Supporting Information

Syntheses and biological effects of natural Morinda lactone and derivatives

Patricia Güttlein¹, Haoxuan Zeng², Hedda Schrey², and Rainer Schobert^{1,*}

¹ Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany; Rainer.Schobert@uni-bayreuth.de ² Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany

Table of Contents:

Experimental procedures	S3
NMR spectra with Table S1	S11
Antimicrobial assay with Table S2	S50
Biofilm inhibition assay	S55
Biofilm dispersion assay with Table S3	S56/57
Cytotoxicity assay with Table S4	S57
References	S58

Morinda lactone (1a). Based on a procedure described by Poss and Belter ¹, allylic alcohol **3a** (0.315 g, 1.01 mmol, 1.0 equiv) was added to a solution of ascorbic acid (0.573 g, 3.25 mmol, 3.2 equiv) in H₂O (2 mL). The mixture was stirred at room temperature for 4 days. The yellow solution was diluted with H₂O (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/n-hexane 80:20) to give a light yellow, foamy solid. Yield: 0.049 g (0.15 mmol, 15%). ¹H NMR (300 MHz, MeOD): δ = 6.85 (s, 1H), 6.69 – 6.68 (m, 2H), 6.35 (d, *J* = 16.2 Hz, 1H), 6.02 (dt, *J* = 15.9, 7.6 Hz, 1H), 4.43 (br s, 1H), 4.38 (dd, *J* = 5.8, 3.5 Hz, 1H), 4.21 (dd, *J* = 9.6, 5.7 Hz, 1H), 4.05 (dd, *J* = 9.5, 3.5 Hz, 1H), 2.64 (m, 2H) ppm. ¹³C NMR (100 MHz, MeOD) δ = 177.7, 146.3, 146.2, 135.9, 130.8, 120.0, 119.7, 116.3, 113.8, 108.5, 88.7, 80.3, 75.9, 75.7, 39.5 ppm.

5,6-*O***-isopropylidene-L-ascorbic acid (2).** Compound **2** was prepared according to a literature procedure ² from L-ascorbic acid (100.761 g, 0.572 mol, 1.0 equiv), 2,2-dimethoxypropane (125 mL, 1.42 mol, 2.5 equiv) in acetone (500 mL) by using a stream of gaseous HCl for 10 min and stirring the resulting suspension for 1.5 h. **2** was isolated as a colorless solid. Yield: 117.494 g (0.544 mol, 95%). [α]²⁵_D = +20.1 (c = 5.0; MeOH). ¹H NMR (500 MHz, acetone-d6): δ = 4.71 (d, J = 3.2 Hz, 1H), 4.34 (dt, J = 6.6, 3.2 Hz, 1H), 4.17 (t, J = 7.4 Hz, 1H), 4.00 (t, J = 7.4 Hz, 1H), 3.88 (br. s., 2H), 1.29 (s, 3H), 1.28 (s, 3H) ppm. ¹³C NMR (126 MHz, acetone-d6) δ = 170.3, 151.1, 119.7, 110.2, 75.4, 74.9, 65.9, 26.2, 25.7 ppm. Analytical data match those previously reported ^{3,4}.

KHSO₄**·SiO**₂. Following a literature procedure ⁵, KHSO₄ (4.157 g, 30.53 mmol) was dissolved in H₂O (20 mL) and SiO₂ (10.366 g) was added. The resulting suspension was stirred for 15 min at

room temperature and warmed to 120° C within 2 h. The temperature was maintained at 120° C for a further 58 h and a free-flowing solid was obtained.

3,4-bis((trimethylsilyl)oxy)benzaldehyde (21). According to a literature procedure ⁶, a solution of 3,4-dihydroxybenzaldehyde (5.173 g, 37.45 mmol, 1.0 equiv) in pyridine (21 mL, 265 mmol, 7.1 equiv) was added dropwise within 10 min to a solution of trimethylsilyl chloride (11 mL, 118 mmol, 3.2 equiv) in toluene (34 mL) under an argon atmosphere. The mixture was stirred at 65 °C (bath temperature) for 2 h. After cooling to room temperature, the pyridinium chloride was separated by filtration and washed with toluene (150 mL). The filtrate was concentrated *in vacuo* and the yellow residue was distilled to obtain a colorless liquid at 93 °C-97 °C (3.4·10⁻² mbar). Yield: 9.700 g (34.34 mmol, 92%). ¹H NMR (500 MHz, CDCl₃): δ = 9.81 (s, 1H), 7.40 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 0.29 (s, 9H), 0.27 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 191.1, 153.1, 147.5, 131.2, 125.8 121.0, 120.8, 0.5, 0.4 ppm.

1-(3,4-bis((trimethylsilyl)oxy)phenyl)prop-2-en-1-ol (3a). Following a literature procedure ⁷, to a stirred solution of 3,4-bis((trimethylsilyl)oxy)benzaldehyde (**21**) (2.886 g, 10.22 mmol, 1.0 equiv) in dry THF (15 mL) was added vinylmagnesium bromide (1 M solution in THF, 11.2 mL, 11.2 mmol, 1.1 equiv) at 0 °C. The mixture was stirred for 3 h at 0 °C. Saturated, aq. NH₄Cl (120 mL) was added and the aq. phase was extracted with Et₂O (3 x 50 mL). The combined organic phases were washed with sat., aq. NaCl (40 mL) and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give **3a** as an orange oil. Yield: 3.072 g (9.893 mmol, 97%). **3a** was a sensitive compound that decomposed in solution or after prolonged storage in the fridge under an argon atmosphere. ¹H NMR (500 MHz, CDCl₃): $\delta = 6.85 - 6.81$ (m, 3H), 6.03 (ddd, J = 17.3, 10.3, 5.9 Hz, 1H), 5.32 (dt, J = 17.1, 1.4 Hz, 1H), 5.18 (dt, J = 10.3, 1.3 Hz, 1H), 5.10 (m,

1H), 0.24 (s, 20H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 146.7, 146.3, 140.4, 136.4, 121.0, 120.0, 119.5, 115.0, 75.0, 0.5, 0.5 ppm. MS (DIP): *m*/*z* calculated for C₁₅H₂₆O₃Si₂ [M]: 310.14205. Found: 310.

1-(3,4-dimethoxyphenyl)prop-2-en-1-ol (3b). Allylic alcohol **3b** was prepared according to a literature procedure ⁷ from 3,4-dimethoxybenzaldehyde (2.568, 15.45 mmol, 1.0 equiv) dissolved in THF (22 mL) and vinylmagnesium bromide (1 M solution in THF, 16.5 mL, 16.5 mmol, 1.1 equiv) by stirring at 0 °C for 3 h. **3b** was obtained as a yellow oil. Yield: 2.938 g (15.13 mmol, 98%). ¹H NMR (500 MHz, CDCl₃): δ = 6.92 - 6.88 (m, 2H), 6.84 - 6.83 (m, 1H), 6.04 (ddd, *J* = 17.1, 10.1, 5.9 Hz, 1H), 5.34 (dt, *J* = 17.1, 1.3 Hz, 1H), 5.19 (dt, *J* = 10.3, 1.2 Hz, 1H), 5.15 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 2.02 (d, *J* = 3.2 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 149.2, 148.7, 140.4, 135.4, 118.8, 115.0, 111.1, 109.5, 75.2, 56.0, 56.0 ppm. HRMS (ESI): *m/z* calculated for C₁₁H₁₂O₂ + H⁺ [M + H⁺ - H₂O]: 177.09101. Found: 177.09062. Analytical match those previously reported ⁸.

1-(2,3,4-trimethoxyphenyl)prop-2-en-1-ol (3c). Allylic alcohol **3c** was prepared according to a literature procedure ⁷ from a solution of 2,3,4-trimethoxybenzaldehyde (1.97, 10.0 mmol, 1.0 equiv) in THF (15 mL) and vinylmagnesium bromide (1 M solution in THF, 12 mL, 12.0 mmol, 1.2 equiv) by stirring at 0 °C for 3 h. **3c** was obtained as a yellow oil. Yield: 2.311 g (10.3 mmol, quant.). ¹H NMR (500 MHz, CDCl₃): $\delta = 6.98$ (d, J = 8.3 Hz, 1H), 6.65 (d, J = 8.3 Hz, 1H), 6.04 (ddd, J = 17.0, 10.3, 5.5 Hz, 1H), 5.35 – 5.29 (m, 2H), 5.19 (d, J = 10.3 Hz, 1H), 3.92 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H), 2.62 – 2.61 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 153.6$, 151.6, 142.2, 140.4, 128.6, 122.0, 114.5, 107.3, 71.5, 61.3, 60.9, 56.1 ppm. HRMS (ESI): m/z calculated for C₁₂H₁₄O₃ + H⁺ [M + H⁺ - H₂O]: 207.10157. Found: 207.10093.

1-(2,4,5-trimethoxyphenyl)prop-2-en-1-ol (3d). Allylic alcohol **3d** was prepared according to a literature procedure ⁷ from a solution of 2,4,5-trimethoxybenzaldehyde (5.040, 25.69 mmol, 1.0 equiv) in THF (36 mL) and vinylmagnesium bromide (1 M solution in THF, 25.4 mL, 25.4 mmol, 1.0 equiv) by stirring at 0 °C for 3 h. **3d** was obtained as a yellow solid. Yield: 4.844 g (21.60 mmol, 84%). ¹H NMR (500 MHz, CDCl₃): δ = 6.86 (s, 1H), 6.52 (s, 1H), 6.09 (ddd, *J* = 17.1, 10.4, 5.5 Hz, 1H), 5.39 (m, 1H), 5.30 (d, *J* = 17.1 Hz, 1H), 5.16 (d, *J* = 10.3 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 6H), 2.64 (d, *J* = 5.0 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 151.0, 149.1, 143.2, 139.7, 122.4, 114.5, 111.4, 97.7, 70.8, 56.6, 56.5, 56.3 ppm. ¹H and ¹³C NMR spectra match those previously reported ⁹.

1-(3,4,5-trimethoxyphenyl)prop-2-en-1-ol (3e). Allylic alcohol **3e** was prepared according to a literature procedure ⁷ from a solution of 3,4,5-trimethoxybenzaldehyde (1.962, 10.00 mmol, 1.0 equiv) in THF (15 mL) and vinylmagnesium bromide (1 M solution in THF,12 mL, 12.0 mmol, 1.2 equiv) by stirring at 0 °C for 3 h. **3e** was purified by flash chromatography (silica gel, n-hexane/EtOAc 80:20) to give a light yellow oil. Yield: 1.270 g (5.663 mmol, 57%). ¹H NMR (500 MHz, CDCl₃): δ = 6.60 (s, 2H), 6.03 (ddd, *J* = 17.0, 10.4, 6.1 Hz, 1H), 5.37 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.21 (dt, *J* = 10.4, 1.3 Hz, 1H), 5.13 (d, *J* = 6.0 Hz, 1H), 3.86 (s, 6H), 3.83 (s, 3H), 2.07 (br s, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 153.4, 140.1, 138.4, 137.4, 115.4, 103.2, 75.6, 60.9, 56.2 ppm. HRMS (ESI): *m/z* calculated for C₁₂H₁₄O₃+ H⁺ [M + H⁺ - H₂O]: 207.10157. Found: 207.10127. ¹H and ¹³C NMR spectra match those previously reported ¹⁰.

1-tert-Butoxycarbonylindole-3-carboxyldehyde (6). Aldehyde **6** was prepared according to a literature procedure ¹¹ from indole-3-carboxaldehyde (1.051 g, 7.240 mmol, 1.0 equiv), DMAP (0.087 g, 0.71 mmol, 0.1 equiv) and di-*tert*-butyl dicarbonate (1.929 g, 8.838 mmol, 1.2 equiv) in CH₂Cl₂ (14 mL). The solution was stirred at room temperature for 22 h. **6** was recrystallized from

abs. EtOH (10 mL) to obtain the product as a colorless solid. Yield: 1.373 g (5.598 mmol, 77%). ¹H NMR (500 MHz, CDCl₃): δ = 10.10 (s, 1H), 8.29 (d, *J* = 7.5 Hz, 1H), 8.23 (s, 1H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.43 – 7.36 (m, 2H), 1.71 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 186.0, 148.9, 136.7, 136.1, 126.2, 124.8, 122.3, 121.7, 115.3, 85.8, 28.2 ppm. Analytical data match those previously reported ¹¹.

tert-Butyl 3-(1-hydroxyallyl)-1H-indole-1-carboxylate (7). Allylic alcohol 7 was prepared according to a literature procedure ¹¹ from a solution of the aldehyde 6 (1.231 g, 5.019 mmol, 1.0 equiv) in THF (7.5 mL) and vinylmagnesium bromide (1 M solution in THF, 6 mL, 6.0 mmol, 1.2 equiv) by stirring at 0 °C for 3 h. 7 was isolated as a red-orange oil. Yield: 1.339 g (4.899 mmol, 98%). ¹H NMR (500 MHz, CDCl₃): δ = 8.15 (d, *J* = 6.2 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.55 (s, 1H), 7.34 – 7.31 (m, 1H), 7.26 – 7.22 (m, 1H), 6.21 (ddd, *J* = 17.2, 10.3, 5.7 Hz, 1H), 5.49 – 5.46 (m, 2H), 5.30 – 5.28 (m, 1H), 1.98 (br s, 1H), 1.67 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 149.8, 139.0, 136.1, 128.6, 124.8, 123.1, 122.7, 122.3, 120.1, 116.1, 115.5, 83.9, 69.1, 28.3 ppm. Analytical data match those previously reported ¹¹.

Methyl indole-2-carboxylate (22). Ester **22** was prepared according to a literature procedure ¹² from indole-2-carboxylic acid (5.02 g, 31.1 mmol, 1.0 equiv) and a catalytic amount of conc. H₂SO₄ (0.1 mL) by refluxing overnight in MeOH (50 mL). **22** was obtained as a colorless solid. Yield: 4.83 g (27.6 mmol, 89%). ¹H NMR (500 MHz, CDCl₃): δ = 9.02 (br s, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.24 – 7.23 (m, 1H), 3.96 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 162.2, 137.0, 127.6, 127.2, 125.6, 122.8, 121.0, 112.0, 108.9, 52.2 ppm. Analytical data match those previously reported ¹³.

Indole-2-carbaldehyde (23). Aldehyde **23** was synthesized in two steps according to literature procedures ^{14,15} from ester **22**. In the first step, methyl indole-2-carboxylate (3.99 g, 22.8 mmol,

1.0 equiv) was reduced to the alcohol (1H-indol-2-yl)methanol by LiAlH₄ (2.60 g, 68.5 mmol, 3.0 equiv) in THF (69 mL) at 5 °C for 1 h. Yield: 2.85 g (19.4 mmol, 85%). In the second step, (1H-indol-2-yl)methanol (2.70 g, 18.3 mmol, 1.0 equiv) was oxidized to **23** with MnO₂ (7.84 g, 90.2 mmol, 4.9 equiv.) in CH₂Cl₂ (40 mL) and purified by column chromatography (silica gel, CH₂Cl₂/EtOAc 20:80). Yield: 0.770 g (5.30 mmol, 29%; yield over two steps: 25%). ¹H NMR (500 MHz, CDCl₃): δ = 9.87 (s, 1H), 9.40 (br s, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.42 – 7.39 (m, 1H), 7.30 (d, *J* = 1.1 Hz, 1H), 7.21 – 7.18 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 182.4, 138.2, 136.1, 127.5, 127.4, 123.6, 121.4, 115.1, 112.7 ppm. Analytical data match those previously reported ¹⁶.

1-*tert*-**Butoxycarbonylindole-2-carboxyldehyde (24).** Aldehyde **24** was prepared according to a literature procedure ¹¹ from indole-2-carboxaldehyde (**23**) (0.588 g, 4.05 mmol, 1.0 equiv), DMAP (0.053 g, 0.43 mmol, 0.1 equiv) and di-*tert*-butyl dicarbonate (1.2 mL, 4.8 mmol, 1.2 equiv) in CH₂Cl₂ (8 mL). The solution was stirred at room temperature for 17 h. **24** was obtained as a light-orange solid. Yield: 0.941 g (3.84 mmol, 95%). ¹H NMR (500 MHz, CDCl₃): $\delta = 10.44$ (s, 1H), 8.17 (d, J = 8.6 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.49 (m, 1H), 7.44 (s, 1H), 7.30 (m, 1H), 1.72 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 184.3$, 150.0, 138.0, 138.0, 128.3, 127.7, 124.0, 123.3, 116.6, 116.2, 85.7, 28.3 ppm. Analytical data match those previously reported ¹⁷.

tert-Butyl 2-(1-hydroxyallyl)-1H-indole-1-carboxylate (11). Allylic alcohol 11 was prepared according to a literature procedure ⁷ from a solution of the aldehyde 24 (0.742 g, 3.03 mmol, 1.0 equiv) in THF (4.4 mL) and vinylmagnesium bromide (1 M solution in THF, 3.6 mL, 3.6 mmol, 1.2 equiv) by stirring at 0 °C for 3 h. 11 was isolated as a red-orange oil. Yield: 0.740 g (2.71 mmol, 89%). ¹H NMR (500 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.2 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.30 – 7.27 (m, 1H), 7.24 – 7.20 (m, 1H), 6.60 (s, 1H), 6.25 (ddd, *J* =

17.2, 10.3, 5.1 Hz, 1H), 5.58 (d, J = 4.8 Hz, 1H), 5.44 (dt, J = 17.3, 1.4 Hz, 1H), 5.31 (dt, J = 10.5, 1.4 Hz, 1H), 4.48 (br s, 1H), 1.72 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 151.7$, 142.1, 137.5, 136.5, 131.7, 129.0, 124.6, 123.2, 121.1, 116.1, 115.8, 113.0, 109.6, 85.4, 68.5, 28.4 ppm. Analytical data match those previously reported ¹⁸.

2-(2,2-Diethoxyethoxy)benzaldehyde (25). Aldehyde **25** was prepared according to a literature¹⁹ procedure from salicylaldehyde (10.5 mL, 101 mmol, 1.0 equiv), bromoacetaldehyde diethyl acetal (16 mL, 106 mmol, 1.05 equiv), K₂CO₃ (27.643 g, 200 mmol, 2.0 equiv) in dry DMF (50 mL) by stirring the mixture at 100 °C for 19 h. **25** was isolated as a pale yellow oil. Yield: 20.952 g (87.93 mmol, 87%). ¹H NMR (500 MHz, CDCl₃): δ = 10.51 (d, *J* = 0.6 Hz, 1H), 7.83 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.53 (ddd, *J* = 8.6, 6.8, 1.9 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.6 Hz, 1H), 4.88 (t, *J* = 5.3 Hz, 1H), 4.11 (d, *J* = 5.4 Hz, 1H), 3.82 – 3.76 (m, 2H), 3.68 – 3.62 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 189.8, 161.1, 136.1, 128.4, 125.2, 121.3, 112.9, 100.6, 69.3, 63.3, 15.5 ppm. Analytical data match those previously reported¹⁹.

Benzofuran-2-carbaldehyde (26). Aldehyde 26 was prepared according to a literature procedure¹⁹ from refluxing a solution of aldehyde 25 (9.533 g, 40.01 mmol, 1.0 equiv), acetic acid (16 mL) and H₂O (2.2 mL) for 65 h. 26 was isolated as a pale yellow oil. Yield: 1.848 g (12.65 mmol, 32%). ¹H NMR (500 MHz, CDCl₃): δ = 9.87 (s, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.57 (s, 1H), 7.52 (ddd, *J* = 8.4, 7.0, 1.1 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 179.9, 156.4, 152.8, 129.4, 126.8, 124.3, 123.8, 118.0, 112.9 ppm. Analytical data match those previously reported ¹⁹.

1-(Benzofuran-2-yl)prop-2-en-1-ol (15). Allylic alcohol **15** was prepared according to a literature procedure ⁷ from a solution of the aldehyde **26** (1.046 g, 7.157 mmol, 1.0 equiv) in THF (10 mL)

and vinylmagnesium bromide (1 M solution in THF, 8.2 mL, 8.2 mmol, 1.2 equiv) by stirring at 0 °C for 3 h. **15** was purified by flash chromatography (silica gel, n-hexane/EtOAc 80:20) and isolated as a yellow oil. Yield: 0.761 g (4.366 mmol, 61%). ¹H NMR (500 MHz, CDCl₃): δ = 7.55 (d, *J* = 7.5 Hz, 1H), 7.48 (dd, *J* = 8.1, 0.7 Hz, 1H), 7.30 - 7.21 (m, 2H), 6.65 (s, 1H), 6.20 (ddd, *J* = 17.0, 10.2, 5.8 Hz, 1H), 5.51 (dt, *J* = 17.2, 1.0 Hz, 1H), 5.37 - 5.35 (m, 2H), 2.26 (d, *J* = 5.5 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 157.6, 155.1, 136.5, 128.1, 124.5, 123.0, 121.3, 117.4, 111.4, 103.5, 69.3 ppm. HRMS (ESI): *m/z* calculated for C₁₁H₈O + H⁺ [M + H⁺ - H₂O]: 157.06479. Found: 157.06459. ¹H and ¹³C NMR spectra match those previously reported ²⁰.

1-(Benzo[b]thiophen-3-yl)prop-2-en-1-ol (18). Allylic alcohol **18** was prepared according to a literature procedure ²¹ from a solution of benzo[*b*]thiophene-3-carbaldehyde (0.515 g, 3.17 mmol, 1.0 equiv) in THF (6.2 mL) and vinylmagnesium bromide (1 M solution in THF, 3.4 mL, 3.4 mmol, 1.1 equiv) by stirring at -78 °C for 1 h. **18** was isolated as a yellow oil. Yield: 0.579 g (3.04 mmol, 96%). ¹H NMR (500 MHz, CDCl₃): δ = 7.92 – 7.91 (m, 1H), 7.87 – 7.86 (m, 1H), 7.40 (s, 1H), 7.39 – 7.35 (m, 2H), 6.20 (ddd, *J* = 17.1, 10.3, 5.8 Hz, 1H), 5.57 (d, *J* = 5.7 Hz, 1H), 5.48 (d, *J* = 17.1 Hz, 1H), 5.30 (d, *J* = 10.4 Hz, 1H), 2.12 (s, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 141.1, 138.8, 137.6, 137.3, 124.6, 124.2, 123.4, 123.0, 122.7, 116.3, 70.9 ppm. Analytical data match those previously reported ⁹.

 Table S1. Comparison of NMR data of natural and synthetic morinda lactone (1a).

	1a (natural) ^{a}		1a (synthetic, procedure A) ^{b}		1a (synthetic, procedure B) ^{b}	
position	δ _H (mult. , <i>J</i> [Hz])	δ _C	$\delta_{\rm H}$ (mult., J [Hz])	δc	δ _H (mult. , <i>J</i> [Hz])	δς
1		175.8		175.5		175.5
2		78.9		78.5		78.5
3		107.5		107.1		107.1
4	4.33 (s)	87.8	4.33 (s)	87.4	4.33 (s)	87.4
5	4.23 (br t, 5.2)	74.5	4.23 (m)	74.1	4.23 (br s)	74.2
6a	4.13 (dd, 9.4, 6.2)	74.4	4.13 (dd, 9.3, 6.4)	74.0	4.15 – 4.12 (m)	74.0
6b	3.86 (dd, 9.4, 4.2)		3.85 (dd, 9.3, 4.3)		3.86 – 3.84 (m)	
7	2.51 (m)^c	39.5	$2.56 - 2.46 \text{ (m)}^{c}$	38.4	2.50 (m) ^{c}	38.4

8	5.92 (dt, 16.0, 15.6)	129.0	5.91 (dt, 15.8, 7.6)	119.6	5.92 (dt, 15.7, 7.6)	119.7
9	6.22 (d, 16.0)	133.7	6.22 (d, 15.8)	133.3	6.22 (d, 15.8)	133.3
1'		129.0		128.6		128.6
2'	6.78 (d, 1.4)	113.0	6.78 (d, 1.6)	112.6	6.78 (m)	112.6
3'		145.7		145.5		145.4
4'		145.5		145.2		145.2
5'	6.66 (d, 8.0)	116.0	6.65 (d, 8.0)	115.6	6.66 – 6.65 (m)	115.6
6'	6.59 (dd, 8.0, 1.4)	118.4	6.59 (dd, 8.1, 1.5)	118.0	6.59 – 6.58 (m)	118.0
ОН			8.93 (br s), 8.87 -		8.95 – 8.71 (m),	
			8.59 (m), 6.93 (br		6.95 – 6.93 (m),	
			s), 5.71 (br s), 5.58		5.71 (br s), 5.61 -	
			(br s)		5.58 (br s)	

^{*a*} Data and assignments taken from literature ²², spectra were recorded at ¹H (400 MHz) and ¹³C (100 MHz) in DMSO-d₆.

 b Spectra were recorded at 1 H (500 MHz) and 13 C (126 MHz) in DMSO-d₆ and calibrated to the solvent residual peaks of DMSO-d₆ (δ_{H}

= 2.50 and δ_C = 39.52 ppm).

^{*c*} This signal overlaps with the solvent residual signals. Additional spectra in acetone-d₆ are provided.

Morinda lactone (1a, procedure A). ¹H NMR (500 MHz, acetone-d₆): $\delta = 7.92$ (br s, 3H), 6.92 (d, J = 1.5 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.72 (dd, J = 8.1, 1.5 Hz, 1H), 6.36 (d, J = 15.8 Hz, 1H), 6.07 (dt, J = 15.8, 7.7 Hz, 1H), 5.83 (br s, 1H), 4.76 (br s, 1H), 4.51 (br s, 1H), 4.47 (s, 1H), 4.44 – 4.42 (m, 1H), 4.16 (dd, J = 9.7, 5.5 Hz, 1H), 4.06 (dd, J = 9.6, 3.2 Hz, 1H), 3.06 (br s, 3H), 2.70 – 2.61 (m, 2H) ppm. ¹³C NMR (126 MHz, acetone-d₆) $\delta = 175.7$, 146.0, 145.8, 134.9, 130.6, 120.5, 119.5, 116.1, 113.4, 108.3, 87.6, 79.5, 75.6, 75.5, 38.9 ppm.

Morinda lactone (1a, procedure B). ¹H NMR (500 MHz, acetone-d₆): $\delta = 7.93 - 7.76$ (m, 5H), 6.91 (d, J = 1.9 Hz, 1H), 6.77 - 6.74 (m, 1H), 6.73 -6.71 (m, 1H), 6.36 (d, J = 15.9 Hz, 1H), 6.07 (dt, J = 15.9, 7.6 Hz, 1H), 4.76 (br s, 1H), 4.49 (m, 1H), 4.46 (s, 1H), 4.43 - 4.41 (m, 1H), 4.16 (dd, J = 9.7, 5.6 Hz, 1H), 4.05 (dd, J = 9.7, 3.3 Hz, 1H), 2.70 - 2.60 (m, 2H) ppm. ¹³C NMR (126 MHz, acetone-d₆) $\delta = 175.7$, 146.0, 145.8, 134.9, 130.6, 120.5, 119.5, 116.1, 113.4, 108.3, 87.6, 79.5, 75.6, 75.5, 39.0 ppm.

Some compounds of type **1** show additional signals in their ¹³C NMR spectra. Comparing with the data of similar compounds ^{1,23,24}, it seems likely that the open form **1**' is present in solution. Usually, not all signals of the minor isomer **1**' are visible.

Scheme S1. Equilibrium between the closed form 1 and the open form 1'.

Morinda lactone (1'a, procedure A, minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 132.8, 122.3, 120.8, 120.7, 119.1, 117.8, 116.6, 116.4, 115.5, 84.6, 78.6, 76.3 ppm.

Morinda lactone (1'a, procedure B, minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 123.2, 118.8, 115.5, 86.9, 76.3, 40.8 ppm.

1'b (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 134.3, 79.5, 73.2 ppm.

1'b (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 134.3, 79.5, 73.2 ppm.

1'c (minor form). ¹³C NMR (126 MHz, CDCl₃) δ = 132.2, 130.7, 121.7, 117.4, 84.3, 70.4, 66.0, 65.0, 35.2 ppm.

1'd (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 131.0, 118.5, 83.6, 71.6, 62.4, 41.9 ppm.

1'e (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 134.6, 134.5, 123.8, 123.7, 89.4, 84.5, 76.5, 74.2, 73.2, 71.0, 35.4 ppm.

9' (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 132.7, 125.5, 125.3, 125.2, 125.1, 124.2, 123.6, 121.1, 120.7, 120.5, 115.9, 98.4, 84.6, 76.5, 74.2, 73.2, 71.0, 36.1 ppm.

13' (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 127.6, 126.2, 125.2, 124.6, 122.7, 122.5, 120.9, 120.1, 111.6, 102.8, 84.5, 74.6, 73.2, 71.0, 39.2 ppm.

17' (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 132.8, 132.7, 129.6, 129.5, 128.4, 127.8, 127.6, 125.2, 123.7, 122.9, 122.8, 121.7, 120.1, 111.5, 104.3, 89.5, 84.7, 76.4, 74.3, 73.3, 71.0, 35.5 ppm.

20' (minor form). ¹³C NMR (126 MHz, acetone-d₆) δ = 126.7, 126.7, 126.5, 125.3, 125.1, 123.6, 123.1, 89.5, 84.6, 76.4, 74.3, 73.2, 71.0, 35.9 ppm.

Antimicrobial assay

Minimum Inhibitory Concentrations (MIC) of Morinda lactone (1a) and derivatives were determined via serial dilution assays as described previously ^{25,26}. They were tested on the following organisms: *Pichia anomala, Schizosaccharomyces pombe, Mucor hiemalis, Candida albicans,* and *Rhodotulas glutinis* for fungal microorganisms; *Bacillus subtilis, Staphyloccocus aureus* and *Mycobacterium smegmatis* for Gram-positive bacteria, *Acinetobacter baumannii, Chromobacterium violaceum, Escherichia coli* and *Pseudomonas aeruginosa* for Gram-negative bacteria.

	MIC [μg/mL]										
organisms	Strain No.	1a	1b	1c	1d	1e	9	13	17	20	Reference
Bacteria											
B. subtilis	DSM 10	_	_	_	_	_	_	_	_	-	8.3ª
S. aureus	DSM 346	_	-	_	_	_	_	66.6	_	_	1.7 ^a
M. smegmatis	ATCC 700084	-	-	-	-	-	66.6	-	-	-	1.7 ^b
A. baumannii	DSM 30008	-	-	-	_	-	-	-	_	-	0.3 ^c
C. violaceum	DSM 30191	-	-	-	_	-	-	-	_	-	0.8 ^a
E. coli	DSM 1116	-	-	_	_	-	-	_	_	-	1.7 ^a
P. aeruginosa	PA14	-	-	-	-	-	-	_	-	-	0.1 ^d
Fungi											
M. hiemalis	DSM 2656	66.6	66.6	66.6	66.6	-	_	66.6	_	-	4.2 ^e
P. anomala	DSM 6766	-	-	_	_	-	-	_	_	-	8.3 ^e
R. glutinis	DSM 10134	_	-	_	_	_	_	_	_	_	4.2 ^e
C. albicans	DSM 1665	-	_	_	_	-	_	_	_	-	8.3 ^e
S. pombe	DSM 70572	-	_	_	-	_	_	-	_	-	4.2 ^e

Table S2. Antimicrobial activity of morinda lactone (1a) and derivatives 1b-e, 9, 13, 17, and 20.

References: ^a oxytetracycline, ^b kanamycin, ^c ciprobay, ^d gentamicin, ^e nystatin; – : not active.

Biofilm inhibition assay

Staphylococcus aureus DSM 1104 (from stock at -20 °C) was incubated in 25 mL casein-peptone soymeal-peptone (CASO) medium at 37 °C on a rotary shaker (100 rpm) for 18 h. The OD₆₀₀ of the culture solution was adjusted to match the turbidity of a 0.001 McFarland standard. 150 µL of CASO with 4% glucose broth was added together with the serially diluted compounds (250 – 2 µg/mL) and incubated in 96 well microtiter plates (TPP tissue culture ref. no 92196) at 37 °C for 18 h. The anti-biofilm activity was assessed via 0.1% crystal violet staining (Thermo Fisher, Waltham, USA) following protocols established previously ^{27,28}. Briefly, the supernatant was discarded, the biofilm was stained at room temperature for 15 min and then washed thrice with PBS (phosphate-buffered saline) buffer. The dye together with biofilm was dissolved in acetic acid (30%), and the absorbance was determined with a plate reader (Synergy 2, BioTek, Santa Clara, USA) at 530 nm. Methanol (2.5%) was employed as a negative control and microporenic acid A ²⁷ (250-0.2 µg/mL) as positive control.

P. aeruginosa (PA 14) DSM 19882 was precultured in 25 mL LB medium (Luria-Bertani Broth) with a 250 mL flask at 37 °C with shaking 100 rpm overnight. The OD₆₀₀ of the suspended solution

was measured and adjusted to 0.1 McFarland standard in M63 medium, which is supplemented with magnesium sulfate, glucose and casamino acids as previously described. The compounds were added into 150 μ L bacterial solution at the concentration (250–2 μ g/mL) then the solution was added in U-bottom 96 well plate (Falcon non-tissue plate with U-Bottom ref.no 351177). The plates were incubated at 37 °C at 150 rpm for 24 h and biofilms were established at the air liquid interface. The plates were rinsed once by using PBS buffer, the biofilms were stained by 150 μ L 0.1% CV at room temperature for 15 min and then rinsed two times by using PBS buffer. The absorbance was quantified with the plate reader (Synergy 2, BioTek, Santa Clara, USA) at 550 nm using ethanol (95%). Methanol (2.5 %) and Myxovalargin A (250–2 μ g/mL) were used as negative control and positive control, respectively.

Biofilm dispersion assay

A cell suspension of *Staphylococcus aureus* strain DSM 1104 was adjusted to match the turbidity of a 0.001 McFarland standard. It was incubated in 96 well tissue microtiter plates for 18 h in CASO with 4% glucose broth. The supernatant was removed from and the wells were washed with 150 μ L PBS buffer, then 150 μ L of the fresh media (CASO with 4% glucose broth) was added together with the serially diluted compounds (250 – 2 μ g/mL) to the wells. The plates were incubated at 37 °C for a further 24 h. Staining of the preformed biofilms and controls was carried out as described above for the biofilm inhibition ²⁸.

Candida albicans DSM 11225 was grown in 25 mL Yeast extract Peptone Dextrose (YPED) medium in a 250 mL flask at 30 °C in a shaker (100 rpm) for 18 h. The OD₆₀₀ of the bacterial suspension was adjusted to 0.05 McFarland standard in RPMI 1640 medium. The 150 μ L bacterial solution was added to 96 well non-tissue microtiter plates (Falcon non-tissue plate ref.no 351172) at 37 °C (150 rpm). After 90 min incubation, the supernatant was discarded and the wells rinsed twice with PBS buffer. Compounds were serially diluted in 150 μ L of fresh media (RPMI 1640) at concentrations ranging from 250–2 μ g/mL and added to the wells of 96 wells plates. Methanol (2.5%) and farnesol (250–2 μ g/mL) were used as a negative and positive control, respectively. The plates were incubated at 37 °C and 150 rpm for a further 24 h. The supernatant was removed and washed by PBS buffer. Biofilms were stained by 150 μ L 0.1% CV for 25 min at room temperature. The plates were washed four times with PBS buffer and 150 μ L ethanol (95%) was added to wells to dissolve the biofilms. The absorbance was measured with a plate reader (Synergy 2, BioTek, Santa Clara, USA) at 610 nm. SD of two repeats with duplicates each were 10% or less ²⁸.

Cmpd	Biofilm inhibition (<i>S. aureus</i>) ^a [% ± SD]	Biofilm dispersion (<i>S. aureus</i>) ^b [% ± SD]	Biofilm dispersion (C. <i>albicans</i>) ^c [% ± SD]	
1a	-	-	52±10 (250 µg/mL)	
1b	26±9 (250 µg/mL)	•	59±6 (250 µg/mL)	
1c	65±10 (250 µg/mL)	-	64±5 (250 µg/mL)	
1d	-	-	63±6 (250 µg/mL)	
			73±9 (250 µg/mL)	
Te	1.5	-	35±3 (31.3 µg/mL)	
	80±4 (250 µg/mL)	50±8 (250 µg/mL)	86±5 (250 µg/mL)	
9	57±4 (125 µg/mL)		66±5 (62.5 µg/mL)	
			21±4 (15.6 µg/mL)	
40	72±9 (250 µg/mL)*	24+4 (250 ug/ml.)*	77±2 (250 µg/mL)	
13	21±10 (125 µg/mL)*	24±4 (250 µg/mL)	42±8 (31.3 µg/mL)	
	79±2 (250 µg/mL)	50±7 (250 µg/mL)	80±6 (250 µg/mL)	
17	28±8 (125 µg/mL)		57±8 (62.5 µg/mL)	
		·	23±8 (15.6 µg/mL)	
	80±6 (250 µg/mL)			
20	23±2 (61.5 µg/mL)	-		
	(-) no activity	, SD: standard devia	tion	

Table S3. Antibiofilm effects of morinda lactone (1a) and derivatives 1b-e, 9, 13, 17, and 20

References [%]: ^a microporenic acid A (MAA): 82 ± 6 (250 µg/mL), $79 \pm 10(7.8 µg/mL)$, 25 ± 9 (3.9 µg/mL); ^b microporenic acid A (MAA): 50 ± 10 (250 µg/mL), 29 ± 10 (15.6 µg/mL); ^c farnesol: 75 ± 6 (250 µg/mL), 62 ± 10 (31.3 µg/mL), 50 ± 10 (15.6 µg/mL); *activity below MIC values.

Cytotoxicity assay

The evaluation of in *vitro* cytotoxicity (IC₅₀) of the isolated compounds was performed with mouse fibroblast cell line L929 (ACC2) and mammalian HeLa KB3.1 (ACC158) cancer cells. Therefore, compounds **1a-1e**, **9**, **13**, **17**, and **20** were tested as previously described [16]. 6×10^3 cells/well were selected in 96-well microtiter plates. The compounds were dissolved in MeOH (1 mg/mL) which was used as negative control in this study; epothilon B (1 mg/mL) was used as positive control. The cell lines were incubated with a serial dilution of the test compounds (final range from 37 to 0.6 x $10^{-3} \mu g/mL$) for five days. Afterwards, they were dyed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), which is only converted to its purple formazan derivative by living cells. To calculate the percentage of cell viability, absorption at 595 nm was measured using a microplate reader. Results were expressed as IC₅₀, the half maximal inhibitory concentration (μ M).

IC50 [μg/ml]						
	L929 (ACC2)	Tox.Nr.	KB3.1 (ACC158)	Tox-Nr.		
1a	68	3640	-	3630		
1b	-	3639	-	3633		
1c	_	3640	-	3630		
1d	_	3639	-	3633		
1e	-	3638	-	3634		
9	-	3638	76	3634		
13	-	3637	67	3631		
17	-	3637	-	3631		
20	-	3635	75	3632		
Еро В	0.00024	3483	0.000017	3485		

Table S4. Cytotoxicity of morinda lactone (1a) and derivatives 1b-e, 9, 13, 17, and 20.

References: Epo B: epothilon B; - : not active.

References

- 1 A. J. Poss and R. K. Belter, The Journal of Organic Chemistry, 1988, 53, 1535–1540.
- 2 C. C. Wei, S. De Bernardo, J. P. Tengi, J. Borgese and M. Weigele, *The Journal of Organic Chemistry*, 1985, **50**, 3462–3467.
- 3 M. E. Jung and T. J. Shaw, J. Am. Chem. Soc., 1980, 102, 6304–6311.
- 4 A. O. Olabisi and K. Wimalasena, *The Journal of organic chemistry*, 2004, **69**, 7026–7032.
- 5 G. W. Breton, J. Org. Chem., 1997, 62, 8952-8954.
- 6 E. Reimann, Justus Liebigs Ann. Chem., 1971, 750, 109–127.
- 7 A. Briot, C. Baehr, R. Brouillard, A. Wagner and C. Mioskowski, J. Org. Chem., 2004, 69, 1374–1377.
- 8 M. Agirre, S. Henrion, I. Rivilla, J. I. Miranda, F. P. Cossío, B. Carboni, J. M. Villalgordo and F. Carreaux, J. Org. Chem., 2018, 83, 14861–14881.
- 9 L. Lombardi, D. Bellini, A. Bottoni, M. Calvaresi, M. Monari, A. Kovtun, V. Palermo, M. Melucci and M. Bandini, *Chemistry A European Journal*, 2020, **26**, 10427–10432.
- 10P. M. Killoran, S. B. Rossington, J. A. Wilkinson and J. A. Hadfield, *Tetrahedron Letters*, 2016, 57, 3954–3957.
- 11P.-O. Delaye, J.-L. Vasse and J. Szymoniak, Org. Biomol. Chem., 2010, 8, 3635.
- 12M. D. Ganton and M. A. Kerr, Org. Lett., 2005, 7, 4777-4779.
- 13J. Bonnamour and C. Bolm, Org. Lett., 2011, 13, 2012–2014.
- 14C. Zheng, Y. Lu, J. Zhang, X. Chen, Z. Chai, W. Ma and G. Zhao, *Chemistry A European Journal*, 2010, 16, 5853–5857.

- 15M. Schlegel, P. Coburger and C. Schneider, Chem. Eur. J., 2018, 24, 14207–14212.
- 16J. Waser, B. Gaspar, H. Nambu and E. M. Carreira, J. Am. Chem. Soc., 2006, 128, 11693–11712.
- 17J. R. Davies, P. D. Kane, C. J. Moody and A. M. Z. Slawin, J. Org. Chem., 2005, 70, 5840–5851.
- 18X. Liang, T.-Y. Zhang, C.-Y. Meng, X.-D. Li, K. Wei and Y.-R. Yang, *Org. Lett.*, 2018, **20**, 4575–4578.
- 19L. A. Perego, S. Wagschal, R. Grüber, P. Fleurat-Lessard, L. El Kaïm and L. Grimaud, *Advanced Synthesis & Catalysis*, 2019, **361**, 151–159.
- 20C. Morrill, G. L. Beutner and R. H. Grubbs, J. Org. Chem., 2006, 71, 7813-7825.
- 21 J. A. Rossi-Ashton, A. K. Clarke, J. R. Donald, C. Zheng, R. J. K. Taylor, W. P. Unsworth and S. You, *Angew. Chem. Int. Ed.*, 2020, **59**, 7598–7604.
- 22 U. J. Youn, E.-J. Park, T. P. Kondratyuk, M. Sang-Ngern, M. M. Wall, Y. Wei, J. M. Pezzuto and L. C. Chang, *J. Nat. Prod.*, 2016, **79**, 1508–1513.
- 23 J. C. Yvin, A. M. Chevolot-Magueur, L. Chevolot, J. Y. Lallemand, P. Potier and J. Guilhem, J. Am. Chem. Soc., 1982, 104, 4497–4498.
- 24 A. Burtea and S. D. Rychnovsky, Org. Lett., 2018, 20, 5849–5852.
- 25K. Becker, A.-C. Wessel, J. J. Luangsa-ard and M. Stadler, Biomolecules, 2020, 10, 805.
- 26B. Sandargo, M. Michehl, D. Praditya, E. Steinmann, M. Stadler and F. Surup, Org. Lett., 2019, 21, 3286–3289.
- 27 C. Chepkirui, K. T. Yuyama, L. A. Wanga, C. Decock, J. C. Matasyoh, W.-R. Abraham and M. Stadler, *J. Nat. Prod.*, 2018, **81**, 778–784.
- 28M. G. Schriefer, H. Schrey, H. Zeng, M. Stadler and R. Schobert, *Org. Biomol. Chem.*, 2021, **19**, 4743–4751.