hz), -115.1 - -115.9 (m), -180.7 - -180.9 (m). HRMS (ESI) [M+H]⁺ Calcd for C₁₂H₁₂F₃O₂⁺ 245.0784, found 245.0781.

Methyl 2,2,4-trifluoro-4-((8R,9S,13S,14S)-13methyl-17-oxo-7,8,9,11,12,13,14,15,16,17decahydro-6*H*-cyclopenta[*a*]phenanthren-3yl)butanoate (4r): colorless oil liquid, 63.7 mg

(78% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.33 (d, J = 8.0 Hz, 1H), 7.13 – 7.08 (m, 2H), 5.68 (ddd, J = 44.0, 8.0, 2.0 Hz, 1H), 3.87 (s, 3H), 2.95 – 2.93 (m, 3H), 2.52 – 2.48 (m, 3H), 2.17 (s, 1H), 2.10 – 2.06 (m, 2H), 2.04 – 1.99 (m, 1H), 1.64 – 1.49 (m, 7H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 220.8, 164.2 (t, J = 18.0 Hz), 141.0, 137.2, 135.6, 135.4, 126.3, 125.9, 123.3, 123.1, 123.0, 116.9-111.9 (m), 89.4 – 87.7 (m), 53.6, 50.53, 50.0, 44.4, 42.5 (q, J = 18.0 Hz), 38.1, 25.9, 31.6, 29.5, 29.4, 26.4, 25.8, 21.6, 13.9. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -102.4 (dt, J = 24.0, 6.0 Hz), -107.0 – -107.8 (m), -173.0 – -173.3 (m). HRMS (ESI) [M+H]⁺ Calcd for C₂₃H₂₈F₃O₃⁺ 409.1985, found 409.1986.

 $\underbrace{\mathsf{Methyl} \ 2,2-difluoro-2-(2,2,6,6-tetramethylpiperidin-1-yl)acet-}_{\mathsf{N}} \\ \stackrel{\mathsf{N}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{C}}{\mathsf{F}_2}}} \\ \stackrel{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{C}}{\mathsf{F}_2}}} \\ \stackrel{\mathsf{N}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\mathsf{C}}}} \\ \stackrel{\mathsf{N}}{\overset{\mathsf{O}}{\mathsf{C}}} \\ \stackrel{\mathsf{N}}{\overset{\mathsf{N}}{\mathsf{C}}} \\ \stackrel{\mathsf{N}}{\mathsf{N}} \\ \stackrel{\mathsf{N}}{\mathsf{C}} \\ \stackrel{\mathsf{N}} \stackrel{\mathsf{N}}{\mathsf{N}} \\ \stackrel{\mathsf{N}} \stackrel{\mathsf{N}}{\mathsf{N}} \\ \stackrel{\mathsf{N}} \\ \stackrel{\mathsf{N}}{\mathsf{N}} \\ \stackrel{\mathsf{N}} \stackrel{\mathsf{N}}{\mathsf{N}} \\ \stackrel{\mathsf{N}} \stackrel{\mathsf{N}}{\mathsf{N}} \\ \stackrel{\mathsf{N}}{\mathsf{N}} \stackrel{\mathsf{N}}{\mathsf{C}} \\ \stackrel{\mathsf{$

7. References:

[1] X. Luo, B. Zhang and C. Xi, *Green Chem.*, 2021, **23**, 2324.

8. Copies of ¹H, ¹³C{¹H}, ¹⁹F NMR Spectra for compound 4 and 5

¹H NMR for compound 4a

 $^{13}C\{^1H\}$ NMR for compound 4a

¹⁹F NMR for compound **4a**

 $^{13}C\{^{1}H\}$ NMR for compound $\boldsymbol{4b}$

 $^{19}\mathrm{F}$ NMR for compound 4b

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR for compound 4c

 $^{19}\mathrm{F}$ NMR for compound 4c

¹H NMR for compound **4d**

 $^{13}C\{^{1}H\}$ NMR for compound 4d

 19 F NMR for compound **4d**

 $^{13}C\{^{1}H\}$ NMR for compound 4e

¹⁹F NMR for compound **4e**

 1 H NMR for compound **4**f

¹⁹F NMR for compound **4f**

 $^{19}\mathrm{F}$ NMR for compound $4\mathrm{g}$

¹H NMR for compound **4h**

 $^{13}C\{^{1}H\}$ NMR for compound $\boldsymbol{4h}$

 $^{19}\mathrm{F}\ \mathrm{NMR}$ for compound $\mathbf{4h}$

¹H NMR for compound **4i**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR for compound 4i

¹⁹F NMR for compound **4i**

¹H NMR for compound 4j

 $^{13}C\{^{1}H\}$ NMR for compound 4j

 $^{19}\mathrm{F}$ NMR for compound 4j

 $^{13}C\{^{1}H\}$ NMR for compound 4k

 $^{19}\mathrm{F}\ \mathrm{NMR}$ for compound 4k

¹H NMR for compound **4**l

 $^{13}C{^{1}H}$ NMR for compound 41

¹⁹F NMR for compound **4**I

 $^{13}C\{^{1}H\}$ NMR for compound 4m

 $^{19}\mathrm{F}\ \mathrm{NMR}$ for compound $4\mathrm{m}$

 $^{13}C\{^{1}H\}$ NMR for compound 4n

¹⁹F NMR for compound **4n**

 ^{1}H NMR for compound **40**

 $^{13}C\{^{1}H\}$ NMR for compound $\mathbf{4o}$

 $^{19}\mathrm{F}$ NMR for compound 40

¹H NMR for compound of the mixture of **4p** and **4p'**

 $^{13}C{^{1}H}$ NMR for compound of the mixture of **4p** and **4p'**

 $^{19}\mathrm{F}$ NMR for compound of the mixture of 4p and $4p^{\,\prime}$

 $^{13}C\{^{1}H\}$ NMR for compound 4q

 $^{19}\mathrm{F}\ \mathrm{NMR}$ for compound 4q

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

-10 -20

 $^{13}C\{^{1}H\}$ NMR for compound 4r

220 210 200

190

 $^{19}\mathrm{F}$ NMR for compound 4r

 $^{13}C\{^{1}H\}$ NMR for compound $\boldsymbol{5}$

¹⁹F NMR for compound **5**