Supporting Information

Ruthenium-Catalyzed (Spiro)Annulation of *N*-Aryl-2,3dihydrophthalazine-1,4-diones with Quinones to Access Pentacyclic Spiro-Indazolones and Fused-Cinnolines

Sushma Naharwal,^{*a*} Pidiyara Karishma,^{*a*} C. K. Mahesha,^{*a*} Kiran Bajaj,^{*b*} Sanjay K. Mandal,^{*c*} Rajeev Sakhuja^{*a**}

- ^{*a*} Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India: <u>sakhuja.rajeev@gmail.com</u>.
- ^b Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
- ^c Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab 140306, India

Contents

¹ H NMR and ¹³ C NMR spectra of 3 & 4	S02
¹⁹ F NMR of 3da and 3ga	S30
COSY and HSQC of 3ca	S31
COSY and HSQC of 4na	S32
¹ H NMR and ¹³ C NMR spectra of 3'ca	S33
¹ H NMR and ¹³ C NMR spectra of 3''ca	S34
NOE spectra of 3ac and 3ad	S35
HRMS Analysis of Crude Reaction Mixture	S35
Deuterium Labelling & Kinetic Isotope Studies	S36
. Single Crystal X-ray Diffraction Studies	S38
•	 ¹H NMR and ¹³C NMR spectra of 3 & 4. ¹⁹F NMR of 3da and 3ga. COSY and HSQC of 3ca. COSY and HSQC of 4na. ¹H NMR and ¹³C NMR spectra of 3'ca. ¹H NMR and ¹³C NMR spectra of 3'ca. NOE spectra of 3ac and 3ad. HRMS Analysis of Crude Reaction Mixture. Deuterium Labelling & Kinetic Isotope Studies. Single Crystal X-ray Diffraction Studies.

1. ¹H and ¹³C Spectra of 3 & 4

¹H NMR of 3aa

90

110 100 f1 (ppm)

130

120

140

190

200

180 170

160 150

80 70

60

50

40

30

20

10

¹³C NMR of 3ba

¹H NMR of 3ca

¹³C NMR of 3ca

¹³C NMR of 3da

¹³C NMR of 3ea

¹³C NMR of 3fa

¹H NMR of 3ga

¹³C NMR of 3ga

¹³C NMR of 3ha

¹³C NMR of 3ia

¹³C NMR of 3ja

¹³C NMR of 3ka

¹H NMR of 3la

¹³C NMR of 3la

¹H NMR of 3ab

¹³C NMR of 3ab

¹³C NMR of 3ac

¹³C NMR of 3ad

¹³C NMR of 3ae

¹H NMR of 4ma

¹³C NMR of 4ma

¹³C NMR of 4mc

¹³C NMR of 4md

¹H NMR of 4na

¹³C NMR of 4na

¹³C NMR of 4nb

¹³C NMR of 4nc

¹H NMR of 4nd

¹³C NMR of 4nd

¹H NMR of 4ne

¹³C NMR of 4ne

¹H NMR of 40a

¹³C NMR of 40a

¹H NMR of 4ob

¹³C NMR of 4ob

¹³C NMR of 4oc

¹H NMR of 4oc

¹H NMR of 4od

¹³C NMR of 4od

2. ¹⁹F NMR of 3da and 3ga

¹⁹F NMR of 3da (376 MHz, CDCl₃)

¹⁹F NMR of 3ga (376 MHz, CDCl₃)

3. COSY and HSQC of 3ca

HMBC of 3ca

4. COSY and HSQC of 4na

HMBC of 4na

5, ¹H NMR and ¹³C NMR spectra of 3'ca

6. ¹H NMR and ¹³C NMR spectra of 3"ca

7. NOE spectra of 3ac and 3ad

1D gradient NOE spectrum of **3ac** *(left)* with an initial selective pulse at δ 4.77 ppm creates a significant intensified peak at 7.02 ppm. 1D gradient NOE spectrum of **3ad** *(right)* with an initial selective pulse at δ 4.74 ppm creates a significant intensified peak at 7.41 ppm.

8. HRMS Analysis of Crude Reaction Mixture

HRMS data of intermediate 3A

9. Deuterium Labelling & Kinetic Isotope Studies

¹H NMR of 1b/1b- d_2

Intermolecular Competitive Experiment

¹H NMR of 3ba + 3ba- d_1

 $P_H/P_D = 0.60/0.40 = 1.5$

Parallel Experiments

Protonated Kinetics

Deuterated Kinetics

 $\text{KIE} = k_{\text{H}}/k_{\text{D}} = 0.5225/0.3888 = 1.34$

10. Single Crystal X-ray Diffraction Studies

A suitable crystal was chosen with the help of a light microscope for mounting in a nylon loop to attach to a goniometer head. A Kappa APEX II diffractometer equipped with a CCD detector (with the crystal-to-detector distance fixed at 60 mm) and sealed-tube monochromated MoK α radiation was used for centering, initial crystal evaluation and data collection by the program APEX2.¹ All data were integrated, and reflections were fitted and values of F² and σ (F²) for each reflection were obtained by using the program SAINT.¹ Finally, data were also corrected for the Lorentz and polarization effects. Using the subroutine XPREP¹ the space group was determined, and an absorption correction (SADABS)¹ and merging of data were performed to generate the necessary files for solution and refinement. A structure solution was obtained by direct methods using the SHELXS program of the SHELXTL package and was refined using SHELXL^{2.3} within the OLEX2 crystallographic software suite.⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with individual isotropic displacement parameters. All figures were drawn using MERCURY V 3.0⁵

Crystal data for **3ba**. $C_{21}H_{14}N_2O_4$, Mr = 358.34 g/mol, monoclinic, space group $P2_1$, a = 10.8392(10) Å, b = 6.9084(6) Å, c = 13.2121(11) Å, $\alpha = 90^{\circ}$, $\beta = 108.035(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 940.73(14) Å³, Z = 2, T = 298(2) K, D_{calcd} = 1.265 g/cm³; Full matrix least-square on F²; R₁ = 0.1450, wR₂ = 0.3879 for 2762 observed reflections [I > 2 σ (I)] and R₁ = 0.1600, wR₂ = 0.4121 for all 3301 reflections; number of parameters = 240; GOF = 1.715. CCDC No. 2169711.

References

1. APEX2, SADABS and SAINT; Bruker AXS inc: Madison, WI, USA, 2008.

2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.

3. G. M. Sheldrick, Acta Crystallogr., Sect. C: Found. Adv., 2015, 71, 3-8.

4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* 2009, **42**, 339–341

5. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edginton, P. McCabe, E. Pidocck, L. Rodriguez-Monge, T. Taylor, J. Van de Streek, P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466.